
Discrete Mathematics 310 (2010) 3267–3275

Contents lists available at ScienceDirect

Discrete Mathematics

journal homepage: www.elsevier.com/locate/disc

Improving bounds on the minimum Euclidean distance for block codes
by inner distance measure optimization
Efraim Laksman a,1, Håkan Lennerstad a,∗, Magnus Nilsson b,2
aMathematics and Natural Sciences, School of Engineering, Blekinge Institute of Technology, S-371 79 Karlskrona, Sweden
b Telecommunications, School of Computing, Blekinge Institute of Technology, S-371 79 Karlskrona, Sweden

a r t i c l e i n f o

Article history:
Available online 16 June 2010

Keywords:
Block code
Phase shift keying
Metric
Elias’ bound
Minimal Euclidean distance

a b s t r a c t

TheminimumEuclideandistance is a fundamental quantity for block codedphase shift key-
ing (PSK). In this paperwe improve the bounds for this quantity that are explicit functions of
the alphabet size q, block length n and code size |C |. For q = 8, we improve previous results
by introducing a general inner distance measure allowing different shapes of a neighbor-
hood for a codeword. By optimizing the parameters of this inner distancemeasure, we find
sharper bounds for the outer distance measure, which is Euclidean.
The proof is built upon the Elias critical sphere argument, which localizes the optimiza-

tion problem to one neighborhood. We remark that any code with q = 8 that fulfills the
boundwith equality is best possible in terms of theminimum Euclidean distance, for given
parameters n and |C |. This is true for many multilevel codes.

© 2010 Elsevier B.V. All rights reserved.

1. Introduction

We intend to improve bounds for the minimum squared Euclidean distance for block coded phase shift keying (PSK).
For error correction with respect to maximum likelihood, when using a channel with additive white Gaussian noise, the
squared Euclidean distance of the code is a highly relevant measure of the efficiency of a code for fixed block length n, code
size |C | and alphabet size q.
On the set Znq , the squared Euclidean distance is defined as

d2E(x, y) =
n∑
j=1

d2E(xj, yj), (1)

where d2E(xj, yj) is

d2E(xj, yj) = d
2
E(xj − yj, 0) = 4 sin

2 (xj − yj)π
q

. (2)

Note that this distancemeasure is translation invariant, so that the arguments can bewritten in such a way that one of them
is zero. To simplify notation, we will write d(x) = d(x, 0) for any distance measure. Now a relevant model for the words is
points in the group (Znq,+), with the squared Euclidean distance used for measuring distance; see for example [1,4].
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We consider an arbitrary subset C of Znq , corresponding to a block code having |C | codewords x = (x1, . . . , xn) of length
n in an alphabet of q letters. The minimum squared Euclidean distance for the code is then

d2Emin(C) = minx,y∈C
x6=y

d2E(x, y). (3)

Bounds on theminimumEuclidean distance are fundamental for the geometry of Znq: what is the largest possible distance
between the two closest members in a subset of Znq with |C |members?
As is well known, the minimum Euclidean distance is essential to determine the error correction capabilities of a code.

We define the rate of a block code as

R(q, n, |C |) =
logq |C |
n

. (4)

For several combinations of q, n, and |C |, mostly for high rates, there are known codes whose minimum squared Euclidean
distances fulfil our bound with equality. For these combinations of q, n and |C |, neither the codes nor the bound can be
improved.
For other combinations of q, n and |C |, there is a gap between the bound and the minimum squared Euclidean distances

for the best known codes. The size of this gap differs from case to case. Especially for medium and low rates, it is unknown
whether there exist better codes to discover, or if it is possible to improve the bound, or a combination of both.
Many of the best known block codes, in the sense of minimum squared Euclidean distance, are constructed as multilevel

codes; see for example [3,9,10]. There are also other code constructions providing some of the best known block codes.
The results of this paper are derived by using different kinds of distance measures and metrics. Both the distance

measure and themetric are functions d(x, y) frompairs of codewords to non-negative numberswith the symmetry property
d(x, y) = d(y, x) for all x and y, and d(x, y) = 0 if and only if x = y. Unlike a distance measure, a metric is also required to
satisfy the triangle inequality: d(x, y) ≤ d(x, z)+ d(y, z) for all x and y. Note that the squared Euclidean distance measure
d2E(x, y) =

∑n
j=1 d

2
E(xj − yj) is not a metric in general. For q = 8, we have 2 = d

2
E(2) > 2d

2
E(1) = 2(2 −

√
2), which may

be the reason why the optimal inner distance measure of Theorem 4 differs from d2E(i) · (K − 1) only for i = 1, 2 (K is a
constant, defined later).
The quantities d2E(xj, yj) = 4 sin

2 (xj−yj)π
q are Euclidean distances between points when the entries 0, . . . , q − 1 are

distributed equidistantly on a unit circle. The generalized distance measures considered in this paper will be translation
invariant and defined on Znq , so they will be defined by a sequence of non-negative numbers, δ = δ(0) = 0, δ(2), . . . , δ(q−
1), without any particular geometrical meaning. The distance is then

δ(x, y) =
n∑
j=1

δ(xj, yj) =
n∑
j=1

δ(xj − yj), (5)

generalizing

d2E(x, y) =
n∑
j=1

d2E(xj, yj) =
n∑
j=1

d2E(xj − yj). (6)

Some of the numbers δ(i) may be infinite, prohibiting the corresponding differences. The Lee metric, for example, is
represented by δ(i) = i. Also truncated Leemetrics, where δ(i) = i for i ≤ r but δ(i) = ∞ for i > r , have been considered [6].
An alternative notation is sometimes useful. For two codewords x and y, the number of positions where x and y differ by

i or by q− i is denoted by ci(x, y):

ci(x, y) = |{j ∈ [1, n] : (xj − yj)≡q i or (xj − yj)≡q q− i}|, (7)

where≡q means equal with respect to modulo q. We are still working with a generalization of the closest distance of letters
in a unit circle, so two words can in one position differ by at most bq/2c. Then an alternative notation for δ(x, y) is

δ(x, y) =
n∑
j=1

δ(xj − yj) =
bq/2c∑
i=1

δ(i)ci(x, y). (8)

2. Previous work

Apart from the presentation in this section, Section 6 contains an overview over the arguments that to some extent
requires knowledge of the technical definitions that occur in the paper. The bounds in this paper and in the previous papers
in this line of research are partly based on the arguments leading to the well-known Elias bound (see also Section 6, [1,
pp. 318–321] and [4, pp. 558–564]). The Elias bound arguments have been used by Piret [8], who calculated bounds for the
maximum rate, n−1 ln |C |, for codes C with given d2Emin(C)/n as n→∞. Piret’s upper bound on the rate becomes
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ln q− max
2βSβT=d2Emin(C)/n∑

i
βi=1

(H(β)), (9)

where H is the entropy function

H(β) = −
q∑
i=1

βi ln(βi), (10)

β is a vector of length q and S is the q× qmatrix with elements 2 sin2[(i− j)π/q] in position (i, j).
Themaximum rate as n→∞ is a non-increasing function of d2Emin(C)/n. Thus we can get a bound on d

2
Emin/n as n→∞

as a function of the rate by reflecting the graph of Piret’s bound in the line ln |C |
d2Emin

.

Wyner [11] has produced another bound for the same quantity as Piret. It is independent of q, and the q points may be
distributed arbitrarily, giving for larger qweaker restrictions and a tighter bound in general. Wyner’s bound is

lim
n→∞

1
n

nK
(
d2Emin
2n

)
(2π)n

Vn

(√
2n
(
1−

√
1− d2Emin

2n

)
− 1

) , (11)

where Vn(r) is defined as the volume of a sphere with radius r in the n-dimensional torus with the Euclidean distance 2π
in each dimension. Just as with Piret’s bound, it is a bound on d2Emin(C)/n for a given rate as n→∞.

3. Problem formulation

The first result in the present research is a general and not very explicit bound, which is valid for arbitrary values of
the parameters q, n and |C |. The second result is an explicit bound, valid for q = 8 only. We next start the argument and
simultaneously present results of previous papers [5–7].
Let Sδ,t(z) be a sphere induced by δ, centered at zwith radius t , i.e.

Sδ,t(z) =

{
y :
bq/2c∑
i=1

δ(i)ci(z, y) ≤ t

}
. (12)

Observe that the number of words in a sphere is independent of the word that lies at its center.
We generalize Elias’ argument by using a critical sphere induced by δ, instead of a critical sphere induced by d2E . Define

K =
⌈
|C | |Sδ,t |q−n

⌉
, and assume that t is large enough so that |C | |Sδ,t |q−n > 1. According to Elias’ argument, there now

exists a sphere Sδ,t(y∗) containing at least K codewords, and by argument of translation, we may assume that y∗ = 0. Now
letW = Sδ,t(y∗) ∩ C , so |W | = K . We trivially have

d2Emin(C) ≤ d
2
Emin(W ) ≤ d

2
Emean(W ), (13)

where d2Emean(W ) is the average distance between the codewords inW . Elias [1, pp. 318–321] bounds d
2
Emean(W ) by

K 2x(2− x)D̄n
K(K − 1)

, (14)

where D̄ is the average distance between letters
∑q−1
j=0 d(j), which when d is d

2
E results in D̄ = 2. If the radius of the critical

sphere is t , then x = t/D̄n. This then also works as a bound on d2Emin(W ).
In [5], the use of a critical sphere induced by the distance measure δ, where δ(1) = 1 and δ(i) = ∞ for i > 1, allowing

at most t non-zeros in a sphere, resulted in the bound

d2Emin(C) ≤
t

K − 1
d2E(2)+ 2

(
t −

t
K − 1

)
d2E(1). (15)

This bound is applicable for |C | > (q/3)n only, so it cannot be used for low rates, but it is tight in many cases for high rates.
In [6], a two-parameter (t, r)-Lee metric δ(i) = i if i ≤ r and δ(i) = ∞ if i > r was tried for q = 8. It was shown that

r = 2 improves the bound for medium rates, while r = 4 is preferable for low rates.
The idea of considering a general inner distance measure δ and designing it to optimize the bound for the outer distance

measure,which is a squared Euclidean,was first presented in [7]. Here aK -dependent inner distancemeasurewas presented,
as well as columns that appear to be extremal by sampling the space of all possible distance measures. Compared to
that paper, the present paper presents an improved K -dependent distance measure. Furthermore, in this paper a partial
optimality of this distance measure is proven.
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4. General results

Continuing the argument of the previous section, we have a sphere Sδ,t(w) containing at least K =
⌈
|C | |Sδ,t |q−n

⌉
codewords,W = Sδ,t(w) ∩ C , and we assume thatw = 0.

Theorem 1. For any code C in Znq , we have the bound

d2Emin(C) ≤ min
K∈[2,|C |]

min
δ

2̃tK fδ (̂y)
K − 1

, (16)

where

t̃K (δ) = min
({
t : K ≤

⌈
|C | |Sδ,t |q−n

⌉})
, (17)

fδ(y) =

K∑
j1=2

j1−1∑
j2=1
d2E(yj1 , yj2)

K∑
j=1
δ(yj)

, (18)

and ŷ is a vector maximizing fδ(y).

Even though t̃K is a function not only of δ, but also of n, |C | and q, we usually omit those parameters as we assume that
they are fixed. The same is true for the dependence that fδ (̂y) has on q. We also remark that the minimum over t always
exists since the sphere Sδ,t is defined with an inclusive inequality.

Proof. We start by representing the codewords inW as rows in a matrixM of type K × n. Then we may write the average
distance between the codewords as

d2Emean(W ) =
1(
K
2

) n∑
i=1

K∑
j1=2

j1−1∑
j2=1

d2E(mj1,i,mj2,i), (19)

with the restriction

n∑
i=1

K∑
j=1

δ(mj,i) ≤ Kt, (20)

wheremj,i is the element on row j and column i ofM . The restriction comes from theweight of each codeword being atmost t .
Using (18), where y is a column ofM , we have

d2Emean(W ) =
1(
K
2

) n∑
i=1

K∑
j1=2

j1−1∑
j2=1

d2E(mj1,i,mj2,i) =
1(
K
2

) n∑
i=1

fδ(m·,i)
K∑
j=1

δ(mj,i), (21)

wherem·,i is the ith column vector ofM .
Let ŷ be a column vector such that fδ (̂y) achieves its maximum value. We then have

d2Emean(W ) =
1(
K
2

) n∑
i=1

fδ(m·,i)
K∑
j=1

δ(mj,i)

≤
1(
K
2

) fδ (̂y) n∑
i=1

K∑
j=1

δ(mj,i) ≤
Kt(
K
2

) fδ (̂y) = 2tfδ (̂y)K − 1
, (22)

where the second inequality comes from (20). Note that this holds for any additive distance measure δ and any integer
K ∈ [2, |C |]. We have proved the theorem. �

We next find vectors ŷ by which δ may be chosen to optimize the bound. We start with a lemma to show that the bound
is independent of the scaling of δ.

Lemma 2. The bound in Theorem 1 is scale invariant in the distance measure δ; i.e. for any s > 0, let λ(x, y) = sδ(x, y) for every
pair x, y. Then
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2̃tK (δ)fδ (̂y)
K − 1

=
2̃tK (λ)fλ(̂y)
K − 1

(23)

holds.

Proof. We remark that fλ(̂y) = fδ (̂y)/s follows from the definition of fδ in (18). Furthermore, Sλ,t(z) = Sδ,t/s(z) follows from
the definition of Sδ,t in (12). Hence, t̃K (λ) = s̃tK (δ). It follows that

t̃K (λ)fλ(̂y) = s̃tK (δ)fδ (̂y)/s = t̃K (δ)fδ (̂y). � (24)

In the proof of the following lemma we will need the so-called mediant addition:

a1
b1
⊕
a2
b2
=
a1 + a2
b1 + b2

, (25)

presented in [2]. The number a1+a2b1+b2
is called the mediant of a1b1 and

a2
b2
. It is similarly defined for c ratios a1b1 , . . . ,

ac
bc
, and is a

weighted mean value of the ratios, as can be seen by the identity

a1
b1
⊕ · · · ⊕

ac
bc
=

b1
b1 + · · · + bc

a1
b1
+ · · · +

bc
b1 + · · · + bc

ac
bc
. (26)

As a weighted mean, the weights are strictly between 0 and 1, and are determined by the denominators only. We thus have
a1
b1
<
a1+a2
b1+b2

<
a2
b2
if a1b1 <

a2
b2
, and a1b1 =

a1+a2
b1+b2

=
a2
b2
if a1b1 =

a2
b2
.

Next, we intend to find vectors ŷ such that fδ (̂y) achieves its maximum. This we do only in the case q = 8, so from here
and onwards the results are restricted to q = 8.

5. Results for q = 8

Lemma 3. For any additive distance measure δ and for any K , one of the columns

ŷ1 = (1,−1, 0, . . . , 0), ŷ2 = (2, 0, . . . , 0), ŷ3 = (3, 0, . . . , 0),
ŷ4 = (4, 0, . . . , 0), ŷ5 = (1,−2, 0, . . . , 0), ŷ6 = (2,−2, 0, . . . , 0)

(27)

provides a maximum for

f (y) =

K∑
j=2

j−1∑
i=1
d2E(yi, yj)

K∑
i=1
δ(yi)

. (28)

Furthermore, f (̂y2) = f (̂y6).

Proof. Maximization of the function fδ(y) is done by a sequence of transformations of the variables. We first introduce
the functions ai(y) that counts the number of occurrences of i in the column y. That is, a0(y) is the number of zeros, a1(y)
the number of 1s, a7(y) the number of −1s (as −1≡8 7), and so on. Since the length of the column y is K , we know that
K =

∑7
i=0 ai(y).

The function fδ(y) can then be rewritten as follows:

fδ(y) =

K∑
i=2

i−1∑
j=1
d2E(yi, yj)

K∑
i=1
δ(yi)

=

3∑
i=1

7∑
j=0
d2E(i)ajaj+i +

3∑
i=0
d2E(4)aiai+4

3∑
i=1
δ(i)(ai + a−i)+ δ(4)a4

. (29)

The main objective is to maximize fδ with respect to a0, . . . , a7. Note that, while there are 8K different columns
(y1, . . . , yK ), there are only

(
8+K−1
K

)
different vectors (a0, . . . , a7). This is the number of selections of K objects out of eight



3272 E. Laksman et al. / Discrete Mathematics 310 (2010) 3267–3275

alternativeswith repetition butwithout order, since by going from (y1, . . . , yK ) to (a0(y), . . . , a7(y))wehave removed order
changes that are insignificant for the value of fδ . It is independent of rearrangements as (y1, y2, . . . , yK )→ (y2, y1, . . . , yK ).
We now proceed to the next transformation. The function can be expanded as

fδ =
g1d2E(1)+ g2d

2
E(2)+ g3d

2
E(3)+ g4d

2
E(4)

δ(1) (a1 + a7)+ δ(2) (a2 + a6)+ δ(3) (a3 + a5)+ δ(4)a4
, (30)

where

g1 = (a0a1 + a1a2 + a2a3 + a3a4 + a4a5 + a5a6 + a6a7 + a7a0)
g2 = (a0a2 + a1a3 + a2a4 + a3a5 + a4a6 + a5a7 + a6a0 + a7a1)
g3 = (a0a3 + a1a4 + a2a5 + a3a6 + a4a7 + a5a0 + a6a1 + a7a2)
g4 = (a0a4 + a1a5 + a2a6 + a3a7) .

(31)

Now, rewriting fδ in terms of the functions αi, i = 0, . . . , 7, where

α0 = a0 α4 = a4
α1 = a1 + a7 α5 = a3 − a5
α2 = a2 + a6 α6 = a2 − a6
α3 = a3 + a5 α7 = a1 − a7,

(32)

exploits the symmetries of the problem, and leaves us with a denominator which is far easier to handle. It has inverse
relations

a0 = α0 a4 = α4

a1 =
α1 + α7

2
a5 =

α3 − α5

2

a2 =
α2 + α6

2
a6 =

α2 − α6

2

a3 =
α3 + α5

2
a7 =

α1 − α7

2
.

(33)

Pure calculation proves that

fδ =
h1d2E(1)+ h2d

2
E(2)+ h3d

2
E(3)+ h4d

2
E(4)

4 (δ(1)α1 + δ(2)α2 + δ(3)α3 + δ(4)α4)
, (34)

where

h1 = 4α0α1 + 2α1α2 + 2α2α3 + 4α3α4 + 2α5α6 + 2α6α7
h2 = 4α0α2 + α21 + 2α1α3 + 4α2α4 + α

2
3 − α

2
5 + 2α5α7 − α

2
7

h3 = 4α0α3 + 4α1α4 + 2α1α2 + 2α2α3 − 2α5α6 − 2α6α7
h4 = 4α0α4 + 2α1α3 + α22 − 2α5α7 − α

2
6 .

(35)

Recall that a0 = K −
∑7
i=1 ai, which gives α0 = K −

∑4
i=1 αi. Also, since we have the restriction q = 8, which is studied

here, we have

d2E(0) = 0,

d2E(1) = d
2
E(7) = 4 sin

2 π

8
= 2−

√
2,

d2E(2) = d
2
E(6) = 4 sin

2 2π
8
= 2,

d2E(3) = d
2
E(5) = 4 sin

2 3π
8
= 2+

√
2, and

d2E(4) = 4 sin
2 4π
8
= 4. (36)

This makes it possible to rewrite fδ as

fδ =
4K

4∑
i=1
αid2E(i)−

(
4∑
i=1
αid2E(i)

)2
−

(√
2α5 + 2α6 +

√
2α7

)2
4
4∑
i=1
δiαi

. (37)

By construction, for any x, the quantities α1(x), α2(x), α3(x) and α4(x) are non-negative integers, at least one greater than
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zero, while α5(x), α6(x) and α7(x) are integers, possibly negative. Furthermore, we know that α1(x)+α7(x), α2(x)+α6(x)
and α3(x)+ α5(x) are even numbers.
Next, we consider the function

ϕδ =

4K
4∑
i=1
αid2E(i)−

(
4∑
i=1
αid2E(i)

)2
4
4∑
i=1
δ(i)αi

. (38)

Obviously we have fδ(x) ≤ ϕδ(x) for any x.
Let y1 = (1, 0, . . . , 0), y2 = (2, 0, . . . , 0), y3 = (3, 0, . . . , 0), y4 = (4, 0, . . . , 0), and observe that we have

fδ(y1) =
4Kd2E(1)− d

4
E(1)− 2

4δ(1)
fδ(y2) =

4Kd2E(2)− d
4
E(2)− 4

4δ(2)

fδ(y3) =
4Kd2E(3)− d

4
E(3)− 2

4δ(3)
fδ(y4) =

4Kd2E(4)− d
4
E(4)

4δ(4)
.

(39)

Now, any column xwhere

fδ(x) ≤
α1(x)fδ(y1)
α1(x)

⊕
α2(x)fδ(y2)
α2(x)

⊕
α3(x)fδ(y3)
α3(x)

⊕
α4(x)fδ(y4)
α4(x)

≤ max(fδ(y1), fδ(y2), fδ(y3), fδ(y4)) (40)

cannot be extremal. There are still many columns that must be compared, so we start by discarding a large set of columns
which cannot be extremal.
Since we have fδ ≤ ϕδ , we may first discard all xwhere

ϕδ(x) ≤
α1(x)fδ(y1)
α1(x)

⊕
α2(x)fδ(y2)
α2(x)

⊕
α3(x)fδ(y3)
α3(x)

⊕
α4(x)fδ(y4)
α4(x)

. (41)

This condition is equivalent to

4K
4∑
i=1
αi(x)d2E(i)−

(
4∑
i=1
αi(x)d2E(i)

)2
4
4∑
i=1
δ(i)αi(x)

≤

4K
4∑
i=1
αi(x)d2E(i)−

4∑
i=1
αi(x)d4E(i)− 2α1(x)− 4α2(x)− 2α3(x)

4
4∑
i=1
δ(i)αi(x)

, (42)

which can also be expressed as

4∑
i=1

αi(x)d4E(i)+ 2α1(x)+ 4α2(x)+ 2α3(x) ≤

(
4∑
i=1

αi(x)d2E(i)

)2
. (43)

Wemay immediately discard all columns xwith α1(x) ≥ 7, α2(x) ≥ 3, α3(x) ≥ 2 or α4(x) ≥ 2, as any of these inequalities
being satisfied will make inequality (43) true. This leaves us with 7 × 3 × 2 × 2 = 84 columns to examine. Testing these
with condition (40), we find only 14 columns which may be extremal, namely

y1 = (1, 0, . . . , 0), y2 = (2, 0, . . . , 0),
y3 = (3, 0, . . . , 0), y4 = (4, 0, . . . , 0),
y5 = (1,−2, 0, . . . , 0), y6 = (2,−2, 0, . . . , 0),
y7 = (1,−3, 0, . . . , 0), y8 = (1,−1, 0, . . . , 0),
y9 = (1, 1,−2, 0, . . . , 0), y10 = (1, 1,−1,−2, 0, . . . , 0),
y11 = (1, 1,−1, 0, . . . , 0), y12 = (1, 1,−1,−1, 0, . . . , 0),
y13 = (1, 1, 1,−1,−1, 0, . . . , 0), y14 = (1, 1, 1,−1,−1,−1, 0, . . . , 0).

(44)

Since

fδ(y10) = fδ(y10)⊕ fδ(y10) < fδ(y8)⊕ fδ(y8)⊕ fδ(y8)⊕ fδ(y6)
≤ max(fδ(y8), fδ(y6)), (45)

wemay conclude that fδ(y10) cannot be extremal. Continuing to reduce the set of columns in our list in this manner, we end
up with only the vectors given in the lemma. Also, fδ (̂y2) = fδ (̂y6) follows from fδ (̂y2)⊕ fδ (̂y2) = fδ (̂y6). Those six columns
are extremal, and the set cannot be reduced further. This follows by considering different distance measures δ such that
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they all cause fδ to achieve its maximum value, which we know it does for at least one of the six columns. Considering the
distance measure

δ(1) = (2−
√
2)(K − 1)− 3+ 2

√
2, δ(2) = 2(K − 1)+

√
2− 1,

δ(3) = (2+
√
2)(K − 1), δ(4) = 4(K − 1),

(46)

we get that ŷ1, ŷ3, ŷ4 and ŷ5 are extremal. Considering the distance measure

δ(1) = (2−
√
2)(K − 1)− 4+ 3

√
2, δ(2) = 2(K − 1),

δ(3) = (2+
√
2)(K − 1), δ(4) = 4(K − 1),

(47)

we get that ŷ2, ŷ3, ŷ4, ŷ5 and ŷ6 are extremal. �

Equipped with knowledge about which columns are extremal, we can specify which δ minimize fδ (̂y).

Theorem 4. A distance measure δ which minimizes fδ (̂y) can in the case q = 8 be described as

δ(1) = (2−
√
2)(K − 1)− 2+ 2

√
2− h

δ(2) = 2(K − 1)+ h

δ(3) = (2+
√
2)(K − 1)

δ(4) = 4(K − 1), (48)

for any h ∈ [0,
√
2− 1].

Furthermore, with

4∑
i=1

δ(i) = 10(K − 1)− 2+ 2
√
2, (49)

the minimum value of fδ (̂y) is 1.

Proof. Let B = fδ (̂y). We then have

fδ (̂y1) ≤ B⇔
(2−
√
2)(K − 1)− 1+

√
2

δ(1)
≤ B, (50)

fδ (̂y2) ≤ B⇔
2(K − 1)
δ(2)

≤ B, (51)

fδ (̂y3) ≤ B⇔
(2+
√
2)(K − 1)
δ(3)

≤ B, (52)

fδ (̂y4) ≤ B⇔
4(K − 1)
δ(4)

≤ B, (53)

fδ (̂y5) ≤ B⇔
(4−
√
2)(K − 1)− 2+ 2

√
2

δ(1)+ δ(2)
≤ B, (54)

where at least one of the inequalities is an equality. From (52)–(54), we get

10(K − 1)− 2+ 2
√
2

δ(1)+ δ(2)+ δ(3)+ δ(4)
≤ B (55)

by use of mediant addition. By the normalization (49) on δ, we thus have B ≥ 1. By letting (52)–(54) all be equalities, we
get B = 1, which is the lowest value we can get on B. (Using (50)–(53) in a similar manner only gives a less tight bound on
B, and so does not determine B.)
So distance measures δ whichminimize B and give B = 1must give equality in (52)–(54) and satisfy (50) and (51). These

are exactly the distance measures described in the theorem. �

Combining Theorems 1 and 4 with Lemma 2, we get the following corollary.

Corollary 5. For any code C in Zn8, we have that

d2Emin(C) ≤ min
K∈[2,|C |]

min
δ∈∆

2̃tK
K − 1

(56)
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holds, where∆ is the set of distance measures with

4∑
i=1

δ(i) = 10(K − 1)− 2+ 2
√
2 (57)

and

t̃K (δ) = min
({
t : K ≤

⌈
|C | |Sδ,t |q−n

⌉})
. (58)

6. Conclusions

In this paper, we have improved previous upper bounds for the minimum Euclidean distance. One of the bounds is valid
for any combination of the three parameters |C |, n and q, while the other is explicit in the two parameters |C | and n for the
case q = 8.
The results develop the Elias sphere method to provide an improved bound on the minimum Euclidean distance that

is non-asymptotic. The proof method is not tied to a certain structure of codes, and applies for any PSK block code with
parameters q = 8, n and |C |. This means that one possible continuation is to investigate other distance measures than a
Euclidean by following a similar path starting with the Elias sphere. It may be an even more challenging task to investigate
if similar bounds also can be constructed for PSK Trellis codes, having a different basic structure.
Next we give an overview of the technical method of this paper. First Elias’ method, [1, pp. 318–321], was followed. Here

the problem was localized to a critical sphere, where codewords are at least as dense as elsewhere in the code, and the
minimum distance between codewords in the critical sphere is trivially bounded by the average distance between them.
However, in this line of research, the critical sphere is defined in terms of a general distance measure, δ, characterized by
its values δ(i) for integers i, called the inner distance measure. Later, the values of the coefficients were chosen to obtain the
best possible bound on the outer distance measure, which here is the squared Euclidean distance.
Still following Elias, the average distance between the codewords in the sphere is bounded by listing the codewords as

rows in a matrix, and seeking columns of the matrix which will maximize the average distance. Elias sought columns that
maximized the average distance between codewords and he considered compositions of the columns, allowing columns
where each symbol may appear a continuous number of times. Allowing such compositions is an approximation which we
avoid. Instead, by fixing q = 8, we found all columns which can give the maximal average distance between the codewords
in the critical sphere, independently of the inner distance measure δ. Such columns are called extremal columns. We then
chose the values of δ(i) to optimize the bound on d2Emin(C), which gave one of the main results.
The bound is a product of two factors, both depending on the shape of the spheres. We minimized one of these factors,

namely the factor which intuitively is more sensitive to the inner distance measure. While this is not certain to optimize
the bound on the d2Emin(C), consisting of two factors, the new bound is as good as previous bounds, and is strictly better for
low-rate codes.
Central in the solution is that for q = 8 it turns out that only six columns can be singled out as extremal, independently

of the inner distancemeasure. Of these six, for given n and |C |, five are used since two of them give identical values, defining
an optimal inner distance measure with respect to one factor of the bound.
While there are many high-rate codes which meet the bounds (older bounds as well as the new bound), only a few

medium-rate codes and no low-rate codes which meet the bound are known. It is thus of interest for low andmedium rates
either to improve the bound or to find codes C with higher d2Emin(C).
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