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a b s t r a c t

In this paper, a new kind of intuitionistic fuzzy subgroup theory, which is different
from that of Ma, Zhan and Davvaz (2008) [22,23], is presented. First, based on the
concept of cut sets on intuitionistic fuzzy sets, we establish the neighborhood rela-
tions between a fuzzy point xa and an intuitionistic fuzzy set A. Then we give the
definitions of the grades of xa belonging to A, xa quasi-coincident with A, xa belong-
ing to and quasi-coincident with A and xa belonging to or quasi-coincident with A,
respectively. Second, by applying the 3-valued Lukasiewicz implication, we give the defi-
nition of (α, β)-intuitionistic fuzzy subgroups of a group G for α, β ∈ {∈, q,∈ ∧q,∈ ∨q},
and we show that, in 16 kinds of (α, β)-intuitionistic fuzzy subgroups, the significant
ones are the (∈,∈)-intuitionistic fuzzy subgroup, the (∈,∈ ∨q)-intuitionistic fuzzy sub-
group and the (∈ ∧q,∈)-intuitionistic fuzzy subgroup. We also show that A is a (∈,∈)-
intuitionistic fuzzy subgroup of G if and only if, for any a ∈ (0, 1], the cut set Aa of A
is a 3-valued fuzzy subgroup of G, and A is a (∈,∈ ∨q)-intuitionistic fuzzy subgroup (or
(∈,∈ ∨q)-intuitionistic fuzzy subgroup) of G if and only if, for any a ∈ (0, 0.5](or for any
a ∈ (0.5, 1]), the cut set Aa of A is a 3-valued fuzzy subgroup of G. At last, we general-
ize the (∈,∈)-intuitionistic fuzzy subgroup, (∈,∈ ∨q)-intuitionistic fuzzy subgroup and
(∈ ∧q,∈)-intuitionistic fuzzy subgroup to intuitionistic fuzzy subgroups with thresholds,
i.e., (s, t]-intuitionistic fuzzy subgroups. We show that A is a (s, t]-intuitionistic fuzzy sub-
group of G if and only if, for any a ∈ (s, t], the cut set Aa of A is a 3-valued fuzzy subgroup
of G. We also characterize the (s, t]-intuitionistic fuzzy subgroup by the neighborhood
relations between a fuzzy point xa and an intuitionistic fuzzy set A.

© 2010 Elsevier Ltd. All rights reserved.

1. Introduction

Since the concept of fuzzy groupwas introduced by Rosenfeld in 1971 [1], the theories and approaches on different fuzzy
algebraic structures developed rapidly. Anthony and Sherwood [2] gave the definition of fuzzy subgroup based on t-norm.
Yuan and Lee [3] defined the fuzzy subgroup and fuzzy subring based on the theory of falling shadows. Liu [4] gave the
definition of fuzzy invariant subgroups. By far, two books on fuzzy algebra have been published [5,6].
It is worth pointing out that Bhakat and Das [7,8] gave the concepts of (α, β)-fuzzy subgroups by using the ‘‘belong to’’

relation (∈) and ‘‘quasi-coincident with’’ relation (q) between a fuzzy point xa and a fuzzy set A, and introduced the concept
of (∈,∈ ∨q)-fuzzy subgroup. Yuan et al. [9] gave the definition of a fuzzy subgroupwith thresholds from the aspect ofmulti-
implication, which generalized the Rosenfeld’s fuzzy subgroup and (∈,∈ ∨q)-fuzzy subgroup to (λ, µ]-fuzzy subgroup.
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Davvaz et al. [10–16] further generalized the results in [7–9]. Yuan et al. [15,16] applied the idea and approach in [7–9] into
the researches of convex fuzzy subset and fuzzy topology.
K. Atanassov [17] introduced the concept of intuitionistic fuzzy sets in 1986. Since then, many researchers have investi-

gated this topic such as intuitionistic fuzzy group [18] and intuitionistic fuzzy topology [19,20]. It iswell known that the intu-
itionistic fuzzy set and the interval-valued fuzzy set are equivalent [21], and consequently the results about interval-valued
fuzzy sets can be generalized to the intuitionistic fuzzy sets. In [22], Davvaz and Zhan,et al., presented the interval-valued
(α, β)-fuzzy Hv-submodules. In [23], Ma and Zhan, et al., studied (∈,∈ ∨q)-interval-valued fuzzy ideals of BCI-algebras.
Davvaz et al. [22] and Ma et al. [23] built a method to study (α, β)-interval-valued fuzzy algebras. However, because of
complexity of interval-valued fuzzy sets, main results in [22,23] are true only when the following conditions hold:

(1) Condition(E): F̄(x) ≤ [0.5, 0.5] or [0.5, 0.5] < F̄(x) for all x ∈ X;
(2) Any two element of D[0, 1] = {[a−, a+] | 0 ≤ a− ≤ a+ ≤ 1} are comparable.

It is easily seen that the two conditions as above do not hold for all interval-valued fuzzy sets. If the two conditions are
deleted, then main results in [22,23] may not be true. Therefore, a natural question to ask is if there exist a method to study
(α, β)-intuitionistic fuzzy algebras with no conditions attached. Clearly, in order to answer this question, the neighborhood
relations between a fuzzy point xa and an intuitionistic fuzzy set A should be built.
In this paper, using cut sets on intuitionistic fuzzy sets presented in [24], the neighborhood relations between a fuzzy

point and an intuitionistic fuzzy set are introduced,which are generalizations of neighborhood relations between an element
and a set in set theory. Then, based on these neighborhood relations, we give the definitions of (α, β)-intuitionistic fuzzy
subgroups of a group G differently from that of [22,23]. Also, we show that the significant ones obtained in this manner
are the (∈,∈)-intuitionistic fuzzy subgroup, the (∈,∈ ∨q)-intuitionistic fuzzy subgroup and the (∈ ∧q,∈)-intuitionistic
fuzzy subgroup. Furthermore, as a generalization of the three intuitionistic fuzzy subgroups as above, we put forward the
(s, t]-intuitionistic fuzzy subgroup. We prove that an intuitionistic fuzzy subset over a group is a (s, t]-intuitionistic fuzzy
subgroup if and only if its a-cut set(a ∈ (s, t]) is a 3-valued fuzzy subgroup.
The rest of this paper is organized as follows. In Section 2, we give some definitions and notations. In Section 3, based

on the concept of cut sets on intuitionistic fuzzy sets presented in [24], we establish the neighborhood relations between
a fuzzy point and an intuitionistic fuzzy set. In Section 4, we give the definition of (α, β)-intuitionistic fuzzy subgroup
over a group G. In Section 5, we give the definition of (s, t]-intuitionistic fuzzy subgroup and prove that an intuitionistic
fuzzy subset over a group is a (s, t]-intuitionistic fuzzy subgroup if and only if its a-cut set (a ∈ (s, t]) is a 3-valued fuzzy
subgroup. Also, we characterize (s, t]-intuitionistic fuzzy subgroup by the neighborhood relations between a fuzzy point
and an intuitionistic fuzzy set.

2. Preliminaries

Definition 2.1 ([7]). Let A : X → [0, 1] be a mapping. If there exist a ∈ (0, 1] and x ∈ A such that

A(y) =
{
a, y = x
0, y 6= x,

then A is called a fuzzy point, and denoted by xa.

Definition 2.2 ([17]). Let X be a set and µA : X → [0, 1] and νA : X −→ [0, 1] be two mappings. If

µA(x)+ νA(x) ≤ 1, ∀x ∈ X,

then we call A = (X, µA, νA) an intuitionistic fuzzy subset over X , and denote A(x) = (µA(x), νA(x)).

Definition 2.3 ([1]). Let A : G→ [0, 1] be a fuzzy subset over group G. If for any x, y ∈ G,

A(xy) ≥ A(x) ∧ A(y), A(x−1) ≥ A(x),

then we call A a fuzzy subgroup of G.

Remark 2.1. In this paper, if A is a fuzzy subgroup of G and {A(x)|x ∈ G} ⊂ {0, 12 , 1}, then A is called a 3-valued fuzzy
subgroup of G.

Theorem 2.1 ([5]). A is a fuzzy subgroup of G if and only if for any a ∈ (0, 1], Aa = {x|x ∈ G, A(x) ≥ a} is a subgroup of G.

Definition 2.4 ([7]). Let A be a fuzzy subset over G and xa be a fuzzy point.
(1) If A(x) ≥ a, then we say xa belong to A, and denote xa ∈ A.
(2) If A(x)+ a ≥ 1, then we say xa is quasi-coincident with A, and denote xaqA.
(3) xa ∈ ∧qA⇔ xa ∈ A and xaqA.
(4) xa ∈ ∨qA⇔ xa ∈ A or xaqA.
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Definition 2.5 ([22,23]). Let D[0, 1] = {[a−, a+]|0 ≤ a− ≤ a+ ≤ 1} and X be a set. Then

1. The mapping F̄ : X → D[0, 1], x 7→ [F−(x), F+(x)] is called an interval-valued fuzzy subset.
2. Let x ∈ X, t̄ = [t−, t+] ∈ D[0, 1]. If the interval-valued fuzzy subset Ḡ satisfies

Ḡ(y) =
{
t̄, y = x
[0, 0], y 6= x,

then Ḡ is called an interval-valued fuzzy point, and is denoted by xt̄ .
3. Let F̄ be an interval-valued fuzzy subset of X and xt̄ be an interval-valued fuzzy point. We call xt̄ belong to(or resp., is
quasi-coincident with) F̄ , written by xt̄ ∈ F̄ (resp. xt̄qF̄ ), if F̄(x) ≥ t̄ (resp. F̄(x) + t̄ > [1, 1]); If xt̄ ∈ F̄ or xt̄qF̄ , then we
write xt̄ ∈ ∨qF̄ ; If F̄(x) < t̄(resp. F̄(x)+ t̄ ≤ [1, 1]), then we write xt̄ ∈̄F̄ (resp. xt̄ q̄F̄ ); The symbol ∈ ∨qmeans that ∈ ∨q
does not hold.

Definition 2.6 ([24]). Let A = (X, µA, νA) be an intuitionistic fuzzy subset over X , and a ∈ [0, 1].

(1) We call

Aa(x) =


1, µA(x) ≥ a;
1
2
, µA(x) < a ≤ 1− νA(x);

0, a > 1− νA(x),

and

Aa(x) =


1, µA(x) > a;
1
2
, µA(x) ≤ a < 1− νA(x);

0, a ≥ 1− νA(x)

the a-the upper cut set and a-strong upper cut set of A, respectively.
(2) We call

Aa(x) =


1, νA(x) ≥ a;
1
2
, νA(x) < a ≤ 1− µA(x);

0, a > 1− µA(x),

and

Aa(x) =


1, νA(x) > a;
1
2
, νA(x) ≤ a < 1− µA(x);

0, a ≥ 1− µA(x)

the a-lower cut set and a-strong lower cut set of fuzzy set A, respectively.
(3) We call

A[a](x) =


1, µA(x)+ a ≥ 1;
1
2
, νA(x) ≤ a < 1− µA(x);

0, a < νA(x),

and

A[a](x) =


1, µA(x)+ a > 1;
1
2
, νA(x) < a ≤ 1− µA(x);

0, a ≤ νA(x)

the a-upper Q -cut set and a-strong upper Q -cut set of fuzzy set A, respectively.
(4) We call

A[a](x) =


1, νA(x)+ a ≥ 1;
1
2
, µA(x) ≤ a < 1− νA(x);

0, a < µA(x),
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and

A[a](x) =


1, νA(x)+ a > 1;
1
2
, µA(x) < a ≤ 1− νA(x);

0, a ≤ µA(x)

the a-lower Q -cut set and a-strong lower Q -cut set of fuzzy set A, respectively.

It is obvious that A[a](x) = A1−a(x).

Property 2.1 ([24]). (1) Aa ⊂ Aa; (2) a < b⇒ Aa ⊇ Ab.

Definition 2.7 ([24]). Let 3X = {A | A : X → {0, 12 , 1} is a mapping }. For A ∈ 3
X and a ∈ [0, 1], let a ◦ A be an intuitionistic

fuzzy subset of X and for any x ∈ X ,

(a ◦ A)(x) =


(0, 1), A(x) = 0;
(a, 1− a), A(x) = 1;

(0, 1− a), A(x) =
1
2
.

Then we have the following decomposition theorem of intuitionistic fuzzy sets.

Theorem 2.2 ([24]). Let A = (X, µA, νA) be an intuitionistic fuzzy set, then

A =
⋃
a∈[0,1]

a ◦ Aa =
⋃
a∈[0,1]

a ◦ Aa.

3. The neighborhood relations between a fuzzy point and an intuitionistic fuzzy set

Let xa be a fuzzy point and A be a fuzzy subset of X , then we have that

(i) A(x) ≥ a (i.e., xa ∈ A) or A(x) < a (i.e., xa∈̄A);
(ii) a+ A(x) > 1 (i.e., xaqA) or a+ A(x) ≤ 1 (i.e., xaq̄A).

If xt̄ is an interval-valued fuzzy point and F̄ is an interval-valued fuzzy subset of X , then any one of the following cases
may not hold:

(a) xt̄ ∈ F̄; (b) xt̄ ∈̄F̄; (c) xt̄qF̄; (d) xt̄ q̄F̄ .

For example, Let X = {x}, t̄ = [0.3, 0.6] and F̄(x) = [0.4, 0.5], then (a) − (b) do not hold. Therefore, among discussions
in [22,23], authors emphasize all interval-valued fuzzy subsets of X must satisfy the following conditions:

(I) Condition(E): F̄(x) ≤ [0.5, 0.5] or [0.5, 0.5] < F̄(x) for all x ∈ X .
(II) Any two elements of D[0, 1] are comparable.

If the two conditions are deleted, then many results in [22,23] may not true. In order to solve the problem, we first build
the neighborhood relations between a fuzzy point xa and an intuitionistic fuzzy set A = (X, µA, νA) based on Definition 2.6.

Definition 3.1. (1) Let [xa ∈ A] and [xaqA] represent the grades of membership of xa ∈ A and xaqA, respectively, and

[xa ∈ A] = Aa(x), [xaqA] = A[a](x).

(2) [xa ∈ ∧qA] represents the grade of membership of xa ∈ A and xaqA, [xa ∈ ∨qA] represents the grade of xa ∈ A or xaqA,
and

[xa ∈ ∧qA] = [xa ∈ A] ∧ [xaqA] = Aa(x) ∧ A[a](x),
[xa ∈ ∨qA] = [xa ∈ A] ∨ [xaqA] = Aa(x) ∨ A[a](x).

(3) [xa∈A] represents the grade of nonmembership of xa ∈ A, [xaqA] represents the grade of nonmembership of xaqA, and

[xa∈A] = Aa(x), [xaqA] = A[a](x).

(4)

[xa∈ ∧qA] = [xa∈ ∨ qA] = [xa∈A] ∨ [xaqA] = Aa(x) ∨ A[a](x),
[xa∈ ∨qA] = [xa∈ ∧ qA] = [xa∈A] ∧ [xaqA] = Aa(x) ∧ A[a](x).

Then we have the following property.
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Table 1
The table of truth value of Lukasiewicz implication.

→ 0 1/2 1

0 1 1 1
1/2 1/2 1 1
1 0 1/2 1

Property 3.1. (1) [xa∈A] = [xa ∈ Ac], [xaqA] = [xaqAc].
(2) [xa∈ ∧ qA] = [xa ∈ ∧qAc], [xa∈ ∨ qA] = [xa ∈ ∨qAc].
(3)

[
xa ∈ (

⋂
t∈T At)

]
=
∧
t∈T [xa ∈ At ],

[
xaq(

⋃
t∈T At)

]
=
∨
t∈T [xaqAt ].

(4)
[
xa∈(

⋃
t∈T At)

]
=
∧
t∈T [xa∈At ],

[
xaq(

⋂
t∈T At)

]
=
∨
t∈T [xaqAt ].

Remark 3.1. (i) Property 3.1 (3) is a generalization of the cases in the classical sets ‘‘x ∈
⋂
t∈T At ⇔ ∀t ∈ T , x ∈ At ’’ and

‘‘x ∈
⋃
t∈T At ⇔ ∃t ∈ T , x ∈ At ’’.

(ii) Property 3.1 (4) is a generalization of the cases in the classical sets ‘‘x∈
⋃
t∈T At ⇔ ∀t ∈ T , x∈At ’’ and ‘‘x∈

⋂
t∈T At ⇔

∃t ∈ T , x∈At ’’.

4. (α, β)-intuitionistic fuzzy subgroup

In this section, we will redefine (α, β)-intuitionistic fuzzy subgroup in different way with [22,23].
Let→ denote the implication of Lukasiewicz in triple valued logic. Then we have the following table of truth value.
Let G be a group and α, β ∈ {∈, q,∈ ∧q,∈ ∨q}. For a ∈ [0, 1], x ∈ G, xa is a fuzzy point. By Definition 3.1 we know that

[xaαA] ∈ {0, 12 , 1}. Then we have

Definition 4.1. Let G be a group, A = (G, µA, νA) be an intuitionistic fuzzy subset of G and α, β ∈ {∈, q,∈ ∧q,∈ ∨q}. If for
any x, y ∈ G and s, t ∈ (0, 1]

(1) ([xsαA] ∧ [ytαA] → [xsytβA]) = 1; (1)

(2) ([xsαA] → [x−1s βA]) = 1, (2)

then A is called a (α, β)-intuitionistic fuzzy subgroup of G, where xsyt = (xy)s∧t , x−1s = (x
−1)s.

From Table 1, for p1, p2 ∈ {0, 12 , 1}, we have

(p1 → p2) = 1⇔ p1 ≤ p2. (3)

Then we have the following equivalent definition

Definition 4.2. Let G be a group, A = (G, µA, νA) be an intuitionistic fuzzy subgroup of G and α, β ∈ {∈, q,∈ ∧q,∈ ∨q}.
We call A a (α, β)-intuitionistic fuzzy subgroup of G if for any x, y ∈ G and s, t ∈ (0, 1]

(3) [xsytβA] ≥ [xsαA] ∧ [ytαA] (4)

(4) [x−1s βA] ≥ [xsαA]. (5)

Clearly, the Definition 4.1 and the Definition 4.2 are the generalizations of the concept on (α, β)-fuzzy subgroups in [7].
In Definition 4.2, α can be chosen one from four kinds of relations, and β also can be chosen one from four kinds of relations.
Thus there are 16 kinds of (α, β)-intuitionistic fuzzy subgroups in all. Next, we will discuss the properties of these 16 kinds
of (α, β)-intuitionistic fuzzy subgroups.

Theorem 4.1. Let A be a (α, β)-intuitionistic fuzzy subgroup of G. If α 6=∈ ∧q, then A0 is a 3-valued fuzzy subgroup of G,
i.e., ∀x, y ∈ G

A0(xy) ≥ A0(x) ∧ A0(y), A0(x−1) ≥ A0(x). (6)

Proof. (I) First, we prove that A0(x) ∧ A0(y) = 1⇒ A0(xy) = 1.
Let A0(x)∧ A0(y) = 1. Denote t = µA(x)∧µA(y), then there exists s ∈ (0, 1) such that 0 < 1− s < t = µA(x)∧µA(y).

Thus, [xt ∈ A] = At(x) = 1, [yt ∈ A] = At(y) = 1, [xsqA] = A[s](x) = 1 and [ysqA] = A[s](y) = 1.
(i) If α =∈ or α =∈ ∨q, then [xtαA] = [ytαA] = 1. Thus, for β ∈ {∈, q,∈ ∧q,∈ ∨q}, we have 1 ≥ [xtytβA] ≥

[xtαA] ∧ [ytαA] = 1, i.e., [(xy)tβA] = 1. Hence, At(xy) = 1 or A[t](xy) = 1, which implies that µA(xy) ≥ t > 0 or
µA(xy) > 1− t ≥ 0. Therefore, A0(xy) = 1.
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(ii) If α = q, then [xsαA] = [ysαA] = 1. Thus, for β ∈ {∈, q,∈ ∧q,∈ ∨q}, we have [xsysβA] = 1. Hence, As(xy) = 1 or
A[s](xy) = 1, which implies that µA(xy) ≥ s > 0 or µA(xy) > 1− s ≥ 0. Therefore, A0(xy) = 1.
(II) Second, we show that A0(x) ∧ A0(y) = 1

2 ⇒ A0(xy) ≥
1
2 .

Let A0(x) ∧ A0(y) = 1
2 . Then νA(x) < 1 and νA(y) < 1. Let s, t ∈ (0, 1) such that νA(x) ∨ νA(y) < 1− t < s < 1. Then

[xt ∈ A] = At(x) ≥
1
2
, [yt ∈ A] = At(y) ≥

1
2
,

[xsqA] = A[s](x) ≥
1
2
, [ysqA] = A[s](y) ≥

1
2
.

(i) If α =∈ or α =∈ ∨q, then [xtαA] ∧ [ytαA] ≥ 1
2 . Thus, for β ∈ {∈, q,∈ ∧q,∈ ∨q}, we have [xtytβA] ≥

[xtαA] ∧ [ytαA] ≥ 1
2 . Hence, At(xy) ≥

1
2 or A[t](xy) ≥

1
2 , which implies that νA(xy) ≤ 1 − t < 1 or νA(xy) < t < 1.

Therefore, A0(xy) ≥ 1
2 .

(ii) If α = q, then [xsαA] ∧ [ysαA] ≥ 1
2 . Thus, for β ∈ {∈, q,∈ ∧q,∈ ∨q}, we have [xsysβA] ≥

1
2 . Hence, As(xy) ≥

1
2 or

A[s](xy) ≥ 1
2 , which implies that νA(xy) ≤ 1− s < 1 or νA(xy) < s < 1. Therefore, A0(xy) ≥

1
2 .

By A0(x), A0(y), A0(xy) ∈ {0, 12 , 1} and the proof of (I) and (II), we know that A0(x) ∧ A0(y) ≥ A0(xy).
By the similar reasoning, we have A0(x−1) ≥ A0(x).
Therefore, A0 is a 3-valued fuzzy subgroup of G. �

Theorem 4.2. Let A = (G, µA, νA) be a (α, β)-intuitionistic fuzzy subgroup of G. For x ∈ G, let A(x) = (µA(x), νA(x)).
If µA(x) > 0, then for (α, β) ∈ {(∈, q), (∈,∈ ∧q), (∈ ∨q, q), (∈ ∨q,∈ ∧q), (q,∈), (q,∈ ∧q), (∈ ∨q,∈)}, we have
A(x) = (1, 0).

Proof. First, we prove µA(x) > 0⇒ µA(e) > 0, where e is the identity element of G.
In fact, from µA(x) > 0 we know that A0(x) = 1, then by Theorem 4.1 we have

A0(x−1) ≥ A0(x) = 1.

Thus

A0(e) = A0(xx−1) ≥ A0(x) ∧ A0(x−1) = 1.

Therefore, µA(e) > 0.
Second, we show that µA(e) = 1.
Otherwise, 0 < µA(e) < 1. Then there exist s, t ∈ (0, 1) such that

0 < s < (1− µA(e)) ∧ µA(e) ≤ (1− µA(e)) ∨ µA(e) < t < 1,

thus [es ∈ A] = 1 and [etqA] = 1.
If (α, β) ∈ {(∈, q), (∈,∈ ∧q), (∈ ∨q, q), (∈ ∨q,∈ ∧q)}, then [esαA] = 1. Thus [esβA] = [e−1s βA] = 1, which implies

that [esqA] = 1, i.e., µA(e) > 1− s. This is a contradiction to µA(e) < 1− s.
If (α, β) ∈ {(q,∈), (q,∈ ∧q), (∈ ∨q,∈)}, then [etαA] = 1. Thus [etβA] = [e−1t βA] = 1, which implies that [et ∈ A] = 1,

i.e., µA(e) ≥ t . This is a contradiction to µA(e) < t .
Therefore, we have µA(e) = 1.
At last, we show that µA(x) = 1.
Otherwise, 0 < µA(x) < 1. Then there exist s, t ∈ (0, 1) such that

0 < s < (1− µA(x)) ∧ µA(x) ≤ (1− µA(x)) ∨ µA(x) < t < 1.

Thus [xs ∈ A] = 1 and [xtqA] = 1. On the other hand, from µA(e) = 1 we know that [es ∈ A] = 1 and [etqA] = 1.
If (α, β) ∈ {(∈, q), (∈,∈ ∧q), (∈ ∨q, q), (∈ ∨q,∈ ∧q)}, then [xsαA] = 1 and [esαA] = 1. Thus [xsesβA] = 1, which

implies that [xsqA] = 1, i.e., µA(x) > 1− s. This is a contradiction to µA(x) < 1− s.
If (α, β) ∈ {(q,∈), (q,∈ ∧q), (∈ ∨q,∈)}, then [xtαA] = [etαA] = 1. Thus [xtetβA] = 1, which implies that [xt ∈ A] = 1,

i.e., µA(x) ≥ t . This is a contradiction to µA(x) < t .
Therefore, we have µA(x) = 1.
On the other hand, by µA(x)+ νA(x) ≤ 1, we have that νA(x) = 0. Hence, we have A(x) = (1, 0). �

Theorem 4.3. Let A be a (q, q)-intuitionistic fuzzy subgroup of G. Then

(1) µA(x) > 0⇒ A(x) = (µA(e), νA(e));
(2) µA(x) = 0, νA(x) ≤ 1⇒ A(x) = (0, νA(e)).
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Proof. (1) Let µA(x) > 0. Then νA(x) < 1.
(I) We prove that µA(e) ≥ µA(x) and νA(e) ≤ νA(x). In fact, let s ∈ (0, 1) such that µA(x) > 1 − s. Then [x−1s qA] ≥

[xsqA] = 1. Thus, [esqA] = [xsx−1s qA] ≥ [x
−1
s qA] ∧ [xsqA] ≥ 1, i.e., [esqA] = 1. Hence, µA(e) > 1− s. Then

µA(e) ≥ ∨{1− s|µA(x) > 1− s} = µA(x).

Let t ∈ (0, 1) such that νA(x) < t . Then [x−1t qA] ≥ [xtqA] ≥
1
2 . Thus [etqA] = [xtx

−1
t qA] ≥ [xtqA] ∧ [x

−1
t qA] ≥

1
2 ,

i.e., νA(e) < t . Then

νA(e) ≤ ∧{t|νA(x) < t} = νA(x).

(II) We show that µA(x) = µA(e) and νA(x) = νA(e). Otherwise, we have µA(x) < µA(e) or νA(x) > νA(e). If
µA(x) < µA(e), then there exist s, t ∈ (0, 1) such that 1−µA(e) < s < 1−µA(x) < t < 1. So we have [xtqA] = [esqA] = 1.
Thus [xsqA] = [xtesqA] ≥ [xtqA] ∧ [esqA] ≥ 1, i.e., s > 1 − µA(x). This is a contradiction to s < 1 − µA(x). Therefore,
µA(x) = µA(e).
If νA(x) > νA(e), then there exist s, t ∈ (0, 1) such that νA(e) < s < νA(x) < t < 1. So [xtqA] ≥ 1

2 and [esqA] ≥
1
2 . Hence,

[xsqA] = [xtesqA] ≥ [xtqA] ∧ [esqA] ≥ 1
2 , i.e., νA(x) < s. This is a contradiction to νA(x) > s. So νA(x) = νA(e).

Therefore, when µA(x) > 0, we have A(x) = (µA(e), νA(e)).
(2) When µA(x) = 0 and νA(x) < 1, then by the similar reasoning with (1), we can show that νA(x) = νA(e). Therefore,

A(x) = (0, νA(e)). �

Theorem 4.4. Let A be a (q,∈ ∨q)-intuitionistic fuzzy subgroup of G and

H = {x|x ∈ G, µA(x) > 0}, K = {x|x ∈ G, νA(x) < 1}.

Then
(1) If µA(x) is not a constant on H, then for any x ∈ H, A(x) ≥ (0, 5, 0.5), i.e., µA(x) ≥ 0.5, νA(x) ≤ 0.5.
(2) If νA(x) is not a constant on K , then for any x ∈ K, νA(x) ≤ 0.5.

Proof. (1) First, we show that there exists x′ ∈ H such that µA(x′) ≥ 0.5. Otherwise, ∀x ∈ H , µA(x) < 0.5. Since
H = {x|x ∈ G, µA(x) > 0} = {x|A0(x) = 1} is a subgroup of G, e ∈ H and x−1 ∈ H for any x ∈ H . Thus we have
µA(e) < 0.5 and µA(x−1) < 0.5. Next, we show that µA(e) ≥ µA(x). In fact, for x ∈ H , let t ∈ (0.5, 1] such that
t > 0.5 > µA(e) ∨ µA(x) ≥ µA(x) > 1 − t . Then [xtqA] = 1. Thus [x−1t ∈ ∨qA] = 1. By µA(x−1) < t , we have that
[x−1t qA] = 1. Hence, [et ∈ ∨qA] = [xtx

−1
t ∈ ∨qA] ≥ [xtqA] ∧ [x

−1
t qA] = 1. So µA(e) > 1− t . Therefore,

µA(e) ≥ ∨{1− t|µA(x) > 1− t} = µA(x).

On the other hand, µA(x) is not a constant on H , then there exists x ∈ H such that µA(x) < µA(e). Thus there exist
s, t ′ ∈ (0, 1) such that

t ′ > 1− µA(x) > s > 1− µA(e) > µA(e) > µA(x). (7)

Then [xt ′qA] = [esqA] = 1. Thus [xs ∈ ∨qA] = [xt ′es ∈ ∨qA] ≥ [xt ′qA] ∧ [esqA] = 1, i.e., µA(x) ≥ s or s+ µA(x) > 1. This is
a contradiction to Eq. (7). Therefore, there exists x′ ∈ H such that µA(x′) ≥ 0.5.
Second, we show that µA(e) ≥ 0.5. In fact, for any t > 0.5, µA(x′) + t > 1. Then [(x′)−1t ∈ ∨qA] ≥ [x′tqA] = 1, which

implies that [(x′)−1t qA] = 1. So [et ∈ ∨qA] ≥ [x′tqA] ∧ [(x
′)−1t qA] = 1, i.e., µA(e) ≥ t > 1− t or µA(e) > 1− t , which also

implies that µA(e) ≥ ∨{1− t|t > 0.5} = 0.5.
At last, we show that µA(x) ≥ 0.5 for any x ∈ H . Otherwise, there exists y ∈ H such that µA(y) < 0.5. Then there exists

u, v ∈ (0, 1) such that

v > 1− µA(y) > u > µA(y) ∨ (1− µA(e)). (8)

Thus, [yu ∈ ∨qA] = [yveu ∈ ∨qA] ≥ [yvqA] ∧ [euqA] = 1. So µA(y) ≥ u or µA(y)+ u > 1. This is a contradiction to Eq. (8).
Therefore, µA(x) ≥ 0.5 for any x ∈ H .
By µA(x)+ νA(x) ≤ 1, we know that νA(x) ≤ 0.5. Hence, A(x) ≥ (0.5, 0.5) for any x ∈ H .
(2) Clearly, K = {x ∈ G | A0(x) ≥ 1

2 }. Because A0 is a 3-valued fuzzy subgroup of G, K is a subgroup of G. Then x
−1
∈ K

for any x ∈ K and e ∈ K .
First, we show that there exists x′′ ∈ K such that νA(x′′) ≤ 0.5.
Otherwise, νA(x) > 0.5 for any x ∈ K . Thus νA(e) > 0.5 and νA(x) > 0.5 for any x ∈ K . Then we have that

νA(e) ≤ νA(x),∀x ∈ K
In fact, let t ∈ (0, 1) such that 0.5 < νA(x) < t , then [x−1t ∈ ∨qA] ≥ [xtqA] ≥

1
2 . By νA(x

−1) > 0.5, we have that
[x−1t qA] ≥ 1/2. Thus [et ∈ ∨qA] ≥ [x

−1
t qA] ∧ [xtqA] ≥

1
2 . By νA(e) > 0.5, we have that [etqA] ≥

1
2 , i.e., νA(e) < t , which

implies that νA(e) ≤ ∧{t | νA(x) < t} = νA(x).
Because νA(x) is not a constant on K , there exists x ∈ K such that νA(e) < νA(x). Then there exist a, b ∈ (0, 1) such that

a > νA(x) > b > νA(e) > 1 − νA(e) > 1 − νA(x). Thus [ebqA] ≥ 1
2 and [xaqA] ≥

1
2 . Then [xb ∈ ∨qA] = [xaeb ∈ ∨qA] ≥

[xaqA] ∧ [ebqA] ≥ 1
2 .
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When [xb ∈ A] ≥ 1
2 , we have that b ≤ 1− νA(x), and this is a contradiction to b > 1− νA(x).

When [xbqA] ≥ 1
2 , we have that νA(x) < b, that is a contradiction to νA(x) > b.

Therefore, there exists x′′ ∈ K such that νA(x′′) ≤ 0.5.
Second, we show that νA(e) ≤ 0.5.
In fact, because [x′′t qA] ≥

1
2 for any t ∈ (0.5, 1], [(x

′′)−1t ∈ ∨qA] ≥ [x′′t qA] ≥
1
2 and consequently [(x

′′)−1t qA] ≥
1
2 .

Thus [et ∈ ∨qA] = [(x′′)−1t x′′t ∈ ∨qA] ≥ [(x
′′)−1t qA] ∧ [x′′t qA] ≥

1
2 , which implies that νA(e) < t . Thus νA(e) ≤ ∧

{t | t > 0.5} = 0.5.
At last, we show that νA(x) ≤ 0.5 for any x ∈ K .
Otherwise, there exists y ∈ K such that νA(y) > 0.5. Then there exist c, d ∈ (0, 1) such that c > νA(y) > d >

(1− νA(y)) ∨ νA(e). Then [edqA] ≥ 1
2 and [ycqA] ≥

1
2 . Thus [yd ∈ ∨qA] = [yced ∈ ∨qA] ≥ [ycqA] ∧ [edqA] ≥

1
2 .

When [yd ∈ A] ≥ 1
2 , we have that d ≤ 1− νA(y), this is a contradiction to d > 1− νA(y);

When [ydqA] ≥ 1
2 , we have that νA(y) < d, this is a contradiction to d < νA(y).

Therefore, νA(x) ≤ 0.5 for any x ∈ K . �

Theorem 4.5. If A is a (∈ ∨q,∈ ∨q)-intuitionistic fuzzy subgroup of G, then A is a (∈,∈ ∨q)-intuitionistic fuzzy subgroup of G

Theorem 4.6. (1) A is a (∈,∈)-intuitionistic fuzzy subgroup of G if and only if for any x, y ∈ G

µA(xy) ≥ µA(x) ∧ µA(y), µA(x−1) ≥ µA(x) (9)

and

νA(xy) ≤ νA(x) ∨ νA(y), νA(x−1) ≤ νA(x); (10)

(2) A is a (∈,∈ ∨q)-intuitionistic fuzzy subgroup of G if and only if for any x, y ∈ G

µA(xy) ≥ µA(x) ∧ µA(y) ∧ 0.5, µA(x−1) ≥ µA(x) ∧ 0.5 (11)

and

νA(xy) ≤ νA(x) ∨ νA(y) ∨ 0.5, νA(x−1) ≤ νA(x) ∨ 0.5; (12)

(3) A is a (∈ ∧q,∈)-intuitionistic fuzzy subgroup of G if and only if for any x, y ∈ G

µA(xy) ∨ 0.5 ≥ µA(x) ∧ µA(y), µA(x−1) ∨ 0.5 ≥ µA(x) (13)

and

νA(xy) ∧ 0.5 ≤ νA(x) ∨ νA(y), νA(x−1) ∧ 0.5 ≤ νA(x). (14)

Proof. (1) ‘‘⇒’’ Let t = µA(x) ∧ µA(y). Then [xtyt ∈ A] ≥ [xt ∈ A] ∧ [yt ∈ A] = 1. Thus µA(xy) ≥ t = µA(x) ∧ µA(y).
Let s = νA(xy). For t > 1 − s, we have 0 = [xtyt ∈ A] ≥ [xt ∈ A] ∧ [yt ∈ A], then [xt ∈ A] = 0 or [yt ∈ A] = 0, i.e.,

νA(x) > 1− t or νA(y) > 1− t . Thus νA(x) ∨ νA(y) > 1− t . So νA(x) ∨ νA(y) ≥ ∨{1− t|1− t < s} = s = νA(xy).
By the similar reasoning, we have µA(x−1) ≥ µA(x) and νA(x−1) ≤ νA(x).
‘‘⇐’’ For any x, y ∈ G and s, t ∈ (0, 1], let a = [xs ∈ A] ∧ [yt ∈ A].
Case 1. a = 1. Then [xs ∈ A] = 1 and [yt ∈ A] = 1. Thus µA(xy) ≥ µA(x) ∧ µA(y) ≥ s ∧ t . Hence [xsyt ∈ A] = 1.
Case 2. a = 1

2 . Then [xs ∈ A] ≥
1
2 and [yt ∈ A] ≥

1
2 . Thus 1 − νA(x) ≥ s and 1 − νA(y) ≥ t . So 1 − νA(xy) ≥

1−νA(x)∨νA(y) = (1−νA(x))∧(1−νA(y)) ≥ s∧t , which implies that [xsyt ∈ A] ≥ 1
2 . Hence [xsyt ∈ A] ≥ [xs ∈ A]∧[yt ∈ A].

Similarly, we have [x−1s ∈ A] ≥ [xs ∈ A].
Therefore, A is a (∈,∈)-intuitionistic fuzzy subgroup of G.
(2) ‘‘⇒’’ Let t = µA(x) ∧ µA(y) ∧ 0.5. Then [xtyt ∈ ∨qA] ≥ [xt ∈ A] ∧ [yt ∈ A] = 1. Thus µA(xy) ≥ t or µA(xy) >

1− t ≥ 0.5 ≥ t . Hence µA(xy) ≥ µA(x) ∧ µA(y) ∧ 0.5.
Let νA(x)∨ νA(y)∨0.5 = 1− s. Then [xsys ∈ ∨qA] ≥ [xs ∈ A]∧ [ys ∈ A] ≥ 1

2 . Thus, s ≤ 1− νA(xy) or νA(xy) < s ≤ 1− s.
Hence νA(xy) ≤ 1− s = νA(x) ∨ νA(y) ∨ 0.5.
Similarly, we have µA(x−1) ≥ µA(x) ∧ 0.5 and νA(x−1) ≤ νA(x) ∨ 0.5.
‘‘⇐’’ For any x, y ∈ G and s, t ∈ (0, 1], let a = [xs ∈ A] ∧ [yt ∈ A].
Case 1. a = 1. If [xsyt ∈ ∨qA] ≤ 1

2 , then µA(x) ≥ s, µA(y) ≥ t , µA(xy) < s ∧ t and µA(xy) ≤ 1 − s ∧ t . Thus
0.5 > µA(xy) ≥ µA(x) ∧ µA(y) ∧ 0.5. So µA(xy) ≥ µA(x) ∧ µA(y) ≥ s ∧ t , which contradicts to µA(xy) < s ∧ t . Thus, we
have [xsyt ∈ ∨qA] = 1.
Case 2. a = 1

2 . Then 1 − νA(x) ≥ s and 1 − νA(y) ≥ t . Thus 1 − νA(x) ∨ νA(y) ≥ s ∧ t . If [xsyt ∈ ∨qA] = 0, then
s∧t > 1−νA(xy) and νA(xy) ≥ s∧t . Thus νA(xy) > 0.5. So νA(xy) ≤ νA(x)∨νA(y) and 1−νA(xy) ≥ 1−νA(x)∨νA(y) ≥ s∧t ,
which is a contradiction to 1− νA(xy) < s ∧ t . Thus we have [xsyt ∈ ∨qA] ≥ 1

2 .
Therefore, [xsyt ∈ ∨qA] ≥ [xs ∈ A] ∧ [yt ∈ A].
Similarly, we have [x−1s ∈ ∨qA] ≥ [xs ∈ A].



X.-h. Yuan et al. / Computers and Mathematics with Applications 59 (2010) 3117–3129 3125

(3) ‘‘⇒’’ If µA(xy) ∨ 0.5 < t = µA(x) ∧ µA(y), then µA(x) ≥ t > 0.5, µA(y) ≥ t > 0.5 and µA(xy) < t . Thus 1 =
[xt ∈ ∧qA] ∧ [yt ∈ ∧qA] ≤ [xtyt ∈ A]. So µA(xy) ≥ t , which contradicts to µA(xy) < t . Hence, µA(xy) ∨ 0.5 ≥ t =
µA(x) ∧ µA(y).
If νA(xy) ∧ 0.5 > t = 1 − s = νA(x) ∨ νA(y), then s ≤ 1 − νA(x), s ≤ 1 − νA(y), νA(xy) > t and s > 0.5 > t . Thus

νA(x) ≤ t < s and νA(y) ≤ t < s. So [xsys ∈ A] ≥ [xs ∈ ∧qA] ∧ [ys ∈ ∧qA] ≥ 1
2 . So s ≤ 1− νA(xy), i.e., νA(xy) ≤ 1− s = t ,

which contradicts to νA(xy) > t . Hence νA(xy) ∧ 0.5 ≤ νA(x) ∨ νA(y).
Similarly, we have µA(x−1) ∨ 0.5 ≥ µA(x) and νA(x−1) ∧ 0.5 ≤ νA(x).
‘‘⇐’’ For any x, y ∈ G and s, t ∈ (0, 1], let a = [xs ∈ ∧qA] ∧ [yt ∈ ∧qA].
Case 1. a = 1. Then µA(x) ≥ s, µA(x) > 1 − s, µA(y) ≥ t and µA(y) > 1 − t . Thus µA(x) > 0.5 and µA(y) > 0.5. So

µA(xy) ≥ µA(x) ∧ µA(y) ≥ s ∧ t , i.e., [xsyt ∈ A] = 1.
Case 2. a = 1

2 . Then 1 − νA(x) ≥ s > νA(x) and 1 − νA(y) ≥ t > νA(y). Thus, νA(x) < 0.5 and νA(y) < 0.5. So
νA(xy) ≤ νA(x) ∨ νA(y) and 1− νA(xy) ≥ (1− νA(x)) ∧ (1− νA(y)) ≥ s ∧ t , i.e., [xsyt ∈ A] ≥ 1

2 .
Hence, [xsyt ∈ A] ≥ [xs ∈ ∧qA] ∧ [yt ∈ ∧qA].
Similarly, we have [x−1s ∈ A] ≥ [xs ∈ ∧qA].
Therefore, A is a (∈ ∧q,∈)-intuitionistic fuzzy subgroup of G. �

Theorem 4.7. (1) A is a (∈,∈)-intuitionistic fuzzy subgroup of G if and only if for any a ∈ [0, 1], Aa is a 3-valued fuzzy subgroup
of G;

(2) A is a (∈,∈ ∨q)-intuitionistic fuzzy subgroup of G if and only if for any a ∈ (0, 0.5], Aa is a 3-valued fuzzy subgroup of G;
(3) A is a (∈ ∧q,∈)-intuitionistic fuzzy subgroup of G if and only if for any a ∈ (0.5, 1], Aa is a 3-valued fuzzy subgroup of G.

Proof. (1) ‘‘⇒’’ Because A is a (∈,∈)-intuitionistic fuzzy subgroup of G, then for any a ∈ [0, 1] and x ∈ G,

[xaya ∈ A] ≥ [xa ∈ A] ∧ [ya ∈ A], [x−1a ∈ A] ≥ [xa ∈ A],

i.e., Aa(xy) ≥ Aa(x) ∧ Aa(y) and Aa(x−1) ≥ Aa(x). So Aa is a 3-valued fuzzy subgroup of G.
‘‘⇐’’ For any x, y ∈ G and s, t ∈ (0, 1], [xsyt ∈ A] = As∧t(xy) ≥ As∧t(x) ∧ As∧t(y) ≥ As(x) ∧ At(y) = [xs ∈ A] ∧ [yt ∈ A]

and [x−1s ∈ A] = As(x
−1) ≥ As(x) = [xs ∈ A].

Therefore, A is a (∈,∈)-intuitionistic fuzzy subgroup of G.
(2) ‘‘⇒’’ Because A is a (∈,∈ ∨q)-intuitionistic fuzzy subgroup, for any a ∈ (0, 0.5] and x ∈ G, we have [xaya ∈ ∨qA] ≥

[xa ∈ A] ∧ [ya ∈ A]. So Aa(xy) ∨ A[a](xy) ≥ Aa(x) ∧ Aa(y). By 0 < a ≤ 0.5, we have that a ≤ 0.5 ≤ 1 − a. Thus
A[a](xy) = A1−a(xy) ≤ Aa(xy) ≤ Aa(xy). Hence Aa(xy) ≥ Aa(x) ∧ Aa(y). Similarly, we have Aa(x−1) ≥ Aa(x). So Aa is a
3-valued fuzzy subgroup of G.
‘‘⇐’’ Let s, t ∈ (0, 1]. If s ∧ t ≤ 0.5, then 1 − s ∧ t ≥ 0.5 ≥ s ∧ t . Thus A[s∧t](xy) ≤ As∧t(xy). So [xsyt ∈ ∨qA] =

As∧t(xy) ∨ A[s∧t](xy) = As∧t(xy) ≥ As∧t(x) ∧ As∧t(y) ≥ As(x) ∧ At(y) = [xs ∈ A] ∧ [yt ∈ A].
If s∧ t > 0.5, then let a ∈ (0, 1) such that 1− s∧ t < a < 0.5 < s∧ t . Thus As∧t(xy) ≤ A[s∧t](xy) and A[s∧t](xy) ≥ Aa(xy).

So [xsyt ∈ ∨qA] = As∧t(xy)∨A[s∧t](xy) = A[s∧t](xy) ≥ Aa(xy) ≥ Aa(x)∧Aa(y) ≥ As(x)∧At(y) = [xs ∈ A]∧ [yt ∈ A]. Hence,
[xsyt ∈ ∨qA] ≥ [xs ∈ A] ∧ [yt ∈ A].
Similarly, we have [x−1s ∈ ∨qA] ≥ [xs ∈ A].
Therefore, A is a (∈,∈ ∨q)-intuitionistic fuzzy subgroup of G.
(3) ‘‘⇒’’ Let a ∈ (0.5, 1] and x ∈ G. Then A[a](x) ≥ Aa(x). Thus Aa(xy) = [xaya ∈ A] ≥ [xa ∈ ∧qA] ∧ [ya ∈ ∧qA] ≥

Aa(x) ∧ A[a](x) ∧ Aa(y) ∧ A[a](y) ≥ Aa(x) ∧ Aa(y).
Similarly, we have Aa(x−1) ≥ Aa(x). So Aa is a 3-valued fuzzy subgroup of G.
‘‘⇐’’ For any x, y ∈ G and s, t ∈ (0, 1], let a = [xs ∈ ∧qA] ∧ [yt ∈ ∧qA].
Case 1. a = 1. Then µA(x) ≥ s, µA(x) > 1 − s, µA(y) ≥ t and µA(y) > 1 − t . Thus µA(x) > 0.5, µA(y) > 0.5. So

µA(xy) ≥ µA(x) ∧ µA(y) ≥ s ∧ t , i.e., [xsyt ∈ A] = 1.
Case 2. a = 1

2 . Then 1 − νA(x) ≥ s > νA(x) and 1 − νA(y) ≥ t > νA(y). Thus νA(x) < 0.5 and νA(y) < 0.5. So νA(xy) ≤
νA(x)∧νA(y) and 1−νA(xy) ≥ (1−νA(x))∧(1−νA(y)) ≥ s∧t . Hence [xsyt ∈ A] ≥ 1

2 . So [xsyt ∈ A] ≥ [xs ∈ ∧qA]∧[yt ∈ ∧qA].
Similarly, we have [x−1s ∈ A] ≥ [xs ∈ ∧qA].
Therefore, A is a (∈ ∧q,∈)-intuitionistic fuzzy subgroup of G. �

Theorem 4.8. Let A be a (∈ ∧q, β)-intuitionistic fuzzy subgroup of G and N = {x|x ∈ G, µA(x) > 0.5}, where β ∈ {q,∈ ∧q}.
Then for any x ∈ N, A(x) = (µA(e), νA(e)), i.e., A is a constant on N.

Proof. If A is a (∈ ∧q, β)-intuitionistic fuzzy subgroup of G, then A is a (∈ ∧q, q)-intuitionistic fuzzy subgroup of G. Thus,
we only need to show that the theorem is true for β = q.
First, we can show that µA(e) > 0.5 and µA(x−1) > 0.5 for any x ∈ N . In fact, for any x ∈ N , we have [x−10.5qA] ≥ [x0.5 ∈

∧qA] = 1, then µA(x−1) > 0.5. Thus, [e0.5qA] = [x0.5x−10.5qA] ≥ [x0.5 ∈ ∧qA] ∧ [x
−1
0.5 ∈ ∧qA] = 1. So µA(e) > 0.5.

Second, we show that µA(x) = µA(e) for any x ∈ N .
If there exists x ∈ N such that 0.5 < µA(x) < µA(e), then there exist s, t ∈ (0, 1) such that 1−µA(e) < s < 1−µA(x) <

t < 0.5 < µA(x) < µA(e). Thus [xsqA] = [xtesqA] ≥ [xt ∈ ∧qA]∧[es ∈ ∧qA] = 1. So s+µA(x) > 1, which is a contradiction
to µA(x)+ s < 1.
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If there exists x ∈ N such that 0.5 < µA(e) < µA(x), then there exists t ∈ (0, 1) such that 1−µA(x) < t < 1−µA(e) <
0.5 < µA(e) < µA(x). Thus [x−1t qA] ≥ [xt ∈ ∧qA] = 1. By µA(x−1) > 0.5 > t , we have that [x

−1
t ∈ ∧qA] = 1. Hence

[etqA] = [xtx−1t qA] ≥ [xt ∈ ∧qA] ∧ [x
−1
t ∈ ∧qA] = 1, i.e., t + µA(e) > 1, which contradicts to t < 1− µA(e).

Therefore, we have µA(x) = µA(e) for any x ∈ N .
At last, we show that νA(x) = νA(e) for any x ∈ N .
In fact, for any x ∈ N , µA(x) > 0.5, µA(x−1) > 0.5 and µA(e) > 0.5. Then νA(x) < 0.5, νA(x−1) < 0.5 and νA(e) < 0.5.

Let t satisfy νA(x) < t < 0.5, then [x−1t qA] ≥ [xt ∈ ∧qA] ≥
1
2 . Thus νA(x

−1) < t < 0.5. So [etqA] = [xtx−1t qA] ≥ [xt ∈
∧qA] ∧ [x−1t ∈ ∧qA] ≥

1
2 . Hence νA(e) < t and νA(e) ≤ ∧{t|νA(x) < t < 0.5} = νA(x).

Next, we show that νA(x) = νA(e) for any x ∈ N . Otherwise, let x′ satisfy νA(x′) > νA(e). Then there exist s, t ∈ (0, 1)
such that νA(e) < s < νA(x′) < t < 0.5. Thus [x′sqA] = [esx

′
tqA] ≥ [es ∈ ∧qA] ∧ [x

′
t ∈ ∧qA] ≥

1
2 , i.e., νA(x

′) < s, which
contradicts to νA(x′) > s.
Hence, νA(x) = νA(e).
Therefore, we have A(x) = (µA(e), νA(e)) for any x ∈ N . �

Theorem 4.9. A is a (∈ ∧q,∈ ∨q)-intuitionistic fuzzy subgroup of G if and only if for any x, y ∈ G

(1) µA(xy) ≥ µA(x) ∧ µA(y) ∧ 0.5 or µA(xy) ∨ 0.5 ≥ µA(x) ∧ µA(y); (15)

(2) µA(x−1) ≥ µA(x) ∧ 0.5 or µA(x−1) ∨ 0.5 ≥ µA(x); (16)
(3) νA(xy) ≤ νA(x) ∨ νA(y) ∨ 0.5 or νA(xy) ∧ 0.5 ≤ νA(x) ∨ νA(y); (17)

(4) νA(x−1) ≤ νA(x) ∨ 0.5 or νA(x−1) ∧ 0.5 ≤ νA(x). (18)

Proof. ‘‘⇒’’ (1) If µA(xy) ∨ 0.5 < t = µA(x) ∧ µA(y), then µA(x) ≥ t > 0.5, µA(y) ≥ t > 0.5 and µA(xy) < t . Thus
[x0.5y0.5 ∈ ∨qA] ≥ [x0.5 ∈ ∧qA] ∧ [y0.5 ∈ ∧qA] = 1. So µA(xy) ≥ 0.5 or µA(xy) + 0.5 > 1. Hence µA(xy) ≥ 0.5 ≥
µA(x) ∧ µA(y) ∧ 0.5.
(3) If νA(xy) ∧ 0.5 > t = 1− s = νA(x) ∨ νA(y), then s ≤ 1− νA(x), s ≤ 1− νA(y) and s > 0.5. Thus [x0.5y0.5 ∈ ∨qA] ≥

[x0.5 ∈ ∧qA] ∧ [y0.5 ∈ ∧qA] ≥ 1
2 . So 0.5 ≤ 1− νA(xy) or νA(xy) < 0.5. Hence νA(xy) ≤ 0.5 ≤ νA(x) ∨ νA(y) ∨ 0.5.

(2) and (4) can be proved similarly.
‘‘⇐’’ For any x, y ∈ G and s, t ∈ (0, 1], let a = [xs ∈ ∧qA] ∧ [yt ∈ ∧qA].
Case 1. a = 1. Then µA(x) ≥ s, µA(x) > 1 − s, µA(y) ≥ t and µA(y) > 1 − t . Thus µA(x) ∧ µA(y) > 0.5. Next

we show [xsyt ∈ ∨qA] = 1. Otherwise, we have [xsyt ∈ ∨qA] ≤ 1
2 . Then µA(xy) < s ∧ t and µA(xy) ≤ 1 − s ∧ t . Thus

µA(xy) < 0.5 < µA(x)∧µA(y). SoµA(xy) < µA(x)∧µA(y)∧0.5 andµA(xy)∨0.5 < µA(x)∧µA(y), which is a contradiction
to Eq. (15). Hence, [xsyt ∈ ∨qA] = 1.
Case 2. a = 1

2 . Then 1−νA(x) ≥ s > νA(x) and 1−νA(y) ≥ t > νA(y). Thus νA(x)∨νA(y) < 0.5. If [xsyt ∈ ∨qA] = 0, then
νA(xy) ≥ s ∧ t > 1− νA(xy). Thus νA(xy) > 0.5. So νA(xy) ∧ 0.5 = 0.5 ≥ νA(x) ∨ νA(y) and νA(xy) > νA(x) ∨ νA(y) ∨ 0.5,
which is a contradiction to Eq. (17). Hence, [xsyt ∈ ∨qA] ≥ 1

2 .
Therefore, [xsyt ∈ ∨qA] ≥ [xs ∈ ∧qA] ∧ [yt ∈ ∧qA].
Similarly, we have [x−1s ∈ ∨qA] ≥ [xs ∈ ∧qA].
Hence, A is a (∈ ∧q,∈ ∨q)-intuitionistic fuzzy subgroup of G. �

5. (s, t]-intuitionistic fuzzy subgroups

From the discussing in Section 4 we know that
(a) A is a (∈,∈)-intuitionistic fuzzy subgroup of G if and only if for any x, y ∈ G

µA(xy) ≥ µA(x) ∧ µA(y), µA(x−1) ≥ µA(x)

and

νA(xy) ≤ νA(x) ∨ νA(y), νA(x−1) ≤ νA(x);

(b) A is a (∈,∈ ∨q)-intuitionistic fuzzy subgroup of G if and only if for any x, y ∈ G

µA(xy) ≥ µA(x) ∧ µA(y) ∧ 0.5, µA(x−1) ≥ µA(x) ∧ 0.5

and

νA(xy) ≤ νA(x) ∨ νA(y) ∨ 0.5, νA(x−1) ≤ νA(x) ∨ 0.5;

(c) A is a (∈ ∧q,∈)-intuitionistic fuzzy subgroup of G if and only if for any x, y ∈ G

µA(xy) ∨ 0.5 ≥ µA(x) ∧ µA(y), µA(x−1) ∨ 0.5 ≥ µA(x)

and

νA(xy) ∧ 0.5 ≤ νA(x) ∨ νA(y), νA(x−1) ∧ 0.5 ≤ νA(x).

We can generalize the above three kinds of intuitionistic fuzzy subgroups to (s, t]-intuitionistic fuzzy subgroup.
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Definition 5.1. Let s, t ∈ [0, 1] and s < t . If

(1) µA(xy) ∨ s ≥ µA(x) ∧ µA(y) ∧ t, µA(x−1) ∨ s ≥ µA(x) ∧ t; (19)

(2) νA(xy) ∧ (1− s) ≤ νA(x) ∨ νA(y) ∨ (1− t), νA(x−1) ∧ (1− s) ≤ νA(x) ∨ (1− t), (20)

then A is called a (s, t]-intuitionistic fuzzy subgroup of G.

Obviously, when s = 0 and t = 1, then A is a (0, 1]-intuitionistic fuzzy subgroup of G if and only if A is a (∈,∈)-
intuitionistic fuzzy subgroup of G; when s = 0 and t = 0.5, then A is a (0, 0.5]-intuitionistic fuzzy subgroup of G if and
only if A is a (∈,∈ ∨q)-intuitionistic fuzzy subgroup of G; when s = 0.5 and t = 1, then A is a (0.5, 1]-intuitionistic fuzzy
subgroup of G if and only if A is a (∈ ∧q,∈)-intuitionistic fuzzy subgroup of G.
By Theorem 4.7 we know that
(i) A is a (∈,∈)-intuitionistic fuzzy subgroup of G if and only if for any a ∈ [0, 1], Aa is a 3-valued fuzzy subgroup of G;
(ii) A is a (∈,∈ ∨q)-intuitionistic fuzzy subgroup of G if and only if for any a ∈ (0, 0.5], Aa is a 3-valued fuzzy subgroup

of G;
(iii) A is a (∈ ∨q,∈)-intuitionistic fuzzy subgroup of G if and only if for any a ∈ (0.5, 1], Aa is a 3-valued fuzzy subgroup

of G.
Then we have the following theorem

Theorem 5.1. A is a (s, t]-intuitionistic fuzzy subgroup of G if and only if Aa is a 3-valued fuzzy subgroup of G for any a ∈ (s, t].

Proof. ‘‘⇒’’ Let a ∈ (s, t].
If Aa(x) ∧ Aa(y) = 1, then µA(x) ≥ a > s, µA(y) ≥ a > s. By µA(xy) ∨ s ≥ µA(x) ∧ µA(y) ∧ t > a, we know that

µA(xy) ≥ a. Then Aa(xy) = 1.
If Aa(x) ∧ Aa(y) = 1

2 , then 1 − νA(x) ≥ a and 1 − νA(y) ≥ a. Thus νA(x) ∨ νA(y) ≤ 1 − a < 1 − s. By νA(xy) ∧
(1− s) ≤ νA(x) ∨ νA(y) ∨ (1− t) ≤ 1− a, we know that νA(xy) ≤ 1− a. Then Aa(xy) ≥ 1

2 .
Hence, we have Aa(xy) ≥ Aa(x) ∧ Aa(y) for any x, y ∈ G.
Similarly, we have Aa(x−1) ≥ Aa(x) for any x ∈ G.
Therefore, Aa is a 3-valued fuzzy subgroup of G.
‘‘⇐’’ If µA(xy) ∨ s < a = µA(x) ∧ µA(y) ∧ t , then we have a ∈ (s, t], µA(x) ≥ a and µA(y) ≥ a. Thus Aa(xy) ≥

Aa(x) ∧ Aa(y) = 1. So µA(xy) ≥ a, which contradicts to µA(xy) < a. Hence, µA(xy) ∨ s ≥ µA(x) ∧ µA(y) ∧ t .
If νA(xy) ∧ (1− s) > a = νA(x) ∨ νA(y) ∨ (1− t), then (1− νA(xy)) ∨ s < 1− a = (1− νA(x)) ∧ (1− νA(y)) ∧ t . Thus

b = 1 − a ∈ (s, t], 1 − νA(x) ≥ b and 1 − νA(y) ≥ b. So Ab(xy) ≥ Ab(x) ∧ Ab(y) ≥ 1
2 , which implies that b ≤ 1 − νA(xy),

i.e., νA(xy) ≤ a. This is a contradiction to νA(xy) > a. Hence, we have νA(xy) ∧ (1− s) ≤ νA(x) ∨ νA(y) ∨ (1− t).
Similarly, we have µA(x−1) ∨ s ≥ µA(x) ∧ t and νA(x−1) ∧ (1− s) ≤ νA(x) ∨ (1− t).
Therefore, A is a (s, t]- intuitionistic fuzzy subgroup of G. �

Next, we will use the neighborhood relations between a fuzzy point xa and an intuitionistic fuzzy set A to characterize
the (s, t]-intuitionistic fuzzy subgroup. First we give the following definition.

Definition 5.2. Let xa be a fuzzy point, s ∈ (0, 1) and A = (X, µA, νA) be an intuitionistic fuzzy subset of X . We set
(1)

[xaqsA] =


1 a+ µA(x) > 2s;
1
2

µA(x) ≤ 2s− a < 1− νA(x);
0 νA(x)+ 2s ≥ a+ 1.

(2)

[xa ∈ ∨qsA] = [xa ∈ A] ∨ [xaqsA];

(3)

[xa ∈ ∧qsA] = [xa ∈ A] ∧ [xaqsA].

Remark 5.1. When s = 0.5, [xaqsA] = [xaqA].

Then we have the following theorems.

Theorem 5.2. Let s, t ∈ [0, 1] and 0 < s < t. Then A is a (s, t]-intuitionistic fuzzy subgroup of G if and only if
(1) ∀a, b ∈ (0, t],∀x, y ∈ G

([xa ∈ ∧qsA] ∧ [yb ∈ ∧qsA] → [xayb ∈ A]) = 1,

i.e., [xayb ∈ A] ≥ [xa ∈ ∧qsA] ∧ [yb ∈ ∧qsA].
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(2) ∀a ∈ (0, t],∀x ∈ G

([xa ∈ ∧qsA] → [x−1a ∈ A]) = 1,

i.e., [x−1a ∈ A] ≥ [xa ∈ ∧qsA].

Proof. Let a, b ∈ (0, t] and c = [xa ∈ ∧qsA] ∧ [yb ∈ ∧qsA].
Case 1. c = 1. Then µA(x) ≥ a, a + µA(x) > 2s, µA(y) ≥ b and b + µA(y) > 2s. Thus µA(x) > s and µA(y) > s. By

µA(xy)∨ s ≥ µA(x)∧µA(y)∧ t , we know that µA(xy) > s. So µA(xy) ≥ µA(x)∧µA(y)∧ t ≥ a∧ b∧ t = a∧ b. Hence, we
have [xayb ∈ A] = 1.
Case 2. c = 1

2 . Then 1− νA(x) ≥ a, 1− νA(y) ≥ b, 2s− a < 1− νA(x) and 2s− b < 1− νA(y). Thus 1− νA(x) > s and
1− νA(y) > s. By νA(xy)∧ (1− s) ≤ νA(x)∨ νA(y)∨ (1− t), we know that (1− νA(xy))∨ s ≥ (1− νA(x))∧ (1− νA(y))∧ t .
So 1− νA(xy) > s and 1− νA(xy) ≥ a ∧ b ∧ t = a ∧ b. Hence [xayb ∈ A] ≥ 1

2 .
Therefore, [xayb ∈ A] ≥ [xa ∈ ∧qsA] ∧ [yb ∈ ∧qsA].
Similarly, we have [x−1a ∈ A] ≥ [xa ∈ ∧qsA].
‘‘⇐’’ (1) If µA(xy) ∨ s < a = µA(x) ∧ µA(y) ∧ t , then s < a ≤ t , µA(x) ≥ a and µA(y) ≥ a. Thus a + µA(x) > 2s and

a + µA(y) > 2s. So [xa ∈ ∧qsA] = [ya ∈ ∧qsA] = 1. Hence [xaya ∈ A] = 1, i.e., µA(xy) ≥ a, which is a contradiction to
µA(xy) < a.
Therefore, we have µA(xy) ∨ s ≥ µA(x) ∧ µA(y) ∧ t .
(2) If νA(xy) ∧ (1 − s) > 1 − a = νA(x) ∨ νA(y) ∨ (1 − t), then (1 − νA(xy)) ∨ s < a = (1 − νA(x)) ∧ (1 − νA(y)) ∧ t .

Thus s < a ≤ t , 1 − νA(x) ≥ a and 1 − νA(y) ≥ a. So 1 − νA(x) > 2s − a and 1 − νA(y) > 2s − a, which implies that
[xaya ∈ A] ≥ [xa ∈ ∧qsA] ∧ [yb ∈ ∧qsA] ≥ 1

2 . Then 1− νA(xy) ≥ a, which contradicts to 1− νA(xy) < a.
Hence, νA(xy) ∧ (1− s) ≤ νA(x) ∨ νA(y) ∨ (1− t).
Similarly, we have µA(x−1) ∨ s ≥ µA(x) ∧ t and νA(x−1) ∧ (1− s) ≤ νA(x) ∨ (1− t).
Therefore, A is a (s, t]-intuitionistic fuzzy subgroup of G. �

Theorem 5.3. Let s, t ∈ [0, 1] and s < t < 1. Then A is a (s, t]-intuitionistic fuzzy subgroup of G if and only if

(1) ∀a, b ∈ (s, 1],∀x, y ∈ G

([xa ∈ A] ∧ [yb ∈ A] → [xayb ∈ ∨qtA]) = 1,

i.e., [xayb ∈ ∨qtA] ≥ [xa ∈ A] ∧ [yb ∈ A].
(2) ∀a ∈ (s, 1],∀x ∈ G

([xa ∈ A] → [x−1a ∈ ∨qtA]) = 1,

i.e., [x−1a ∈ ∨qtA] ≥ [xa ∈ A].

Proof. ‘‘⇒’’ For any a, b ∈ (s, 1], let c = [xa ∈ A] ∧ [yb ∈ A].
Case 1. c = 1. Then µA(x) ≥ a and µA(y) ≥ b. By µA(xy) ∨ s ≥ µA(x) ∧ µA(y) ∧ t we know that µA(xy) ∨ s ≥ a ∧ b ∧ t .
If a ∧ b ≤ t , then µA(xy) ≥ a ∧ b. Thus [xayb ∈ A] = 1;
If a ∧ b > t , then a ∧ b+ µA(xy) > 2t . Thus [xaybqtA] = 1, so [xayb ∈ ∨qt ]A = 1.
Case 2. c = 1

2 . Then 1 − νA(x) ≥ a and 1 − νA(y) ≥ b. By νA(xy) ∧ (1 − s) ≤ νA(x) ∨ νA(y) ∨ (1 − t), we know that
(1− νA(xy)) ∧ s ≥ (1− νA(x)) ∧ (1− νA(y)) ∧ t ≥ a ∧ b ∧ t .
If a ∧ b ≤ t , then 1− νA(xy) ≥ a ∧ b. So [xayb ∈ A] ≥ 1

2 ;
If a ∧ b > t , then 1− νA(xy) ≥ t . Thus 2t − (a ∧ b) ≤ 1− νA(xy). So [xaybqtA] ≥ 1

2 .
Hence, [xayb ∈ ∨qtA] ≥ [xa ∈ A] ∧ [yb ∈ A].
(2) can be proved similarly.
‘‘⇐’’ (1) If µA(xy) ∨ s < a = µA(x) ∧ µA(y) ∧ t , then [xa ∈ A] = [ya ∈ A] = 1 and s < a ≤ t . Thus [xaya ∈ ∨qtA] = 1.

By µA(xy) < a, we have that [xayaqtA] = 1. Thus a + µA(xy) > 2t . So µA(xy) > 2t − a ≥ a, which is a contradiction to
µA(xy) < a. Hence, µA(xy) ∨ s ≥ µA(x) ∧ µA(y) ∧ t .
(2) If νA(xy)∧(1−s) > (1−a) = νA(x)∨νA(y)∨(1− t), then s < a ≤ t , νA(xy) > 1−a, 1−a ≥ νA(x) and 1−a ≥ νA(y).

Thus [xa ∈ A] ≥ 1
2 and [ya ∈ A] ≥

1
2 . So [xaya ∈ ∨qtA] ≥

1
2 . Hence 1 − νA(xy) ≥ 2t − a ≥ a. This is a contradiction to

νA(xy) > 1− a. Therefore, we have νA(xy) ∧ (1− s) ≤ νA(x) ∨ νA(y) ∨ (1− t).
(3) Similarly, we can prove that µA(x−1) ∨ s ≥ µA(x) ∧ t and νA(x−1) ∧ (1− s) ≤ νA(x) ∨ (1− t). �

Remark 5.2. When s = 0.5 and t = 1, then Theorem 5.2 is coincident with Theorem 4.6(3); when s = 0 and t = 0.5, then
Theorem 5.3 is coincident with Theorem 4.6(2).
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6. Conclusions

In this paper, we established the neighborhood relations between a fuzzy point xa and an intuitionistic fuzzy set A and
gave the definition of (α, β)- intuitionistic fuzzy subgroups based on the concept of cut sets on intuitionistic fuzzy sets. We
obtained the following results with no conditions attached:
1. Among 16 kinds of (α, β)-intuitionistic fuzzy subgroups, the significant ones are the (∈,∈)-intuitionistic fuzzy

subgroup, the (∈,∈ ∨q)-intuitionistic fuzzy subgroup and the (∈ ∧q,∈)-intuitionistic fuzzy subgroup.
2. A is a (∈,∈)-intuitionistic fuzzy subgroup of G if and only if, for any a ∈ (0, 1], the cut set Aa of A is a 3-valued fuzzy

subgroup of G, and A is a (∈,∈ ∨q)-intuitionistic fuzzy subgroup (or (∈,∈ ∨q)-intuitionistic fuzzy subgroup) of G if and
only if, for any a ∈ (0, 0.5](or for any a ∈ (0.5, 1]), the cut set Aa of A is a 3-valued fuzzy subgroup of G.
3. We generalize the (∈,∈)-intuitionistic fuzzy subgroup, (∈,∈ ∨q)- intuitionistic fuzzy subgroup and (∈ ∧q,∈)-

intuitionistic fuzzy subgroup to intuitionistic fuzzy subgroup with thresholds, i.e., (s, t]-intuitionistic fuzzy subgroup. We
also show that A is a (s, t]-intuitionistic fuzzy subgroup of G if and only if, for any a ∈ (s, t], the cut set Aa of A is a 3-valued
fuzzy subgroup of G.
4. By the neighborhood relations between a fuzzy point xa and an intuitionistic fuzzy set A, we characterize the (s, t]-

intuitionistic fuzzy subgroup.
Our works have shown that our method is better than that in [22,23].
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