The Basis Number of a Graph

EDWARD F. SCHMEICHEL*

San José State University, San José, California 95192
Communicated by the Editors
Received February 13, 1978

MacLane proved that a graph is planar if and only if it has a 2-fold basis for its cycle space. We define the basis number of a graph G to be the least integer k such that G has a k-fold basis for its cycle space. We investigate the basis number of the complete graphs, complete bipartite graphs, and the n-cube.

1. Introduction

Throughout this paper, we consider only finite, undirected graphs without loops or multiple edges. Our terminology and notation will be standard except as indicated. For undefined terms, see [1].

Let G be a connected graph, and let $e_1, e_2, ..., e_q$ be an ordering of the edges in G. Then any subset of edges S corresponds to a $(0, 1)$-vector $(a_1, a_2, ..., a_q)$ in the usual way, with $a_i = 1$ (resp., $a_i = 0$) if and only if $e_i \in S$ (resp., $e_i \notin S$). These vectors form a q-dimensional vector space over the field \mathbb{Z}_2.

The vectors corresponding to the cycles in G generate a subspace of $(\mathbb{Z}_2)^q$ called the cycle space of G, and denoted by $\mathcal{C}(G)$. (For brevity in the sequel, we will say that the cycles themselves, rather than the vectors corresponding to the cycles, generate $\mathcal{C}(G)$.) It is well known that the dimension of $\mathcal{C}(G)$ is $q - p + 1$, where p and q denote respectively the number of vertices and edges in G. In fact, a basis of $\mathcal{C}(G)$ may be obtained as follows: Let T be any spanning tree in G. If e is an edge of $G - T$, then $T + e$ contains exactly one cycle, say C_e. It is readily shown that the $q - p + 1$ cycles C_e, $e \in G - T$, form a basis for $\mathcal{C}(G)$. The basis for $\mathcal{C}(G)$ obtained in this way is usually termed the fundamental basis corresponding to T.

Note that while each edge in $G - T$ occurs in exactly one cycle of the fundamental basis corresponding to T, an edge of T may occur in relatively many cycles of this fundamental basis. This observation suggests the following.

* Supported in part by the Air Force Office of Scientific Research under Grant AFOSR-76-3017.
DEFINITION. A basis of $\mathcal{C}(G)$ is called k-fold if each edge of G occurs in at most k of the cycles in the basis. The basis number of G (denoted by $b(G)$) is the smallest integer k such that $\mathcal{C}(G)$ has a k-fold basis.

The first important use of these concepts occurred in 1937 when MacLane proved that a graph G is planar if and only if $b(G) \leq 2$. For a proof, see [21].

The purpose of this paper is to investigate the basis number of certain classes of nonplanar graphs. We first consider the basis number of the complete graphs K_n. It is proved that $b(K_n) = 3$, for every integer $n \geq 5$. In contrast to the situation for complete graphs, it is shown that for any integer r, there exists a graph G with $b(G) \geq r$. We then determine the basis number of almost all complete bipartite graphs and conclude by considering the basis number of the n-cube.

2. Main Results

THEOREM 1. For every integer $n \geq 5$, we have $b(K_n) = 3$.

Proof. Since K_n is nonplanar for $n \geq 5$, it follows by the theorem of MacLane mentioned above that $b(K_n) \geq 3$ if $n \geq 5$. To prove the theorem, therefore, it suffices to show that $b(K_n) \leq 3$.

Note that a collection of cycles in G which generates all the chordless cycles in G in fact generates all of $\mathcal{C}(G)$, since every cycle can be expressed as a sum modulo 2 of chordless cycles. In particular, to generate $\mathcal{C}(K_n)$, it suffices to generate all the 3-cycles in K_n.

Denote the vertices of K_n by the integers $Z_n = \{0, 1, 2, \ldots, n - 1\}$ modulo n. Let B_n be the collection of 3-cycles in K_n defined as follows: $B_n = \{abc | a + b + c \equiv 0, 1, \text{ or } 2 \pmod{n}\}$. We will show that every 3-cycle in K_n (and hence all of $\mathcal{C}(K_n)$) can be generated from B_n. Since every edge of K_n occurs in exactly three 3-cycles of B_n, it would follow that B_n contains a 3-fold basis of $\mathcal{C}(K_n)$, and hence that $b(K_n) \leq 3$ as desired.

Let abc be any 3-cycle in K_n with say $a < b < c$. Let $a + b + c \equiv r \pmod{n}$, where $3 \leq r \leq n - 1$. Assuming that we generate any 3-cycle $a'b'c'$ from B_n, where $a' + b' + c' \equiv k \pmod{n}$ and $0 \leq k < r$, we will show inductively that we can also generate abc from B_n.

Define two integers $x, y \in Z_n$ to be consecutive if $|x - y| = 1$ or $n - 1$. We now have essentially three possibilities for abc.

(1) a, b, c are pairwise nonconsecutive. Then $a, b, c, a - 1, b - 1$, and $c - 1$ are all distinct. Moreover, note that

$$abc = ab(c - 1) + a(b - 1)c + (a - 1)bc + a(b - 1)(c - 1)$$

$$+ (a - 1)b(c - 1) + (a - 1)(b - 1)c$$

$$+ (a - 1)(b - 1)(c - 1) \pmod{2}.$$
Since each 3-cycle \(xyz\) on the right side satisfies \(x + y + z \equiv r - 1, r - 2,\) or \(r - 3 \pmod{n}\), it follows by assumption that each 3-cycle on the right side can be generated from \(B_n\). Hence also \(abc\) can be generated from \(B_n\).

(2) \(a, \ b\) are consecutive, but \(a, \ c\) and \(b, \ c\) are nonconsecutive. Then \(a, \ b, \ c, \ a - 1,\) and \(c - 1\) are all distinct. Moreover, we have
\[
abc = ab(c - 1) + (a - 1)ac + (a - 1)bc
+ (a - 1) a(c - 1) + (a - 1) b(c - 1) \pmod{2}.
\]
As in possibility (1), we conclude that we can generate \(abc\) from \(B_n\).

(3) \(a, \ b\) and \(b, \ c\) are consecutive, but \(a, \ c\) are nonconsecutive. Then \(a, \ b, \ c, \ a - 1\) are all distinct. We also have
\[
abc = (a - 1)ab + (a - 1)ac + (a - 1)bc \pmod{2}.
\]
As in possibility (1), we conclude that we can generate \(abc\) from \(B_n\).

This completes the proof of Theorem 1.

In contrast to the small basis number of the complete graphs, we now prove the existence of graphs having arbitrarily large basis number.

Theorem 2. For any positive integer \(r\), there exists a graph \(G\) with \(b(G) > r\).

Proof. Let \(G\) be a connected graph with girth \(r\) and average vertex degree \(\geq 2r\) (e.g., \(a(2r, r)\)-cage). We will prove that \(b(G) \geq r\).

Otherwise, suppose that \(C_1, C_2, \ldots, C_{q-p+1}\) are cycles in an \((r - 1)\)-fold basis for \(\mathcal{C}(G)\). Let \(|C_i|\) denote the length of cycle \(C_i\). We have at once that
\[
r(q - p + 1) \leq \sum_{i=1}^{q-p+1} |C_i| \leq (r - 1)q. \quad (1)
\]
(The left inequality in (1) comes from the fact that \(G\) has girth \(r\) so that \(|C_i| \geq r\), and the right inequality follows since the basis is \((r - 1)\)-fold.) From (1) we obtain at once that \(r \geq q/(p - 1)\).

On the other hand, note that \(q/(p - 1) > q/p \geq r\), since \(q/p\) is half the average degree in \(G\). This is a contradiction, and we conclude that \(b(G) \geq r\).

The proof of Theorem 2 is complete.

We now consider the basis number of the complete bipartite graphs \(K_{m,n}\), where \(m, n \geq 3\). Since all these graphs are nonplanar, we have \(b(K_{m,n}) \geq 3\) in all cases. We begin with the following result.

Theorem 3. For any \(n \geq 3\), \(b(K_{3,n}) = b(K_{4,n}) = 3\).

Proof. By the above paragraph, it suffices to exhibit a 3-fold basis for each of these graphs.
We begin with $K_{4,n}$. Let $\{a, b, c, d\}$ and $\{x_1, x_2, \ldots, x_n\}$ be the partition of the vertices of $K_{4,n}$ into independent sets. Consider the following collection of 4-cycles in $K_{4,n}$:

$$B(K_{4,n}) = \begin{align*}
&\{a \ x_i \ b \ x_{i+1} \ \text{for} \ i = 1, 2, \ldots, n - 1 \\
&c \ x_i \ d \ x_{i+1} \ \text{for} \ i = 1, 2, \ldots, n - 1 \\
a \ x_{2i-1} \ c \ x_{2i} \ \text{for} \ i = 1, 2, \ldots, \left\lfloor \frac{n}{2} \right\rfloor \\
b \ x_{2i} \ d \ x_{2i+1} \ \text{for} \ i = 1, 2, \ldots, \left\lfloor \frac{n - 1}{2} \right\rfloor.
\end{align*}$$

To show that $B(K_{4,n})$ generates all of $\mathcal{C}(K_{4,n})$, it suffices to show that $B(K_{4,n})$ generates all the chordless cycles of $K_{4,n}$ which would be the 4-cycles. Let $ax_i \beta x_k$ be any 4-cycle in $K_{4,n}$, with $a, \beta \in \{a, b, c, d\}$. Since

$$ax_i \beta x_k = \sum_{i \neq j} ax_i \beta x_{i+1} \quad (\text{mod } 2),$$

it suffices to generate any 4-cycle in $K_{4,n}$ of the form $ax_i \beta x_{i+1}$ which does not already belong to $B(K_{4,n})$.

We have first that

$$ax_{2i} \ c x_{2i+1} = bx_{2i} \ d x_{2i+1} + ax_{2i} \ b x_{2i+1} + cx_{2i} \ d x_{2i+1} \quad (\text{mod } 2).$$

Similarly, we can obtain $bx_{2i-1} \ d x_{2i}$ as a sum modulo 2 of three 4-cycles in $B(K_{4,n})$.

Next we have

$$ax_i \ d x_{i+1} = ax_i \ c x_{i+1} + cx_i \ d x_{i+1} \quad (\text{mod } 2).$$

Similarly, we can obtain $bx_i \ c x_{i+1}$ as a sum modulo 2 of two 4-cycles already generated.

It follows now that $B(K_{4,n})$ generates $\mathcal{C}(K_{4,n})$. Since $|B(K_{4,n})| = 3(n - 1) = \dim \mathcal{C}(K_{4,n})$, it follows that $B(K_{4,n})$ is indeed a basis of $\mathcal{C}(K_{4,n})$. It is a simple matter to verify that it is a 3-fold basis.

Next we consider $K_{3,n}$. Let $\{a, b, c\}$ and $\{x_1, x_2, \ldots, x_n\}$ be the partition of the vertices of $K_{3,n}$ into independent sets. Consider the following collection of $2(n - 1)$ 4-cycles in $K_{3,n}$:
The proof that \(B(K_{3,n}) \) is a 3-fold basis for \(\mathcal{G}(K_{3,n}) \) is analogous to the proof just given for \(K_{4,n} \), and is therefore omitted.

The proof of Theorem 3 is complete.

THEOREM 4. If \(m, n \geq 5 \), then \(b(K_{m,n}) \leq 4 \). Moreover, equality holds except possibly for the following: \(K_{5,5}, K_{5,6}, K_{5,7}, K_{5,8}, K_{6,6}, K_{6,7}, K_{6,8}, K_{6,10} \).

Proof. As noted in the proof of Theorem 3, to generate \(\mathcal{G}(K_{m,n}) \) it suffices to generate all the 4-cycles in \(K_{m,n} \).

Let \(\{x_1, x_2, \ldots, x_m\} \) and \(\{y_1, y_2, \ldots, y_n\} \) be the partition of the vertices of \(K_{m,n} \) into independent sets. Consider the \((m - 1)(n - 1)\) 4-cycles \(x_i y_j x_{i+1} y_{j+1} \) for \(1 \leq i < m - 1, 1 \leq j < n - 1 \). If \(x_r y_s x_t y_u \) is any 4-cycle in \(K_{m,n} \), with \(r < t \) and \(s < u \), we have that

\[
x_r y_s x_t y_u = \sum_{j=3}^{u-1} x_r y_j x_t y_{j+1} = \sum_{j=3}^{u-1} \left(\sum_{i=r}^{t-1} x_i y_j x_{i+1} y_{j+1} \right) \quad \text{(mod 2)}.
\]

Thus these \((m - 1)(n - 1)\) 4-cycles generate all the 4-cycles in \(K_{m,n} \), and hence all of \(\mathcal{G}(K_{m,n}) \). Also, since \((m - 1)(n - 1) = mn - (m + n) + 1 = \dim \mathcal{G}(K_{m,n})\), they actually form a basis for \(\mathcal{G}(K_{m,n}) \). Finally, this basis is 4-fold, since any edge \(x_i y_j \) occurs in only the following cycles of this basis: \(x_{i-1} y_{j-1} x_i y_j, x_{i-1} y_j x_i y_{j+1}, x_i y_{j-1} x_{i+1} y_j, \) and \(x_i y_j x_{i+1} y_{j+1} \). So in general we have \(b(K_{m,n}) \leq 4 \).

On the other hand, suppose that \(K_{m,n} \) has a 3-fold basis. Then each vertex of degree \(m \) can occur in at most \(\lfloor 3m/2 \rfloor \) cycles in this 3-fold basis. It follows at once that the basis contains at most \((n/2)\lfloor 3m/2 \rfloor \) cycles, and hence \((n/2)\lfloor 3m/2 \rfloor \geq \dim \mathcal{G}(K_{m,n}) = (m - 1)(n - 1) \). Exchanging the roles of \(m \) and \(n \), we obtain the analogous inequality \((m/2)\lfloor 3n/2 \rfloor \geq (m - 1)(n - 1) \). For \(m, n \geq 5 \), the only \(K_{m,n} \) for which both inequalities are satisfied are the graphs in the list of possible exceptions. Hence \(b(K_{m,n}) \geq 4 \) in all other cases.

The proof of Theorem 4 is complete.
(It seems likely that \(b(K_{m,n}) = 3 \) for the graphs listed as possible exceptions in Theorem 4.)

Consider next the basis number of the \(n \)-cube \(Q_n \). We begin by establishing an upper bound for \(b(Q_n) \).

Theorem 5. \(b(Q_n) \leq n - 1 \).

Proof. The result is easily verified for \(n = 2, 3, \) and \(4 \), and thus we proceed by induction on \(n \).

We assume the vertices of \(Q_n \) correspond to the collection of all \((0, 1)\) \(n \)-tuples in the standard way. We will say that two vertices \(v = (\alpha_1, \alpha_2, \ldots, \alpha_n) \) and \(v' = (\alpha'_1, \alpha'_2, \ldots, \alpha'_n) \) in \(Q_n \) match if and only if \(\alpha_i = \alpha'_i \), for \(i = 1, 2, \ldots, n - 1 \), but \(\alpha_n \neq \alpha'_n \). Let \(X \) (resp., \(X' \)) denote the vertices of \(Q_n \) having \(\alpha_n = 1 \) (resp., \(\alpha_n = 0 \)). Then \(X \) and \(X' \) induce subgraphs \(Q_X \) and \(Q_{X'} \), respectively, which are isomorphic to \(Q_{n-1} \). Hence by our induction hypothesis, we can find an \((n - 2)\)-fold basis \(B_X \) (resp., \(B_{X'} \)) for \(\pi(Q_X) \) (resp., \(\pi(Q_{X'}) \)).

Let \(v_1, v_2, \ldots, v_{2n} \) be a hamiltonian path in \(Q_X \). Then the sequence of matching vertices \(v'_1, v'_2, \ldots, v'_{2n-1} \) form a hamiltonian path in \(Q_{X'} \). Moreover, the edges joining a vertex in \(X \) to a vertex in \(X' \) are precisely the edges \(v_i v'_i \).

Define a collection of cycles in \(Q_n \) (denoted by \(B \)) as follows: \(B \) will be \(B_X \cup B_{X'} \), together with the \((2^{n-1} - 1)\) 4-cycles \(C_i = v_i v_{i+1} v'_{i+1} v'_i \), for \(i = 1, 2, \ldots, 2^{n-1} - 1 \). Since \(\dim \pi(Q_n) = 2^{n-1}(n - 2) + 1 \), and \(B_X \) and \(B_{X'} \) are isomorphic to \(Q_{n-1} \), we have
\[
|B| = |B_X| + |B_{X'}| + (2^{n-1} - 1) = 2|B_X| + (2^{n-1} - 1) = 2(2^{n-2}n - 3) + 1 = 2^{n-1}(n - 2) + 1 = \dim \pi(Q_n).
\]

Thus to show that \(B \) is a basis of \(\pi(Q_n) \), it suffices to show that the cycles of \(B \) are independent.

Suppose therefore that some collection of cycles in \(B \), say \(S \subseteq B \), satisfies a nontrivial relation modulo 2 (that is, \(\sum_{C \in S} C = 0 \) (mod 2)). Since \(B_X \) and \(B_{X'} \) are themselves bases and no cycle in \(B_X \) has an edge in common with any cycle in \(B_{X'} \), it follows that \(S \) must include at least one cycle \(C_i \) in \(B - (B_X \cup B_{X'}) \). But then it follows easily that \(C_i \in S \). (Suppose \(C_i \in S \). Note that \(C_i \) contains the edge \(v_i v'_i \). The only other cycle in \(B \) containing the edge \(v_i v'_i \) is \(C_{i-1} \). Hence \(C_{i-1} \) must belong to \(S \) to cancel \(v_i v'_i \) modulo 2. Continuing, we see that \(S \) must contain \(C_1 \).) But the cycle \(C_1 \) contains the edge \(v_i v'_i \), which occurs in no other cycle of \(B \), and in particular in no other cycle of \(S \). This means that \(\sum_{C \in S} C \) could not be 0 modulo 2, a contradiction. Thus a nontrivial relation among the cycles of \(B \) is impossible, and so \(B \) is an independent collection and hence a basis of \(\pi(Q_n) \).

It is easy to see that \(B \) is an \((n - 1)\)-fold basis of \(\pi(Q_n) \), and the proof of Theorem 5 is complete.

Although the bound in Theorem 5 is precise for \(n = 2, 3, \) and \(4 \), it appears that in general this bound is far from tight. It seems likely that \(b(Q_n) \leq 4 \) for
every integer \(n \). On the other hand, since \(Q_n \) has girth 4 and is regular of degree \(n \), it is easy to show (as in the proof of Theorem 2) that \(b(Q_n) \geq 4 \) for \(n \geq 8 \). Thus we put forth the following.

Conjecture. If \(n \geq 8 \), \(b(Q_n) = 4 \).

Finally, let \(\gamma(G) \) denote the genus of a graph \(G \). We conclude by giving an upper bound for \(b(G) \) in terms of \(\gamma(G) \).

Theorem 6. \(b(G) \leq 2\gamma(G) + 2 \).

Proof. Embed \(G \) on a sphere with \(\gamma(G) \) handles. By Euler's relation, \(p - q + f = 2 - 2\gamma \), and so \(\dim \mathcal{E}(G) = q - p + 1 = (f - 1) + 2\gamma \). Consider the cycles bounding the faces of the embedding with exactly one exception. Let \(F \) denote the resulting set of \(f - 1 \) cycles, and let \(\langle F \rangle \) denote the subspace of \(\mathcal{E}(G) \) generated by the cycles of \(F \). We have \(\dim(\mathcal{E}(G)/\langle F \rangle) = \dim \mathcal{E}(G) - \dim \langle F \rangle = 2\gamma \). Choose any collection of \(2\gamma \) cycles in \(G \) representing \(2\gamma \) independent cosets in \(\mathcal{E}(G)/\langle F \rangle \). It is easy to see these \(2\gamma \) cycles together with \(F \) constitute a basis of \(\mathcal{E}(G) \) in which each edge of \(G \) occurs at most \(2\gamma(G) + 2 \) times.

Although equality can hold in Theorem 6 when \(G \) is planar (i.e., \(\gamma(G) = 0 \)), it is not clear that equality ever holds when \(\gamma(G) > 0 \). In particular, if \(G \) is a toroidal graph (i.e., \(\gamma(G) = 1 \)), it appears that \(b(G) \leq 3 \), whereas the given bound would be \(b(G) \leq 4 \). Perhaps it is true in general that \(b(G) \leq \gamma(G) + 2 \).

Note added in proof. The above conjecture has been settled affirmatively by J. A. Banks.

Acknowledgment

The author would like to thank P. D. Seymour for suggesting many important improvements in the paper.

References