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A weighted graph is one in which each edge e is assigned a nonnegative number 
w(e), called the weight of e. The weight of a subgraph is the sum of the weights of 
its edges. An even graph is a graph every vertex of which is of even degree. A cover 

of a graph G is a collection of its subgraphs which together cover each edge of G 
at least once. A cover is called an (l, m)-cover if each edge of G is covered either 
exactly I or exactly m times. We prove that every bridgeless graph has a (2,4)-cover 

by four even subgraphs of total weight at most (20/9) w(C). As a corollary, this 
result yields a weighted generalization of a result found by J. C. Bermond, B. Jack- 
son, and F. Jaeger (J. Combin. Theory Ser. B 35, 1983, 299-308) and N. Alon and 

M. Tarsi (SIAM J. Algebraic Discrete Methods 6, 1985, 345-350). 0 1990 Academic 

Press. Inc 

1. INTRODUCTION 

The graphs we consider are finite, and may contain loops and multiple 
edges. A simple graph is one without loops or multiple edges. For a graph 
G, V(G) and E(G) denote the sets of vertices and edges of G, respectively. 
The size of a graph G is the number IE(G)I. A subset S of E(G) is an edge- 
cut of G if its removal leaves a graph with more components; S is called 
a k-edge-cut if ISJ = k. A l-edge-cut is also called a bridge. An euen graph 
is one in which every vertex is of even degree. Sometimes, we treat a sub- 
graph as a subset of edges. Hence the symmetric difference of two even 
subgraphs Z, and Z,, denoted by Z, @Z,, is the even subgraph 
(Z, u Z,)\(Z, n Z,). Let G be a graph. A couer of G is a collection H of 
subgraphs of G which together cover each edge of G at least once; H is 
called an m-cover of G if each edge of G is covered exactly m times by the 
subgraphs in H, and an (1, m)-cover if each edge is covered either exactly 
I or exactly m times. In this paper, we consider the case where each 
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member of H is an even subgraph. We generalize, to weighted graphs, a 
result (Corollary 2.1) of Bermond, Jackson, and Jaeger [2] and Alon and 
Tarsi [ 11. A weighted graph is one in which each edge e is assigned a non- 
negative number w(e), called the weight of e. The weight of a subgraph is 
the sum of the weights of its edges. 

It is clear that a graph is even if and only if it has a decomposition into 
edge-disjoint cycles. The following conjecture is known as the “Cycle 
Double Cover Conjecture”: 

Conjecture [7]. Every bridgeless graph has a 2-cover by even sub- 
graphs. 

In this paper, we shall prove 

THEOREM 1. Every bridgeless weighted graph G has a (2,4)-cover by 
four even subgraphs of total weight at most (2019) w(G). 

If we remove the heaviest of the four even subgraphs in Theorem 1, we 
obtain a cover of G by three even subgraphs of total weight at most 
(5/3) w(G). Thus, 

COROLLARY 1.1. Every bridgeless weighted graph G has a cover by three 
even subgraphs of total weight at most (513) w(G). 

Setting w(e) = 1 for every e E E(G) in the above results, we deduce the 
following two results on unweighted graphs. 

THEOREM 2. Every bridgeless graph G has a (2,4)-cover by four even 
subgraphs of total size at most (20/9)/E(G)/. 

COROLLARY 2.1 [2, 11. Every bridgeless graph G has a cover by three 
even subgraphs of total size at most (5/3)JE(G)I. 

Another corollary of Theorem 2 is the following result: 

COROLLARY 2.2 [2]. Every bridgeless graph G has a 4-cover by seven 
even subgraphs. 

ProoJ Let G be a bridgeless graph. By Theorem 2, G has a (2,4)-cover 
by four even subgraphs (Z,, Z2, Z,, Z,}. Then {Z,, Z,, Z,, Zq, Z,@ZzI 
Z, 0 Z,, Z, @Z,> is a 4-cover of G, as required. 1 

2. PROOF OF THEOREM 1 

It suffices to prove the theorem for loopless 2-edge-connected graphs. We 
apply induction on ]E(G)I. If (E(G)1 = 2, (G, G, a, 0 > is the required 
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(2,4)-cover. Suppose now that the result is true for all loopless 2-edge- 
connected graphs with fewer edges than G. 

If G has a vertex v of degree more than three, then by a result of 
Fleischner [4] there are two edges e i, e2 incident with v such that deleting 
e,, e2 and joining their other ends by a new edge e yields a 2-edge- 
connected graph G’. Set w(e) = w(ei) + w(e,), so that w(G’) = w(G). By the 
induction hypothesis, G’ has a (2,4)-cover with the required properties. 
This readily yields an appropriate (2, 4)-cover of G. 

If G has a 2-edge-cut {e,, e,}, let G’ be the weighted graph obtained by 
contracting e, and reassigning to e, a new weight w(ei) + w(e,), so that 
w(G’)=w(G). IfZ’isaevensubgraphinG’withe2EZ’,let Z=Z’u(e,}. 
Then Z is a even subgraph of G since (e,, e2} is a 2-edge-cut of G. By the 
induction hypothesis, G’ has a (2,4)-cover with the required property. For 
each even subgraph Z’ containing e2 in this cover, replace Z’ by 
Z = Z’ u {e, }. This yields an appropriate (2,4)-cover of G. 

Therefore, we may assume that G is a simple, cubic, 3-edge-connected 
graph. By a result of Edmonds [3], there is a collection M of 3k perfect 
matchings of G, for some integer k > 1, such that each edge of G belongs 
to exactly k members of M. Let A be a 3-edge-cut of G. For any ME M, 
IA n (E(G)\M)l is even because E(G)\M is a 2-factor of G, and so /A n MI 
is odd. It follows that 

\AnMl>l for every ME M. 

Since each edge of A belongs to exactly k members of M, 

M;M IAnM(=3k=IMI. 

Consequently, 

lAnMl=l for any 3-edge-cut A of G and every ME M. (1) 

Since each edge of G belongs to exactly k members of M, 

1 w(M)=kw(G). 
MEM 

Hence there is some M* EM such that 

kw(G) 1 
w(M*)< ,MI =y(G). (2) 

Let F* = E(G)\M* and let G* be the graph obtained from G by contract- 
ing each component of the 2-factor F* to a single vertex. Then 

w(G*) = w(M*). (3) 
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Since G is 3-edge-connected, so is G *. Moreover, if A is a 3-edge-cut of G*, 
then A is a 3-edge cut of G with A s M *. This is impossible by (1). There- 
fore, G* is 4-edge-connected. It follows from a result of Nash-Williams [6] 
and Tutte [8] that G* has two edge-disjoint spanning trees, which implies, 
as observed by Jaeger [5], that G* has a 2-cover by three even subgraphs 
(Z:, Z,*, Z:}. Since these cover every edge of G* exactly twice, 
C;‘=, w(Z*)=2w(G*). Without loss of generality, suppose that Z: is the 
heaviest of these even subgraphs. Then 

Because {Z:, ZT} is a cover of G*, w(Z: u Z:) = w(G*). It follows that 

w(Z: n Z;) < ;w(G*). (4) 

Observe that each vertex of G* corresponds to a cycle of G. It is easy to 
see that we can add paths in F* to Z: and Z: and obtain two even sub- 
graphs Z, and Z, in G, respectively. We claim that Z = (Z,, Z,, Z, OF*, 
Z, @ F*} is a (2,4)-cover of G with the required property. It can be easily 
checked that Z covers each edge of G either twice or four times, and that 
the edges of F* are covered twice. Thus, if Q denotes the set of edges 
covered four times, 

QzZ:nZ:. (5) 

BY (5), (4), (3), and (2) 

w(Q) < w(Z: n Z:) Q ;w(G*) = fw(M*) G &G), 

and 

w(Z) = 2(w(G) + w(Q)) < +(G), 

as claimed. This completes the proof of Theorem 1. 1 
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