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We present a new strategy which exploits both the maximal and p-local sub-
group structure of a given finite simple group in order to decide the Alperin and
Dade conjectures for this group. We demonstrate the computational effectiveness
of this approach by using it to verify these conjectures for the Conway simple group
Co,.  © 1998 Academic Press

INTRODUCTION

In this paper, we present a new strategy to decide the Alperin and Dade
conjectures for the finite simple groups and demonstrate its computational
effectiveness by using it to verify these conjectures for the Conway simple
group Co,. We also outline the contents of a software library which may
be used to decide these conjectures for an arbitrary finite group.

Already, these conjectures have been verified for a substantial number
of finite simple groups; see [8] for an indication of the current standing of
the problem. The major challenge in deciding the conjectures for a given
group is to determine the radical subgroups of this group and hence to
obtain the radical chains. In practice, some of the radical chains of the
outstanding finite simple groups cannot be determined explicitly using
existing computational approaches. Our new local strategy uses knowledge
of both the maximal and p-local subgroup structure of the finite simple
group to determine the radical subgroups of the group.

Let G be a finite group, p a prime, and B a p-block of G. Alperin [1]
conjectured that the number of B-weights equals the number of irre-
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ducible Brauer characters of B. Dade [7] generalized the KnGrr—Robinson
version of the Alperin weight conjecture and presented his ordinary
conjecture exhibiting the number of ordinary irreducible characters of a
fixed defect in B in terms of an alternating sum of related values for
p-blocks of some p-local subgroups of G. Dade [8] announced that his
final conjecture needs only to be verified for finite non-abelian simple
groups; in addition, if a finite group has both trivial Schur multiplier and
outer automorphism group, then the ordinary conjecture is equivalent to
the final conjecture.

We demonstrate the computational effectiveness of our local strategy by
using it to verify the Alperin weight conjecture and the Dade ordinary
conjecture, and so the final one, for the Conway simple group Co,.

The outline of the paper is as follows. In Section 1, we fix our notation
and state the two conjectures in detail. In Section 2, we discuss the
computational tools used in deciding the conjectures. In Section 3, we
introduce our local strategy and discuss how we employed it to determine
the radical subgroups of Co,. In Section 4, we classify the radical sub-
groups of Co, up to conjugacy and verify the Alperin weight conjecture. In
Section 5, we do some cancellations in the alternating sum of Dade’s
conjecture when p = 2 or 3, and then determine radical chains (up to
conjugacy) and their local structures. In the last section, we verify Dade’s
conjecture.

1. THE ALPERIN AND DADE CONJECTURES

Let R be a p-subgroup of a finite group G. Then R is radical if
O,(N(R)) = R, where O,(N(R)) is the largest normal p-subgroup of the
normalizer N(R) = N;(R). Denote by Irr(G) the set of all irreducible
ordinary characters of G, and let BIk(G) be the set of p-blocks, let
B € BIk(G) and ¢ € Irr(N(R)/R). The pair (R, ¢) is called a B-weight if
¢ has p-defect 0 (see [7, (5.5)] for definition) and B(¢)“ = B (in the sense
of Brauer), where B(¢) is the block of N(R) containing ¢. A weight is
always identified with its G-conjugates. Let #(B) be the number of
B-weights, and /(B) the number of irreducible Brauer characters of B.
Alperin [1] conjectured that 7 (B) = I(B) for each B € BIk(G).

Given a p-subgroup chain

C:Py<P < - <P, (1.1)

of a finite group G, define |Cl=n, C,: P, <P, < -+ <P, C(C)=
Cs(P), and

N(C) =NG(C) =NG(PO) mNG(Pl) N ﬁNG(Pn)- (1-2)
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The chain C is radical if it satisfies the following conditions:
(a) Py = 0,(G) and (b) P, = O,(N(Cy))forl <k <n.

Denote by % = %(G) the set of all radical p-chains of G. For B € BIk(G)
and integer d > 0, let K(N(C), B, d) be the number of characters in the
set

Irr(N(C), B, d) = {¢ € Irr(N(C)) : B(¢)° =B, d(¢) = d},

where d(i) is the defect of .

Dade’s Ordinary Conjecture [7]. If Op(G) =1and B is a p-block of G
with positive defect, then for any integer d > 0,

Y (-1)“%(N(C),B,d) =0, (1.3)
CeZ#/G

where % /G is a set of representatives for the G-orbits of %.

2. COMPUTATIONAL TOOLS

As part of this study, we have developed and implemented a library of
procedures which can be used to (partially or completely) decide the
Alperin weight conjecture and the Dade ordinary conjecture for an arbi-
trary finite group. The group can be described by a matrix or permutation
representation.

These procedures are written in the language of the computational
algebra system MacMA (see [3] for details). They perform the following
tasks:

(1) Determine the G-conjugacy classes of radical p-subgroups for a
given prime p.

(2) Determine the blocks of the normaliser of each radical subgroup.

(3) Determine the weights for each block of a radical subgroup.

(4) Identify up to isomorphism type the defect groups.

(5) Construct the p-radical chains, up to conjugacy, and eliminate
redundant chains.

(6) For each non-trivial chain, determine its local structure and
evaluate the corresponding term of the alternating sum.

These procedures can be executed in sequence and hence, within the
limits of computational resources, allow a user to decide both conjectures
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for an arbitrary finite group. Details of the algorithms used will be
presented elsewhere. We plan to extend our algorithms to deal with other
forms of Dade’s conjecture.

The computations reported in this paper were carried out using these
procedures running MAGMA V.2.20-7 on a Sun UltraSPARC Enterprise
4000 server.

In our investigation, we used the minimal degree representation of Co,
as a permutation group on 2300 points. In constructing maximal subgroups
of Co,, we made extensive use of the algorithm described in [4] to
construct random elements.

3. DETERMINING THE RADICAL SUBGROUPS OF Co,

The major computational challenge in deciding the conjectures for Co,
is to determine the radical subgroups of Co,.

In summary, our standard algorithm to determine the radical p-sub-
groups of a group G for a given prime p is the following: compute the
subgroup classes of an Sylow p-subgroup of G; for each p-subgroup R,
compute the largest normal p-subgroup O,(N(R)) of the normaliser N(R)
in G of R; if O,(N(R)) equals R then R is radical.

This algorithm suffices to compute both the radical 3- and 5-subgroups
of Co,. However, an Sylow 2-subgroup of Co, has order 2*¥ and, using
available computing resources, we could not determine the conjugacy
classes of subgroups of this 2-group. Instead we use the following local
strategy to obtain the radical 2-subgroups of Co,.

Wilson [10] classifies the maximal subgroups of Co,. In (4C), we use his
classification to deduce that each radical 2-subgroup R of Co, is radical in
one of seven maximal subgroups M and further that N;(R) = N,,(R).

(1) We first consider the case where M is a 2-local subgroup. Let
Q = 0,(M), so that Q < R. We find all the subgroup classes of a Sylow
2-subgroup D of M containing Q. Using MAaGmA, we explicitly compute
the quotient M /Q and the natural homomorphism n: M — M /Q. This
approach provides a regular representation for M/Q, whose (potentially
large) degree is usually computationally limiting. Hence, we construct a
power-conjugate presentation for the quotient group n(D) = D /Q since
such presentations are computationally very effective. We now compute all
subgroup classes in D /Q. The preimages in D of the subgroup classes of
D /Q are the subgroup classes of D containing Q.

We select those class representatives R which are radical by deciding
whether R = O,(N,,(R)). Since computing the normalizer in M of R is
potentially very expensive, we also seek to limit the time taken by this step.
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In some cases, the quotient M /Q is a well-known group. If a small degree
permutation representation of M /Q is available, we explore this represen-
tation independently to find the radical 2-subgroup classes of M/Q and
then use this information to guide our investigations and to provide
termination conditions for our computations.

For example, if M =2'"8:5.(2), then D has 3200 subgroup classes
containing Q = 2%*% By studying a permutation representation of degree
28 of M/Q = S4(2), we learn that S4(2) has 7 non-trivial radical 2-sub-
groups: one each of order 25 2°, 27 and 2°, and three of order 28 Hence,
we now know that the radical 2-subgroups of M have orders 2% for
14 < k < 18. We partition the 3200 classes according to their orders and
search in each partition only until we find the required number of radical
subgroups of this order.

(2) Now consider the case where M is not 2-local. We may be able
to find its radical 2-subgroup classes directly. Alternatively, we find a
subgroup K of M such that Ny(R) = N,,(R) for each radical subgroup R
of M. If K is 2-local, then we apply Step (1) to K. If K is not 2-local, we
can replace M by K and repeat Step (2).

After applying the local strategy, possible fusions among the resulting
list of radical subgroups can be decided readily by testing whether the
subgroups in the list are pairwise G-conjugate.

Although it was not necessary, we used the local strategy to construct
the radical 3-subgroups of Co, since it was significantly more efficient
than the standard algorithm.

4. RADICAL SUBGROUPS AND WEIGHTS

Let ®(G, p) be a set of representatives for conjugacy classes of radical
p-subgroups of G. For H,K < G, we write H <; K if x"'Hx < K; and
write H €; ®(G, p) if x *Hx € ®(G, p) for some x € G. We use the
notation of [6]. In particular, if p is odd, then p’*2” is an extra-special
group of order p'*2¥ with exponent p; if § is + or —, then 21*2” is an
extra-special group of order 21*2” with type 6. If X and Y are groups, we
use X.Y and X :Y to denote an extension and a split extension of X by Y,
respectively. Given n € N, we use E,. or simply p" to denote the
elementary abelian group of order p”, Z, or simply n to denote the cyclic
group of order n, and D,, to denote the dihedral group of order 2n.

Let G be Co,. Then |G| =2%-3°.5%.7.11-23, and we may suppose
p € 1{2,3,5)}, since both conjectures hold for a block with a cyclic defect
group by [7, Theorem 9.1].
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We denote by Irr®(H) the set of ordinary irreducible characters of
p-defect 0 of a finite group H and by d(H) the number log (|H ). Given
R € ®(G, p), let C(R) = C;(R) and N = N;(R). If B, = B,(G) is the
principal p-block of G, then by [2, (1.3)],

7 (By) = LI (N/C(R)R)], (4.1)
R

where R runs over the set ®(G, p) such that the p-part d(C(R)R/R) = 0.
The character table of N/C(R)R can be constructed using MAGMA, hence
we can find [Irr®(N /C(R)R)|.

(4A) The non-trivial radical 5-subgroups R of Co, (up to conjugacy) are

R C(R) N [1rr®(N/C(R)R) |
5 5X S F& xS
5L+2 5 512:48, 16,

where F," is a Frobenius group with kernel Z, and complement 7 ,,.

Proof. If G = Co, and x is an element of class 5B, then N;({x)) =
5.4 X Sg (cf. [10, p. 111]), so that 5 = {x) is radical and C;(x) =5 X S..
In addition, if 5%"2 € Syl.(G) is a Sylow 5-subgroup of G, then N(5%"2)
= 51%245,. By MacmA ®(G,5) = {5,5 7%}, I

(4B) The non-trivial radical 3-subgroups R of Co, (up to conjugacy) are

R C(R) N [1rr®(N/C(R)R)|
3 3% U,(2).2 Sy X Uy(2) .2
3¢ 3¢ 3% 4,.D,
31+4 3 31+4.21+4S5
+ + Ee-
S 3 S.(SD,: X 2) 14,

where S € Syl,(Co,) and SD,. is the semihedral group of order 2*.

Proof. Let M,, M,, and M, be subgroups of G = Co, such that
M, =3 420 M, =8, X Uy2).2, and M, = 3*. 4,.D,. Then M,
and M, are normalizers of a 34 and 3B element, respectively. Suppose
1+# R € ®(G,3). Then X = Q,(Z(R)) is an elementary abelian subgroup
of G.

If |X|=3, then we may suppose N;(X)=M e {M,, M,}, so that
N;(R) <M, R ®(M,3), and N,,(R) = N;(R). Assume M = M, and
3174 = 0,(M). Then

D(My,3) = {344, 5},
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where S € Syl,(G). Assume M = M, and 3 = O,(M,). It follows by [6, p.
26] and MAGMA that

D(M,,3) = {3,3 x 372,35}, (4.2)
where S’ € Syl,(M,). Moreover, N;(R) # N, (R) for each R €

®(M,, I\(3}. In addition, C;(3 X 3172) = C,(S') = 32, C;(3*) = 3%, and
(see [6, p. 26])

S, x 3228, if R=3x3%%2
Ny (R) = {85 X 3%:(8, X 2) if R = 3%, (4.3)
S, X 33: (85 X 2) if R ="

Suppose | X| = 9, so that X is non-cyclic. By [10, p. 112], X contains an
element x of class 3B. Thus X < C;(x) = {x) X U,(2).2. Moreover,
either N;(X) < N(3A) or C4(X) contains a normal subgroup of order 3*.
In the latter case, C;(X) <3 X 3%: Dy or C,;(X) <3 X 3%:22 so that
C;(X) has exactly one Sylow 3-subgroup of order 3* Since N;(R) <
N;(X) and R < C4(X), it follows by [9, Lemma 2.1] that R is a radical
subgroup of C,;(X). In particular, 3* < O,(C;(X)) < R. Therefore R =
3% Hence M = M,, and by MAGMA,

D(Mj,3) = (3%, S}; (4.4)

moreover, N;(R) = N,,(R) for each R € ®(M,,3). 1

(4C) Given integer 1 <i < 7, let M; be the maximal subgroups of G =
Co, such that My = 21+ : S,(2), M, = 21*8x 24). Ay, M, = 247 19(S, x
S, M, = 2% My, :2, My = ML, My = M,,, and M, = U(2): 2. Suppose
R is a non-trivial radical 2-subgroup of G. Then N;(R) <; M, for some . In
particular, if No(R) < M, then Ng(R) = My, (R) and R €5 ®(M,,2).

Proof. By [10, Theorem], each M, is a maximal subgroup of G. If
1+# R € ®(G,2), then X = Q,(Z(R)) is an elementary abelian subgroup
of G, and N;(R) < N;(X). By [10, Proposition 4] and the proof given in
(10, pp. 113-114], N;(X) < M, for some i and so N;(R) < M,. |

How do we construct these maximal subgroups of Co,? From [6, 10], we
learn that M, = N2A), M, = N(2B), and M, = N(O,(N(2C))). The
subgroup 2* = Z(0,(M,)) contains 5 elements of class 24 and 10 of class
2B, and it is also a subgroup of 2! = 0,(M,). Now 2*° has 77 elements of
class 2.4 and 330 of class 2B. Clearly we can assume that 2* contains a
central involution z of a Sylow 2-subgroup of M,. Thus a necessary
condition for an involution x € 2'° to be an element of 2* is that x and xz
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are of class 2.4 or 2B. This insight and repeated random element selection
using the algorithm of [4] allowed us to construct 2* and so M,. The
remaining three maximal subgroups were constructed using the black-box
algorithms of Wilson [11].

(4D)  The non-trivial radical 2-subgroups R of Co, (up to conjugacy) are

R C(R) N/C(R)R [Irr®(N/C(R)R) ]|
2L+8 2 S(2) 1
210 210 My, :2 0
21+6 % 2¢ 25 Aq 1
21+825 2 5,(2) 1
24+10 2¢ S X S, 0
210 04 2¢ Ly(2) 1
21+826 2 Ly(2) 1
24+10 2 28 Sy X S, 1
210 25 2¢ Ss 0
21+823 24 2 S, X S, 1
210 23 23 28 S, 1
21+822 22 24 2 S, 1
21+823 22 73 2 S, 1
21+823 25 2 S, 1
S 2 1 1

where S € Syl,(Co,) is a Sylow 2-subgroup of Co,.

Proof. Suppose 1 # R € ®(G,2). Then we may assume that R
®(M,,2) forsome i =1,2,...,7.

We first consider those maximal subgroups—namely, Mg, Mg, and M,
—which are not 2-local.

(1) Let M be either My = ML or Mg = M,,. Then ®(M, 2) can be
calculated directly using MacmaA, and M has no radical subgroups R such

Suppose M = M, = Uy(2): 2. A Sylow 2-subgroup S of M has order 2'¢;
hence we could not use the standard algorithm to classify the radical
2-subgroups of M. Instead we use Step (2) of the local strategy.
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Suppose 1 + D € ®(M,2). If H = Us(2) is a subgroup of M of index
2, then by [9, Lemma 2.1], D N H s a radical 2-subgroup of H. Moreover,
if DN H=1,then |D|=2and D is generated by an involution x. Thus
N;(D) = Ci(x) and so O,(C;(x)) < D. But |0,(Cg(x))| =27 (cf. [10,
Table 11]), so |D|# 2 and D N H # 1. By the Borel-Tits Theorem [5],
Ny (D N H) is a parabolic subgroup of Uy(2) and D N H = O,(N,(D N
H)). Thus N,;(D N H) is a subgroup of a maximal parabolic subgroup L
of H. Since N,(D)<N,(DNH)<L2<M, it follows that D €,
®(L.2,2) and N, ,(D) = N,,(D). From [6, p. 115] we may suppose

L2 {2V78:U)(2):2,(2*7%: (3 X A5) :2).2,2°: Ly(4) : 2}.

The parabolic subgroup 218:U,(2) is a centralizer W of an involution
of class 24 and N, (W) =2'"8:U,2):2. If W is the centralizer of
an involution class 2B, then O,(W) = 2%*%; also, 2°*®:(3 X A4,):
2 = N,(0,(W)) and (2**%:(3 X A7) :2).2) = N,,(O,(W)). Moreover,
N;(0,(W)) is conjugate to M, = 2**10(S, x S,) in G. If W is the
centralizer of an involution class 2C and Q = O,(W), then Q = 2°,
further, N,,(Q) = 2°: L,(4) and N,,(Q) = 2°: L,(4):2.

Applying the local strategy to each maximal subgroup L.2 of M, we
obtained the radical subgroups D of M and none satisfies N,,(D) =
NAD).

We now consider the case where R € ®(M,,2) and i € (1,2, 3, 4}. Since
each M, is a 2-local subgroup of G, we can apply Step (1) of the local
strategy to each M,.

(2) Let 21"8=0,(M,) and apply the local strategy to M, =
2178:8,(2). Then
D(M,,2) = (2148214825 214826 21+823 74 914822 52 54,
2478282228, 21782325 ¢}
and N, (R) = N;(R) for each R € ®(M,,2). We may suppose ®(M,2)

C d(G,2).
(3) Let2l"®x 2% =0, M,) and S’ € Syl,(M,). Then

D(M,,2) = {2176 x 2%, (2176 x 2%).23,210.2% 24+ 10 2,
2102323, (2176 x 24).22.2%, (2175 x 24).2.2%, 8"}, (4.5)
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and moreover, N, (R) = N(R) for each R & {21"°x 2%,2102%,2%+102,
210.28.2% In addition, for R € {(21"%x 24).2% (2146 x 24).22.2%,(21*6 x
24).2.24, 8",

Ly(2)  ifR=(2}°x2%).2%,
; _ (ol+6 4\ 92 53
Ny (R)/R = |5 iR = (21°% 242225 g
S if R = (21"6x 2%).2.2%,
s if R=1,

and C;(R) = 22,
(4) Let2** = 0,(M,). Then

(I)(MS,Z) — {24+10,210.25,24+10.2,21_;_+8.23.24,210.23.23,
217828.25,217828 2228 §}.

Also Ny, (R) = N;(R) for R € ®(Mj, 2). Hence we may suppose ®(M,, 2)
c (G, 2).

(5) Let 2 = 0,(M,). Then

q)(M4,2) — {210,2%r+8.25’210.24’210.25,210.23.23,
2178282223, 21%823.25 5}

Also Ny, (R) = N(R) for R € ®(M,,2). Hence we may suppose ®(M,,2)
c®(G,2. 1

In all cases, the normalizers and centralizers of each radical subgroup of
G can be computed using MAGMA.

Denote by D(B) a defect group of a block B, Irr(B) the set of
irreducible ordinary characters of B.

(4E) Let G = Co, and let BIK’(G, p) be the set of p-blocks with a
non-trivial defect group.

@ If p €1{5,3}, then Irr°G, p) = {B,, B,, B,} such that D(B,) =
D(B,) = Z,, where By = By(G) is the principal block of G. In the notation
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of 6, pp. 154-155],

Irr(B,) = { Xa1 X201 X241 X3s+ Xaz} ifp =5,
1 {XlQl X401 X43} lfp — 3,
and
Irr(B,) = { Xs: X14+ X251 X39+ Xaa} ifp =25,
2 { Xaa1 Xs6» Xaa) ifp=3.

In addition, 1rr(By) = lrr " (GO\Urr(B,) U Irr(B,)), where Irr*(G) consists
of characters of 1rr(G) with positive defects.

(b) If p =2, then BIkK(G,2) ={B,} and Irr(By) = Irr*(G). More-
over,

o 16 ifp =5,
A S U T N
’ 12 ifp =2.

Proof. If B € BIk(G, p) is non-principal with D = D(B), then
Irr®(C(D)D /D) has a non-trivial character, so by (4A), (4B), and (4D),
p =5,3and D &; {5,3}. Moreover, for each such D, [lrr®(C(D)D/D)| =
2, 50 G has exactly two blocks, B; and B, with a defect group D. Using
the method of central characters, we deduce that Irr(B) is described by (a).

If D(B) is cyclic, then I(B) is the number of B-weights, so that
I(B,) = I(B,) is 4 or 2 according as p = 5 or 3. If I(G) is the number of
p-regular G-conjugacy classes, then I(B,) can be calculated using the
following equation due to Brauer:

I(G) = U «(B) +|Ir(G)].

BeBIKY(G, p)

(4F) Let B be a p-block of Co, with a non-cyclic defect group. Then the
number of B-weights is the number of irreducible Brauer characters of B.

Proof. This follows by (4.1) and (4A), (4B), (4D), and (4E). 1
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5. RADICAL CHAINS

Let G = Co,, C € Z(G), and N(C) = N;(CO).
(5A) In the notation of (4A), the radical 5-chains C of G (up to
conjugacy) are
C N(C) C N(C)
C(1):1 G C(2):1<5 F& X Ss
C(3):1<5<5% F!XF! C(4):1<5Y? 5l2:4§,,

where 5° € Syl (F¢ X Sy).
Proof. This is straightforward. |

(5B) (a) In the notation of (4B) and (4.2), the radical 3-chains C(i) for
1 < i < 8 and their normalizers N(C) are

C N(C)
Cc(1):1 Co,

C(2):1<3 S, X Uy(2).2
C(3):1<3<3* Sy x 3%:(S, X 2)
C(4):1<3* 3%.4,.Dg
C(5):1<3<3x32 §,x372:29,
C(6):1 <3+ 3L (2174Sy)
C(7):1<3<s S.(SD,: X 2)

C(8):1<3<K<¥S Sy X 3%:(8; X 2),

where K = 3 X 3172 and S’ € Syl,(3 X U,(2).2).

(b) Let #°G) be the G-invariant subfamily of %(G) such that
Z%G)/G ={C(i):1 <i < 8}. Then

Y (DN, Byd) = L (—1)'K(N(C), By, d)
CeR(G)/G Cce#%G)/G

for all integers d > 0.

Proof. If C:1< S and C':1<3*< S, then N(C) = N(C') = N(S),
and we can delete C and C’ in the sum (1.3). Similarly, if C:1 <3 < §
and C':1 <3 <3<, then N(C) = N(C") = Ny, (S"). The rest follows
from the proof of (4B). 1
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(5C) (@) In the notation of (4D) and (4.5), the radical 2-chains C(i) for

1 < i < 16 and their normalizers N(C) are

C

c(1)
C(2):
C(3):
C(4):
C(5):
C(6):

C(7):1 < 24+10 < 21+823 94
C(8):1 < 210 < 21025 < 21+823 75
C(9):1 < 216 x 2% < (216 24) 23

C(10)
C(11)
C(12)
C(13)
C(14)
C(15)
C(16)

01

1<21*8

1< 210 < 21%825
1< 2%

1< 20 < 21025
1 < 24+10

11 <26 ¢ 2%
11 < 210 < 210 94

11 <210 < 21024 < (216 x 24).2.21

1< 24+10 < 24+10.2

11 < 210 « 210 25 210 93 93
11 < 210 « 21095 £ 2109323 < ¢
11 <2410 < 2410 ) < (2146 ¢ 24).22.2°

N(C)

Co,

217°:54(2)
217825 ¢,

219 M,, :2

21025 5,

24710 (S5 X S5)
214828 24 (5, X S,)
21+823 25 ¢,

(216 x 24).2%.L,(2)
(2170 % 2%). 4,
21924 L.,(2)

(2146 x 24).2.24.5,
(24710.2) (85 X S3)
2102323 8,

§

(216 x 24).22.2.8,.

(b) Let #°G) be the G-invariant subfamily of %(G) such that

#%G)/G ={C(i):i=1,2,...,16}. Then

)»

CeRG)/G

(-1)“'k(N(C),B.d) =

(—1)“'k(N(C), B.d)

for all integers d > 0 and for each block B with a non-cyclic defect group.

Proof. (b) Suppose C’ is a radical 2-chain such that

Let C € %(G) be given by (1.1) with P, € ®(G, 2).

Let R € ®(M,,2)\{21*®}. Define G-invariant subfamilies
A (R) and .Z°(R) of %#(G), such that

Case ().

C:1<P,< -

(5.1)

#(R)/G ={C' €%/G: P, =R},
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and
#°(R)/G ={C' €e%/G: P, =28 Py =R}. (5.2)
For C' e.#*(R) given by (5.1), the chain
g(C): 1 <28 <Pl =R<Py< -+ <P, (5.3)

is a chain in .#°(R) and N(C") = N(g(C")). For any B € BIk(G) and for
any integer d > 0,

k(N(C'), B.d) = k(N(g(C')),B,d). (5.4)

In addition, g is a bijection between .#*(R) and .#°(R). So we may
assume

C¢ U (4 (R) UZ°(R)).
Re ®(M, 2\{21"8}

Thus P, & (217825 21+826 21+82324 21+8322294 21+8322 73

21782325 8}, and if P, = 218 then C =, C(2). We may suppose

I)1 e q)l(Gv 2) — {210,22Er+6 X 24, 24+ 10’ 210.24, 24+ 10.2’ 210.25, 210.23.23}
cP(G,2).

Case (2). Let ®,(G,2) = {21°,24+10,2102%) c ®,(G, 2) and assume R
€ () = {2%0.2424+102 2102323} c ®(M,, 2). Repeat the proof above with
2178 replaced by 21+ x 2% Then we may suppose P, € ®,(G,2) U {21*°
x2%, and if P, = 217°x 2¢ then P, € ®(M,,2\ Q. Now N, ((2}"°x
24).2%) = N(C(9)) = (21* x 24).2%.L,(2) and by MAGMA

<I>((21++6 X 24).23.L3(2),2)
= {(2475x 2%).2%, (2170 x 2%).2%.2%, (21" x 2%).2.2%, 87},
which is a subset of ®(M,,2). In addition, Ny«)(R) = N, (R) for each

radical subgroup R € ®((217° x 24).2%.1,(2),2).
Given Q € ®((217°x 24).23. L,(2), )\{(2%" ¢ x 2%).2%}, define G-invari-
ant subfamilies #"(Q) and Z°(Q) of #(G), such that

ZLN(Q)/G={C ex/G: P, =21"x 2" Py =0},
and
Z%Q)/G={C ex/G: P, =21"0x 2% Py = (210 2%).23, Py, = Q).
(5.5)
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A similar proof to above shows that we may suppose

Ce U (£(0) vz’(0)), (5.6)
Qel
where I = ®((217°x 2%).23. L,(2), 2\{2%" ¢ x 2%}. It follows that if P, =
2178 24 then C €, {C(9), C(10)}, and we may suppose

P, € ®,(G,2) = {210,24+10 210 25}

Case (3). Let .#7(2Y.2% and .#°2%.2%) be given by (5.2) with R
replaced by 2%°.2° and 2%+® by 2**1% Then (5.4) holds for C' €.z*(2%°.2°)
and we may suppose P; #; 2°.2° and if P, = 2**' then P, #, 2'0.2°
Since N(2'78232%) = (217823.2%).(S; X S;) < M,, it follows that

D((2178.23.24).(85 X 85),2) = {21782%.24,21%8.2% 25 217823 22 28, §}
CP(G,2),

and moreover, Ny,i+a,3,4(R) = Ny (R) = N(R) for all R €
D(N(21%8232%),2). Let Q' = {21782325 218232223 g} ¢
D(N(21+823.24),2), and W € (). Replace Q by W, 2176 x 24 py 24+10,
and (217° x 24).2% by 2178232 in the definition of (5.5). A similar proof
to above shows that we may suppose

cCe U (£(w)uz'(w)).
weQ
Thus if P, =2%"1% then we may suppose P, € {24710.2,21+82324
219.23.23}, and moreover, if P, =; 21782324 then C =; C(7).
Similarly, N, (2*71°2) = N(2**1°.2) = 2*719.2,(S; X §;), and

D(24710.2.(8; X 85),2) = {24710.2,210.23.23, (2170 x 2%).22.2%, §'}
cCP(M,,2),

and moreover, Ny:+10,(R) = N, (R) for each R € ®(N(2*7*°.2),2). Re-
place Q by 210.23.23, 21+ x 24 py 24710 and (21*°x 24).23 by 24*10.2 in
the definition of (5.5). We may suppose P, #, 2%°.232% and if P, = 24+
and P, =; 2*719.2, then P, #, 202323

Let C’ be the chain 1 < 24710 < 24102 < (21+6x 24)2223 < §', and
g(C):1 < 24410 < 24%102 < 8 Then N(C') = N(g(C)) =S and (5.4)
holds. It follows that if P, = 247 then C €, {C(6), C(7), C(13), C(16)}.

Case (4). Suppose P, =2%. By (4D), N, (217°2°%) = N(2}7%2°%) =
2178255 and by MAGMA,

D(2178.25.8,,2) = {2178.25,217823.22.23,21782% 2% §} c ©(G,2),
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and moreover, Ny.1+s,5(R) = N(R) for each R € ®(N(2}"°2°),2). Sup-
pose Q € ®(N(21+82%),2)\{21782°}. Replace 21"¢ x 2% by 20 and (21*°
X 2%).2% by 21*825 in the definition of (5.5). The same proof shows that
we may suppose

Ce U (°(0) UL(Q)).

Qe d(N(21+825), 2\ {2%+82%)

Thus we may suppose P, €, {211825 210,24 21025 2102323} ‘and if P, =
217825, then C =, C(3). Since N,,(21°.2%) = N(210.2%) = 21°.24.1,(2), it
follows by MAGMA that

D(2'°.24.L4(2),2) = {210.2%,210.23 2%, (2176 x 24).2.2%, §'} c D(M,,2)

and moreover, Ny,u,+(R) = M, (R) for each R € ®(N(2%°.2%),2).

Let #"(2%0.23.23) and #°(21°.23.23) be defined by (5.5) with Q replaced
by 210.23.23 2176 x 24 py 2%° and (21*°® x 2%).23 by 2%°.2%. A similar proof
shows that we may suppose P, #, 202223 and if P, =2'.2% then
P, #, 2102328,

Let C':1 < 210 <2924 < § and g(C'):1 < 20 < 21024
< (2178 x 2%). 2.2* < 8. Then N(C') = N(g(C")) = S’ and (5.4) holds.
Thus if P, = 2% and P, = 21%.2% then C €, {C(11), C(12)}.

Similarly, N(2%°.2°) = N,,(2'°.2°) = 2%°.2°.§; and

D(210.2°.85,2) = {210.2°,219.23.23, 217823 2% S} C D(G,2)
and moreover, Ny,u,5(R) = N(R) for all R € &(N(2'°.2°),2). Let C':
1 <20 <21925 < § and g(C"):1 <210 < 21025 < 21+82325 < § Then
N(C") = N(g(C")) = S and (5.4) holds.

Finally, ®(N(2%°.23.23),2) = {21°.23.23, §'} ¢ ®(M,, 2) and for each rad-
ical subgroup R € ®(N(2'9.2°.2%),2), Ny, ,3,5(R) = Ny (R). Thus if P,
=21 and P, =2'.2% then we may suppose C €. {C(5),C(8), C(14),
C(15)}. This completes the proof of (b).

(@) The proof follows easily by that of (b) or (4D). 1
6. THE PROOF OF DADE’S CONJECTURE

(6A) Let B be a p-block of G = Co, with positive defect. If p is odd, then
B satisfies the ordinary conjecture of Dade.

Proof. 'We may suppose p = 5or 3, and B = B,.
Suppose p = 5and let C = C(2), C' = C(3). Then N(C) = F} X S, and
N(C') = F¢ X F¢. The principal blocks of N(C) and N(C') both have
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exactly 25 irreducible characters of height 0, so that
k(N(C), Bo,d) = k(N(C’),BO,d).

for all integers d > 0. The subgroup N(C(4)) = 57225, has 27 irre-
ducible characters.

The Degrees of Characters of Irr(51"225,)

Degree 1 2 3 4 20 24 40 60
Number 4 6 4 2 3 4 3 1

It follows by [6, p. 154] and (4E) that

20 if d =3,
k(G, By, d) =k(N(C(4)),BO,d) =7 ifd =2,
0 otherwise.

Thus (6A) holds when p = 5.
Suppose p =3. Then N(C(2) =S, X U,(2).2 and N(C(3) = §, X
3%:(S, X 2) have 75 and 66 irreducible characters, respectively.

The Degrees of Characters of Irr(S; X U,(2).2)

Degree 1 2 6 10 12 15 20 24 30 40 48 60
Number 4 2 4 2 2 8 7 4 8 3 2 8
Degree 64 80 81 90 120 128 160 162 180
Number 4 2 4 2 3 2 1 2 1

The Degrees of Characters of Irr(S; X 3%:(S, X 2))

Degree 1 2 3 4 6 8 12 16 24 32
Number 8 8 8 2 12 4 14 4 5 1

It follows that

27 if d =5,

39 if d =4,
KINCO) Bord) =1 g =3

0 otherwise,

where C € {C(2),C(3)} and o = 3 or 0 according to whether C = C(2) or
Cc@).
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The subgroups N(C(5)) = S, x 3172:25, and N(C(8) = S, x 3*:
(S; X 2) have 54 and 51 irreducible characters, respectively.

The Degrees of Characters of Irr(S; x 31+2:25,)

Degree 1 2 3 4 6 8 12 16 18 24 32 36
Number 4 8 4 5 8 5 9 4 2 3 1 1

The Degrees of Characters of Irr(S; X 33:(S; X 2))

Degree 1 2 4 6 8 12
Number 8 12 6 16 1 8

It follows that

27 if d =05,

24 ifd =4,
k(N(C),BO,d) = P ifd=3

0 otherwise,

where C € {C(5), C(8)} and « = 3 or 0 according to whether C = C(5) or
C(8). Thus

k(N(C(2)), By, d) + k(N(C(8)), By, d)
= k(N(C(3)), By, d) + k(N(C(5)), By, d).

The subgroups N(C(4)) = 3*.4,.Dg and N(C(7)) = S.(SD,: X 2) have 42
and 45 irreducible characters, respectively.

The Degrees of Characters of Irr(3*. 45.Dg)

16 18 20 40 60 120 160 180

10
8 4 1 5 3 4 2 2 4

Degree 1 2 9
Number 4 1 4

The Degrees of Characters of Irr(S.(SD,4 X 2))

Degree 1 2 4 8 16 18 24 36 48 72
Number 8 10 3 4 2 4 4 7 2 1

It follows that

27 if d =6,
6 if d =05,

k(N(C),Bo,d) = y ifd = 4, (6.1)
0 otherwise,

where C € {C(4),C(7)} and y = 9 or 12 according to whether C = C(4) or
Cc().
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Finally, the subgroup N(C(6)) = 31**:(21*45,) has 50 irreducible char-

acters.

The Degrees of Characters of Irr(3474: (21745.))

Degree 1 4 5 6 10 15 16
Number 2 4 4 1 5 2 2
Degree 72 80 90 160 180 216 240
Number 2 2 4 3 2 2 2

It follows by [6, p. 154] that

27
6
k(N(C), By, d) = {5
5
0

18 20 24 54
1 4 1 2
270 288 320 360
1 1 1 2

if d =6,

if d =5,

ifd =4, (6.2)
if d =3,

otherwise,

where C € {C(1), C(6)} and & = 9 or 12 according to whether C = C(1) or
C(6). Thus Dade’s conjecture follows by (6.1) and (6.2). |

(6B) Let B be a 2-block of G = Co, with positive defect. Then B satisfies

the ordinary conjecture of Dade.

Proof. We may suppose B = B, = B,(G).

Since C(C) is a 2-subgroup

for each chain C # C(1), it follows that Irr(B,(N(C))) = Irr(N(C)). We
first consider the chains C(j) such that d(N(C(;j))) = 17. S0 9 < < 16.
The subgroup N(C(10)) = (21*¢x 2%). 4, has 111 irreducible charac-

ters.

The Degrees of Characters of Irr((21+°6 x 24).4,)

Degree 1 7 8 14 15 20 21 28
Number 1 1 1 1 1 1 3 3
Degree 90 105 112 120 140 160 168 210
Number 1 7 1 2 5 1 3 5
Degree 420 448 512 560 630 720 840 960
Number 9 2 1 1 4 1 7 1

35 45 56 64 70

5 4 2 1 5

224 252 280 315 360

1 2 3 10 4
1260 1680 2520
8 1 2

Thus k(10, d) = k(N(C(10)), By, d) are as follows:

Defect d 17 16 15 14 13 12
k(10, d) 32 16 28 24 4 2

11 8 otherwise
4 1 0

The subgroup N(C(12)) = (217° x 2%).2.2%.5, has 345 irreducible char-

acters.

The Degrees of Characters of Irr((21+8 x 24).2.2%.5;)

Degree 1 2 3 4 6 8 12 16 24 32 48 64 96 128 192

Number 4 2 28 28 30 22 64 4 110

8 20 6 16 1 2
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Thus k(12, d) = k(N(C(12)), By, d) are as follows:

Defect d 17 16 15 14 13 12 11 10 otherwise
k(12,d) 32 32 92 132 24 24 8 1 0

The subgroup N(C(14)) = (2%°.23.2%).5, has 354 irreducible characters.

The Degrees of Characters of 1rr((2°.2%.2%).5,)

Degree 1 2 3 4 6 8 12 16 24 32 48 64 96 192
Number 16 12 16 2 60 8 90 22 56 13 38 2 17 2

Thus k(14, d) = k(N(C(14)), By, d) are as follows:

Defect d 17 16 15 14 13 12 11 otherwise
k(14,d) 32 72 92 64 60 30 4 0

The subgroup N(C(16)) = (21*°x 2%).22.23.§, has 333 irreducible char-
acters.

The Degrees of Characters of Irr((21" ¢ x 24).22.23.5,)

Degree 1 2 3 4 6 8 12 16 24 32 48 64 96 128 192
Number 8 4 24 8 52 12 68 20 56 16 44 6 12 1 2

Thus k(16, d) = k(N(C(16)), By, d) are as follows:

Defect d 17 16 15 14 13 12 11 10 otherwise
k(16,d) 32 56 76 68 64 28 8 1 0

If k, = X%_ck(N(C(2))), By, d), then k, are as follows:

Defectd 17 16 15 14 13 12 11 10 8 otherwise
k 128 176 288 288 152 84 24 2 1 O

e

The subgroup N(C(9)) = (21" x 2%).23.1,(2) has 174 irreducible char-
acters.

The Degrees of Characters of Irr((2116 x 24).2%.L,(2))

Degree 1 3 6 7 8 14 21 24 28 42 48
Number 1 2 1 9 3 4 20 4 22 11 2
Degree 56 64 84 112 168 192 224 336 384 448 512
Number 21 3 22 4 32 2 4 2 1 3 1

Thus k(9, d) = k(N(C(9)), B,, d) are as follows:

Defect d 17 16 15 14 13 12 11 10 8 otherwise
k(9,d) 32 16 44 60 8 4 8 1 1 0
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The subgroup N(C(11)) = (21°.2%).L,(2) has 186 irreducible characters:

The Degrees of Characters of 1rr((21°.24). L,(2))

Degree 1 3 6 7 8 14 21 24 28 42 48 56
Number 2 4 2 14 4 10 12 4 18 20 2 14
Degree 64 84 112 168 224 336 448 672
Number 2 42 4 18 5 6 2 1

Thus k(11, d) = k(N(C(11)), By, d) are as follows:

Defect d 17 16 15 14 13 12 11 otherwise
k(11, d) 32 32 60 40 12 6 4 0

The subgroup N(C(13)) = 24+10.2(S, X S,) has 262 irreducible charac-
ters.

The Degrees of Characters of 1rr(24710.2.(5, X S5,))

Degree 1 2 3 4 6 8 9 12 16 18 24 32
Number 8 8 8 2 8 4 16 14 12 40 10 9
Degree 36 48 64 72 96 144 192 288
Number 44 20 2 18 13 20 2 4

Thus (13, d) = k(N(C(13)), By, d) are as follows:

Defect d 17 16 15 14 13 12 11 otherwise
k(13,d) 32 56 60 32 52 26 4 0

The subgroup N(C(15)) = §' = (2175 x 24).2.2%.2 € Syl((21"° x 2*).
Ag) has 521 irreducible characters.

The Degrees of Characters of Irr((21* ¢ x 24).2.2%.2)

Degree 1 2 4 8 16 32 64 128
Number 32 72 124 156 80 48 8 1

Thus k(15, d) = k(N(C(15)), B,, d) are as follows:

Defect d 17 16 15 14 13 12 11 10 otherwise
k(15,d) 32 72 124 156 80 48 8 1 0
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It follows that

j=

128 if d =17,
176 if d =16,
288 if d =15,
288 if d =14,
152 if d =13,

L K(N(C(21)). By d) = L K(N(C(2) = 1)). By, d)

84 ifd =12,
24 ifd =11,
2 if d =10,
1 if d =8,

0 otherwise.

Finally we consider the 2-chains C(j) such that d(N(C(j))) = 18, so
that1 <j < 8.
The subgroup N(C(2)) = 21*8:5,(2) has 100 irreducible characters.

The Degrees of Characters of Irr(21+8: §,(2))

Degree 1 7 15 16 21 27 35 56 70 84 105 112
Number 1 1 1 1 2 1 2 1 1 1 3 1
Degree 120 135 168 189 210 216 240 280 315 336 378 405
Number 3 1 1 3 2 1 1 2 1 3 1 3
Degree 420 432 512 560 720 810 840 896 945 1080 1120 1344
Number 1 1 1 2 2 1 2 1 5 1 1 1
Degree 1680 1890 1920 2520 2688 2835 3024 3240 3360 3456 3780 4480
Number 6 2 1 2 1 8 3 2 2 1 2 2
Degree 5040 5376 5670 6048 6480 6720 7560 7680 8192

Number 2 1 1 1 1 2 1 1 1

Thus k(2, d) = k(N(C(2)), By, d) are as follows:

Defectd 18 17 16 15 14 13 12 11 10 9 5 otherwise
k(2,d) 32 8 4 16 23 4 3 6 1 2 10

The subgroup N(C(4)) = 2'%: M,, : 2 has 79 irreducible characters.

The Degrees of Characters of 1rr(21° : M,, : 2)

Degree 1 21 22 45 55 99 154 210 231 385 440
Number 2 2 2 4 2 2 2 2 6 2 2
Degree 560 770 924 990 1155 1386 1408 1540 2772 3080 3465
Number 1 6 4 4 4 2 2 2 1 4 8

Degree 4620 6930 9240 13860
Number 4 6 2 1
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Thus k(4, d) = k(N(C(4)), B,, d) are as follows:

Defect d 18 17 16 15 14 11 otherwise
k(4,d) 32 24 12 8 1 2 0

The subgroup N(C(6)) = 2**10(S, x §,) has 156 irreducible characters.

The Degrees of Characters of Irr(2410.(S. X S,))

Degree 1 2 3 4 5 6 8 10 12 15 18 20 30 40
Number 4 2 4 4 4 2 2 2 5 4 2 4 2 4
Degree 45 60 80 90 120 160 180 240 320 360 480 640 720 960
Number 16 13 1 14 8 8 10 1 8 14 10 2 1 5

Thus k(6, d) = k(N(C(6)), By, d) are as follows:

Defect d 18 17 16 15 14 13 12 11 otherwise
k(6, d) 32 24 36 28 3 18 13 2 0

The subgroup N(C(8)) = (2%7828.2%).5, has 264 irreducible characters.

The Degrees of Characters of Irr(21+823.2%).5,)

Degree 1 2 3 4 6 8 12 16 24 32 48 64 96 128 192 256
Number 8 6 24 9 34 6 35 9 46 6 28 9 32 6 5 1

Thus k(8, d) = k(N(C(8)), By, d) are as follows:

Defect d 18 17 16 15 14 13 12 11 10 otherwise
k(8,d) 32 40 44 52 37 38 14 6 1 0

If k, = X_,k(N(C(2))), By, d), then k, are as follows:

Defectd 18 17 16 15 14 13 12 11 10 9 5 otherwise
k, 128 96 96 104 64 60 30 16 2 2 1 O

The subgroup N(C(3)) = (21782°).5 has 148 irreducible characters.

The Degrees of Characters of Irr((211825).5,)

Degree 1 5 6 9 10 15 16 20 24 30 36 40 45 60 80
Number 2 4 2 2 6 8 3 1 2 6 1 4 16 4 4
Degree 90 96 120 144 160 180 240 256 320 360 384 480 576 640 720
Number 10 2 10 2 6 6 8 1 1 16 2 4 1 4 10

Thus k(3, d) = k(N(C(3)), By, d) are as follows:

Defect d 18 17 16 15 14 13 12 11 10 otherwise
k@3, d) 32 24 12 32 27 12 2 6 1 0
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The subgroup N(C(5)) = (21°.2°).S, has 187 irreducible characters.
The Degrees of Characters of 1rr((2%°.2%).5;)

Degree 1 2 4 5 6 8 10 12 15 20 30 40 60 80
Number 8 2 8 8 4 2 2 116 8 32 6 27 1
Degree 120 160 240 320 480 640
Number 20 16 10 12 2 2

Thus k(5, d) = k(N(C(5)), B,, d) are as follows:
Defect d 18 17 16 15 14 13 12 11 otherwise
k(5, d) 32 40 4 28 11 18 12 2 0

The subgroup N(C(7)) = (2178232%).(S; X S;) has 205 irreducible
characters.

The Degrees of Characters of Irr((21+823.24).(S; X S;))

Degree 1 2 3 4 6 8 9 12 16 18 24 32
Number 4 4 8 5 6 4 20 9 5 14 8 4
Degree 36 48 64 72 96 128 144 192 256 288 384
Number 22 9 5 24 14 4 11 10 1 12 2

Thus k(7,d) = k(N(C(7)), By, d) are as follows:

Defect d 18 17 16 15 14 13 12 11 10 otherwise
k7, d) 32 24 36 36 25 30 15 6 1 0

It follows by [6, p. 154] that k(1, d) = k(G, By, d) are as follows:

Defect d 18 17 16 15 14 12 11 9 5 otherwise
k(1,d) 32 8 4 8 1 1 2 2 1 0

It follows that

¥ k(N(C(21)). By, d) = ¥ k(N(C(2] = 1)), By, d)

j=1
128 if d = 18,
9 if d =17,
9 if d = 16,
104 if d = 15,
64 if d = 14,
_J60 if d = 13,
|30 if d =12,
16 if d =11,
2 if d = 10,
2 if d =09,
1 if d =5,
0 otherwise,

which implies (6B). |
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