Note

Covering Weighted Graphs by Even Subgraphs

Genghua Fan
Department of Combinatorics and Optimization, University of Waterloo, Waterloo, Ontario, Canada N2L 3G1
Communicated by the Editors

Received May 26, 1988

Abstract

A weighted graph is one in which each edge e is assigned a nonnegative number $w(e)$, called the weight of e. The weight of a subgraph is the sum of the weights of its edges. An even graph is a graph every vertex of which is of even degree. A cover of a graph G is a collection of its subgraphs which together cover each edge of G at least once. A cover is called an (l, m)-cover if each edge of G is covered either exactly l or exactly m times. We prove that every bridgeless graph has a $(2,4)$-cover by four even subgraphs of total weight at most (20/9) $w(G)$. As a corollary, this result yields a weighted generalization of a result found by J. C. Bermond, B. Jackson, and F. Jaeger (J. Combin. Theory Ser. B 35, 1983, 299-308) and N. Alon and M. Tarsi (SIAM J. Algebraic Discrete Methods 6, 1985, 345-350). © 1990 Academic Press, Inc.

1. Introduction

The graphs we consider are finite, and may contain loops and multiple edges. A simple graph is one without loops or multiple edges. For a graph $G, V(G)$ and $E(G)$ denote the sets of vertices and edges of G, respectively. The size of a graph G is the number $|E(G)|$. A subset S of $E(G)$ is an edgecut of G if its removal leaves a graph with more components; S is called a k-edge-cut if $|S|=k$. A 1-edge-cut is also called a bridge. An even graph is one in which every vertex is of even degree. Sometimes, we treat a subgraph as a subset of edges. Hence the symmetric difference of two even subgraphs Z_{1} and Z_{2}, denoted by $Z_{1} \oplus Z_{2}$, is the even subgraph $\left(Z_{1} \cup Z_{2}\right) \backslash\left(Z_{1} \cap Z_{2}\right)$. Let G be a graph. A cover of G is a collection \mathbf{H} of subgraphs of G which together cover each edge of G at least once; \mathbf{H} is called an m-cover of G if each edge of G is covered exactly m times by the subgraphs in \mathbf{H}, and an (l, m)-cover if each edge is covered either exactly l or exactly m times. In this paper, we consider the case where each
member of \mathbf{H} is an even subgraph. We generalize, to weighted graphs, a result (Corollary 2.1) of Bermond, Jackson, and Jaeger [2] and Alon and Tarsi [1]. A weighted yraph is one in which each edge e is assigned a nonnegative number $w(e)$, called the weight of e. The weight of a subgraph is the sum of the weights of its edges.

It is clear that a graph is even if and only if it has a decomposition into edge-disjoint cycles. The following conjecture is known as the "Cycle Double Cover Conjecture":

Conjecture [7]. Every bridgeless graph has a 2 -cover by even subgraphs.

In this paper, we shall prove
Theorem 1. Every bridgeless weighted graph G has a $(2,4)$-cover by four even subgraphs of total weight at most $(20 / 9) w(G)$.

If we remove the heaviest of the four even subgraphs in Theorem 1, we obtain a cover of G by three even subgraphs of total weight at most $(5 / 3) w(G)$. Thus,

Corollary 1.1. Every bridgeless weighted graph G has a cover by three even subgraphs of total weight at most $(5 / 3) w(G)$.

Setting $w(e)=1$ for every $e \in E(G)$ in the above results, we deduce the following two results on unweighted graphs.

Theorem 2. Every bridgeless graph G has a $(2,4)$-cover by four even subgraphs of total size at most $(20 / 9)|E(G)|$.

Corollary $2.1[2,1]$. Every bridgeless graph G has a cover by three even subgraphs of total size at most $(5 / 3)|E(G)|$.

Another corollary of Theorem 2 is the following result:
Corollary 2.2 [2]. Every bridgeless graph G has a 4 -cover by seven even subgraphs.

Proof. Let G be a bridgeless graph. By Theorem 2, G has a (2,4)-cover by four even subgraphs $\left\{Z_{1}, Z_{2}, Z_{3}, Z_{4}\right\}$. Then $\left\{Z_{1}, Z_{2}, Z_{3}, Z_{4}, Z_{1} \oplus Z_{2}\right.$, $\left.Z_{1} \oplus Z_{3}, Z_{1} \oplus Z_{4}\right\}$ is a 4 -cover of G, as required.

2. Proof of Theorem 1

It suffices to prove the theorem for loopless 2-edge-connected graphs. We apply induction on $|E(G)|$. If $|E(G)|=2,\{G, G, \varnothing, \varnothing\}$ is the required
(2,4)-cover. Suppose now that the result is true for all loopless 2-edgeconnected graphs with fewer edges than G.

If G has a vertex v of degree more than three, then by a result of Fleischner [4] there are two edges e_{1}, e_{2} incident with v such that deleting e_{1}, e_{2} and joining their other ends by a new edge e yields a 2-edgeconnected graph G^{\prime}. Set $w(e)=w\left(e_{1}\right)+w\left(e_{2}\right)$, so that $w\left(G^{\prime}\right)=w(G)$. By the induction hypothesis, G^{\prime} has a $(2,4)$-cover with the required properties. This readily yields an appropriate $(2,4)$-cover of G.

If G has a 2-edge-cut $\left\{e_{1}, e_{2}\right\}$, let G^{\prime} be the weighted graph obtained by contracting e_{1} and reassigning to e_{2} a new weight $w\left(e_{1}\right)+w\left(e_{2}\right)$, so that $w\left(G^{\prime}\right)=w(G)$. If Z^{\prime} is a even subgraph in G^{\prime} with $e_{2} \in Z^{\prime}$, let $Z=Z^{\prime} \cup\left\{e_{1}\right\}$. Then Z is a even subgraph of G since $\left\{e_{1}, e_{2}\right\}$ is a 2-edge-cut of G. By the induction hypothesis, G^{\prime} has a $(2,4)$-cover with the required property. For each even subgraph Z^{\prime} containing e_{2} in this cover, replace Z^{\prime} by $Z=Z^{\prime} \cup\left\{e_{1}\right\}$. This yields an appropriate $(2,4)$-cover of G.

Therefore, we may assume that G is a simple, cubic, 3-edge-connected graph. By a result of Edmonds [3], there is a collection \mathbf{M} of $3 k$ perfect matchings of G, for some integer $k \geqslant 1$, such that each edge of G belongs to exactly k members of \mathbf{M}. Let A be a 3-edge-cut of G. For any $M \in \mathbf{M}$, $|A \cap(E(G) \backslash M)|$ is even because $E(G) \backslash M$ is a 2-factor of G, and so $|A \cap M|$ is odd. It follows that

$$
|A \cap M| \geqslant 1 \quad \text { for every } \quad M \in \mathbf{M}
$$

Since each edge of A belongs to exactly k members of \mathbf{M},

$$
\sum_{M \in \mathbf{M}}|A \cap M|=3 k=|\mathbf{M}| .
$$

Consequently,

$$
\begin{equation*}
|A \cap M|=1 \quad \text { for any } 3 \text {-edge-cut } A \text { of } G \text { and every } M \in \mathbf{M} \tag{1}
\end{equation*}
$$

Since each edge of G belongs to exactly k members of \mathbf{M},

$$
\sum_{M \in \mathbf{M}} w(M)=k w(G)
$$

Hence there is some $M^{*} \in \mathbf{M}$ such that

$$
\begin{equation*}
w\left(M^{*}\right) \leqslant \frac{k w(G)}{|\mathbf{M}|}=\frac{1}{3} w(G) . \tag{2}
\end{equation*}
$$

Let $F^{*}=E(G) \backslash M^{*}$ and let G^{*} be the graph obtained from G by contracting each component of the 2 -factor F^{*} to a single vertex. Then

$$
\begin{equation*}
w\left(G^{*}\right)=w\left(M^{*}\right) \tag{3}
\end{equation*}
$$

Since G is 3 -edge-connected, so is G^{*}. Moreover, if A is a 3-edge-cut of G^{*}, then A is a 3 -edge cut of G with $A \subseteq M^{*}$. This is impossible by (1). Therefore, G^{*} is 4-edge-connected. It follows from a result of Nash-Williams [6] and Tutte [8] that G^{*} has two edge-disjoint spanning trees, which implies, as observed by Jaeger [5], that G^{*} has a 2 -cover by three even subgraphs $\left\{Z_{1}^{*}, Z_{2}^{*}, Z_{3}^{*}\right\}$. Since these cover every edge of G^{*} exactly twice, $\sum_{i=1}^{3} w\left(Z_{i}^{*}\right)=2 w\left(G^{*}\right)$. Without loss of generality, suppose that Z_{3}^{*} is the heaviest of these even subgraphs. Then

$$
w\left(Z_{1}^{*} \cap Z_{2}^{*}\right)+w\left(Z_{1}^{*} \cup Z_{2}^{*}\right)=w\left(Z_{1}^{*}\right)+w\left(Z_{2}^{*}\right) \leqslant \frac{4}{3} w\left(G^{*}\right) .
$$

Because $\left\{Z_{1}^{*}, Z_{2}^{*}\right\}$ is a cover of $G^{*}, w\left(Z_{1}^{*} \cup Z_{2}^{*}\right)=w\left(G^{*}\right)$. It follows that

$$
\begin{equation*}
w\left(Z_{1}^{*} \cap Z_{2}^{*}\right) \leqslant \frac{1}{3} w\left(G^{*}\right) \tag{4}
\end{equation*}
$$

Observe that each vertex of G^{*} corresponds to a cycle of G. It is easy to see that we can add paths in F^{*} to Z_{1}^{*} and Z_{2}^{*} and obtain two even subgraphs Z_{1} and Z_{2} in G, respectively. We claim that $\mathrm{Z}=\left\{Z_{1}, Z_{2}, Z_{1} \oplus F^{*}\right.$, $\left.Z_{2} \oplus F^{*}\right\}$ is a (2,4)-cover of G with the required property. It can be easily checked that \mathbf{Z} covers each edge of G either twice or four times, and that the edges of F^{*} are covered twice. Thus, if Q denotes the set of edges covered four times,

$$
\begin{equation*}
Q \subseteq Z_{1}^{*} \cap Z_{2}^{*} . \tag{5}
\end{equation*}
$$

By (5), (4), (3), and (2),

$$
w(Q) \leqslant w\left(Z_{1}^{*} \cap Z_{2}^{*}\right) \leqslant \frac{1}{3} w\left(G^{*}\right)=\frac{1}{3} w\left(M^{*}\right) \leqslant \frac{1}{9} w(G),
$$

and

$$
w(\mathbf{Z})=2(w(G)+w(Q)) \leqslant \frac{20}{9} w(G),
$$

as claimed. This completes the proof of Theorem 1.

Acknowledgment

I am grateful to Professor J. A. Bondy for many improvements in the presentation of this work.

References

1. N. Alon and M. Tarsi, Covering multigraphs by simple circuits, SIAM J. Algebraic Discrete Methods 6 (1985), 345-350.
2. J. C. Bermond, B. Jackson, and F. Jaeger, Shortest covering of graphs with cycles, J. Combin. Theory Ser. B 35 (1983), 297-308.
3. J. Edmonds, Maximum matching and a polyhedron with 0,1 vertices, J. Res. Nat. Bur. Standards 69B (1965), 125-130.
4. H. Fleischner, Eine gemeinsame Basis für die Theorie der Eulerschen Graphen und der Satz von Petersen, Monatsh. Math. 81 (1976), 267-278.
5. F. Jaeger, Flows and generalized coloring theorems in graphs, J. Combin. Theory Ser. B 26 (1979), 205-216.
6. C. St. J. A. Nash-Williams, Edge-disjoint spanning trees of finite graphs, J. London Math. Soc. 36 (1961), 445-450.
7. P. D. Seymour, Sum of circuits, in "Graph Theory and Related Topics" (J. A. Bondy and U. S. R. Murty, Eds.), pp. 341-355, Academic Press, New York/San Francisco/London, 1979.
8. W. T. Tutte, On the problem of decomposing a graph into n connected factors, J. London Math. Soc. 36 (1961), 221-230.
