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1. Introduction

1.1. Preliminaries

For a set X , denote by Pow(X) the set of all subsets of X . A polymatroid is a pair (X, rk), where
X is a finite set and

rk : Pow(X) → N = {0,1,2, . . .}
is a function satisfying:

(PM1) rk(∅) = 0,
(PM2) rk(A) � rk(B) for A ⊆ B ,
(PM3) rk(A ∪ B) + rk(A ∩ B) � rk(A) + rk(B) for all A, B .

We call X the ground set and rk the rank function of the polymatroid; sometimes we say that
“rk is a polymatroid on X .” A matroid can be defined as a polymatroid for which the rank of each
one element subset is at most 1 [9, § 2.3]. Two polymatroids (X, rkX ) and (Y , rkY ) are said to be
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isomorphic if there exists a bijection ϕ : X → Y such that rkY ◦ ϕ = rkX . In this paper we are only
interested in |X |, the cardinality of X , so we can take X = [n] := {1, . . . ,n}, and we write Pow(n) :=
Pow([n]).

A subspace arrangement is a collection of subspaces V = {V 1, . . . , Vn} of some finite-dimensional
vector space. Such a V gives rise to a polymatroid ([n], rkV ) by defining

rkV (A) = dim

(∑
i∈A

V i

)

(where the empty sum is 0). A polymatroid is said to be realizable (or representable) over a field K if
it is isomorphic to ([n], rkV ) for some K -subspace arrangement V . The unqualified statement “([n], rk)

is realizable” is taken to mean that there exists some field over which ([n], rk) is realizable, and
this is the property of polymatroids that we will be interested in throughout this paper. A general
problem is to give combinatorial characterizations of realizability in various contexts (e.g., over a
specific list of fields or over fields of given characteristics). For example, there are explicit forbidden
minor characterizations for realizability over F2, realizability over F3, and realizability over all fields
[2] (here, Fq denotes the field with q elements).

1.2. The realizable cone

Making the identification {F : Pow(n) → R} = R2n
, we can consider the set of polymatroids on [n]

to be the integral points of a closed, convex cone Pn . The notes [8] and the book [1] are good refer-
ences for the elements of convex geometry. This cone is defined by the so-called basic inequalities
(PM1), (PM2), and (PM3) above; the set of realizable polymatroids on [n] then generates a convex
cone Rn ⊆ Pn . We refer to Pn (resp. Rn) as the “cone of polymatroids (resp. realizable polyma-
troids) on n elements”; this could be somewhat misleading terminology, however (cf. Section 4).
This viewpoint has been used by information theorists to study which polymatroids are obtained as
the Shannon entropy of a discrete random vector [11,3,7,4]. There doesn’t seem to be much known
about Rn for n > 4; see Section 4 for a discussion of open questions about Rn .

For n � 3, it is known that Rn = Pn , but this does not hold for n � 4. In the 1960s, A.W. Ingleton
found that the following inequality is satisfied by any arrangement of four subspaces {V 1, V 2, V 3, V 4}:

dim(V 1 + V 2) + dim(V 1 + V 3 + V 4) + dim V 3 + dim V 4 + dim(V 2 + V 3 + V 4)

� dim(V 1 + V 3) + dim(V 1 + V 4) + dim(V 2 + V 3) + dim(V 2 + V 4) + dim(V 3 + V 4). (1)

This inequality does not follow from the defining inequalities for polymatroids (which can be seen by
considering Vamos’s matroid, cf. [6, p. 159]), so Rn 	= Pn for n � 4. A complete description of R4 was
given in [5, Thm. 5] by explicit computational methods. They found that the basic inequalities and
all Ingleton inequalities, that is, those obtained by permutations of the indices in (1), are enough to
define R4. Ingleton asked [6] whether there might still be further independent inequalities satisfied
by subspace arrangements; the following theorem, which is the main result of this paper, answers his
question affirmatively.

Theorem 1. Let V 1, . . . , Vn ⊆ V be a subspace arrangement with n � 4, and write

〈i1, . . . , ir〉 := dim
r∑

j=1

V i j .

Then the inequality

〈1,2〉 + 〈1,3,n〉 + 〈3〉 +
n∑

i=4

(〈i〉 + 〈2, i − 1, i〉)

� 〈1,3〉 + 〈1,n〉 + 〈2,3〉 +
n∑(〈2, i〉 + 〈i − 1, i〉) (2)
i=4
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holds, and is irreducible in the sense that it cannot be written as a sum of two nontrivial inequalities which
hold for all subspace arrangements. Furthermore, for each n, the inequality is independent of all inequalities
which hold for fewer than n subspaces.

The last statement is made more precise in Proposition 3 using the constructions in the next
section. Note that by taking n = 4 in (2), we recover Ingleton’s inequality (1), and for each n > 4 we
have a new necessary condition for a polymatroid to be realizable.

2. Operations on polymatroids and inequalities

Since every polymatroid lies in the hyperplane Hn = {F (∅) = 0}, we work in this subspace. When
thinking of the functions in Hn as vectors in R2n−1, we write e A for the standard basis vector which
has a 1 in the coordinate indexed by ∅ 	= A ⊆ {1, . . . ,n}, and 0 elsewhere (i.e., the function which
takes value 1 on A, and 0 on other subsets of {1, . . . ,n}). We write {e∗

A} for the dual basis to {e A},
and

� , � : H∗
n × Hn → R

for the standard pairing between Hn and its dual vector space H∗
n .

The inequality (2) can be identified with the linear functional

In = e∗{1,3} + e∗{1,n} − e∗{1,2} − e∗{1,3,n} +
n∑

i=3

(
e∗
{2,i} + e∗

{i−1,i} − e∗
{i} − e∗

{2,i−1,i}
)

on Hn , in that the inequality holds for a subspace arrangement V if and only if � In, rkV � � 0. Recall
that for any convex cone C in a vector space V , the dual cone C∨ is defined by

C∨ := {
f ∈ V ∗ ∣∣ � f , c� � 0 for all c ∈ C

}
.

Then the first two statements of Theorem 1 can be interpreted as saying that In is an extremal ray
of R∨

n for any n.
For positive integers k and n, a map

ϕ : Pow(k) → Pow(n)

such that ϕ(∅) = ∅ induces linear maps

ϕ# : Hn → Hk, ϕ# : H∗
k → H∗

n,

P �→ P ◦ ϕ, e∗
A �→ e∗

ϕ(A). (3)

We define the first by thinking of elements of Hn as functions, and the second using our standard
dual basis. It is straightforward to check that these maps are dual to one another, so that

�
f ,ϕ# P

� = �ϕ# f , P � (4)

holds for any f ∈ H∗
k and P ∈ Hn .

We assume that all such maps between power sets appearing in this paper preserve unions (i.e.,
are morphisms of join semi-lattices), unless explicitly stated otherwise. Such a ϕ is order-preserving
and completely determined by the images of one element sets; we write

ϕ(i) := ϕ
({i})

to simplify the notation. The map ϕ# can be thought of as a “substitution” map for inequalities: for
example, take ϕ : Pow(2) → Pow(3) determined by ϕ(1) = {1}, ϕ(2) = {2,3}, and f = e∗{1} + e∗{2} −
e∗{1,2} . Then ϕ# f = e∗{1} + e∗{2,3} − e∗{1,2,3}.
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Lemma 2. With ϕ as above, we have that

(a) ϕ# restricts to maps Pn
ϕ#−→ Pk and Rn

ϕ#−→ Rk, which are surjective when ϕ is injective and injective
when ϕ is surjective;

(b) ϕ# restricts to maps P ∨
k

ϕ#−→ P ∨
n and R∨

k
ϕ#−→ R∨

n , which are surjective when ϕ is surjective and injective
when ϕ is injective.

Proof. Since ϕ# and ϕ# are dual to one another, we only need to prove the statements for ϕ#.
The statements regarding the cones of polymatroids follow easily. For example, that ϕ# X satisfies
the submodularity condition (PM3) in the definition of a polymatroid is essentially equivalent to ϕ
preserving union. For a realizable rkV ∈ Rn , where V = {V 1, . . . , Vn}, we have that ϕ# rkV is the rank
function of the subspace arrangement{ ∑

i∈ϕ(1)

V i, . . . ,
∑

i∈ϕ(k)

V i

}
.

When ϕ is injective, a realizable rank function rkW ∈ Rk (where W = {W1, . . . , Wk}) can always
be lifted to some rkV ∈ Rn: for such a ϕ , each set ϕ(i) contains at least one element ai which is not
in any other ϕ( j) (otherwise, we would have ϕ({1, . . . ,k} \ {i}) = ϕ({1, . . . ,k}) and ϕ would not be
injective). Fixing some choice of {ai}k

i=1, the subspace arrangement

V j =
{

W i, j = ai,

0, j 	= any ai

satisfies ϕ# rkV = rkW , so ϕ# is surjective in this case.
The kernel of ϕ# is generated by {e A | A /∈ Imϕ}, so ϕ# is injective when ϕ is surjective, and so is

its restriction to any subset of Hn . �
3. Proof of Theorem 1

3.1. Validity of the inequalities

First, we show that inequality (2) holds for an arrangement of n subspaces.

Proof of the inequality (2). Retain the notation of the statement of the theorem, and for any sub-
space Z constructed from the V i , we also denote by 〈Z〉 its dimension. For a pair of subspaces Y ⊆ Z ,
write [Z : Y ] = 〈Z〉 − 〈Y 〉. We let the operation + have precedence over ∩ in order to minimize the
number of parentheses necessary. So we have, for example, A + B ∩ C = (A + B) ∩ C .

Define W = V 3 ∩ · · · ∩ Vn . We have

[W + V 1 + V 2 : W + V 1] � [W + V 2 : W ] (5)

by submodularity. Starting with the left hand side, we have 〈W + V 1 + V 2〉 � 〈1,2〉 by containment
of subspaces. Then using that W + V 1 ⊆ V 3 + V 1 ∩ Vn + V 1, we find that

〈W + V 1〉 � 〈1,3〉 + 〈1,n〉 − 〈1,3,n〉
and so we get a lower bound for the left hand side of (5):

〈1,2〉 − 〈1,3〉 − 〈1,n〉 + 〈1,3,n〉 � [W + V 1 + V 2 : W + V 1].
On the right hand side, we have that [W + V 2 : W ] = [V 2 : V 2 ∩ W ]. Now we consider the de-

scending chain of subspaces

V 2 ⊇ V 2 ∩ V 3 ⊇ · · · ⊇ V 2 ∩ · · · ∩ Vn = V 2 ∩ W ,
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which gives the formula

[V 2 : V 2 ∩ W ] =
n∑

i=3

[V 2 ∩ · · · ∩ V i−1 : V 2 ∩ · · · ∩ V i]. (6)

We give an upper bound on each summand of (6): for 3 � i � n, we have

[V 2 ∩ · · · ∩ V i−1 : V 2 ∩ · · · ∩ V i] = [
V i + (V 2 ∩ · · · ∩ V i−1) : V i

]
,

and then using the containment V i + (V 2 ∩ · · · ∩ V i−1) ⊆ V i + V 2 ∩ V i + V i−1 we find that[
V i + (V 2 ∩ · · · ∩ V i−1) : V i

]
� [V i + V 2 ∩ V i + V i−1 : V i]
= 〈2, i〉 + 〈i − 1, i〉 − 〈2, i − 1, i〉 − 〈i〉.

Plugging this expression into (6) and then into (5) gives the main inequality (2) after rearranging. �
By varying n, the inequalities we obtain form a hierarchy in the following sense. If ϕ : Pow(n) →

Pow(n − 1) is given by

ϕ(i) =
{ {i}, i 	= n,

{1,n − 1}, i = n,

then it can be immediately verified that ϕ# takes the inequality (2) for n subspaces to the one for
n − 1 subspaces (i.e., ϕ# In = In−1).

3.2. Independence of the inequalities

Now we want to show that these inequalities are genuinely “new” in some appropriate sense.

Proposition 3. The inequality (2) does not follow from a linear substitution into any inequality valid on a
smaller number of subspaces. More precisely, we have In /∈ ϕ#(R∨

k ) for any ϕ : Pow(k) → Pow(n) with k < n.

Proof. Suppose to the contrary that In = ϕ# f for some f ∈ R∨
k . We will demonstrate a (nonrealizable)

polymatroid T such that � In, T � = −1 but ϕ#T is realizable (over any field). Then using (4) this would
give � In, T � = �ϕ# f , T � = � f ,ϕ#T � � 0, a contradiction.

Consider the polymatroid T ∈ Pn given by

T (A) =

⎧⎪⎨
⎪⎩

2, A = {2},
n − 2, A = {i} with i 	= 2,

n − 1, A = {2, i} or {i − 1, i} with i � 3, or {1,3}, or {1,n},
n, otherwise.

Then T is not realizable because � In, T � = −1, but it is “almost realizable” in the sense that ϕ#T
is realizable for any potential ϕ that might give In = ϕ# f . To see this, we make some preliminary
reductions. Firstly, it is enough to consider the case k = n−1. This is because any ϕ : Pow(k) → Pow(n)

factors (nonuniquely) as

ϕ : Pow(k)
ϕ1−→ Pow(n − 1)

ϕ2−→ Pow(n),

and so we have that

ϕ#T = T ◦ ϕ = T ◦ ϕ2 ◦ ϕ1 = ϕ#
1 ϕ#

2 T .

Thus, if ϕ#
2 T is realizable, then so is ϕ#T by Lemma 2.

Now since each e∗
{i} with i � 3 appears with nonzero coefficient in In , it must be that {i} ∈ Imϕ

for i � 3. So after possibly renumbering, we can assume that ϕ(i) = {i + 1} for i � 2, and we need
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only to consider the possible cases for ϕ(1). Let W = {W i}n−1
i=1 be a subspace arrangement in a vector

space W , with basis {w1, . . . , wn−1, w̃}, defined as follows. We take

W i = 〈wi, wi+1, . . . , wi+n−4, w̃〉
for i � 2 (where the indices of the basis vectors are taken mod n − 1), and W1 will be chosen based
on ϕ(1) to make ϕ#T realizable.

In the case that ϕ(1) = ∅, it is straightforward to check that ϕ#T is realized by W when we take
W1 = 0. If ϕ#T (1) = T ◦ϕ(1) = n (e.g., if |ϕ(1)| � 3), then ϕ#T is realized by taking W1 = W instead.
Similarly, if ϕ(1) ⊆ {3,4, . . . ,n}, then we can take

W1 =
∑

j∈ϕ(1)

W j

to realize ϕ#T .
This leaves only the cases where ϕ(1) is one of the sets {1}, {2}, {1,3}, {1,n}, or {2, i} with i � 3,

so we assume to be in this situation now. Consider the subspaces

Z1 = 〈w1, w2, . . . , wn−3, w̃〉, Z2 = 〈w1 + w2 + · · · + wn−1, w̃〉,
and the following table which associates a choice of W1 to each remaining case for ϕ(1). Then using

ϕ(1) W1

{1} Z1

{2} Z2

{1,3} Z1 + W2

{1,n} Z1 + Wn−1

{2, i} Z2 + W i−1

these choices of W1, it can be checked that W realizes ϕ#T in each case, and this completes the
proof. �
3.3. Irreducibility of the inequalities

If the term 〈1,2〉 is replaced by 〈1〉 in our new inequality (2), then the resulting inequality follows
simply by adding together a collection of basic inequalities. This might lead one to wonder how
“strong” the new inequalities are. We show in this subsection that (2) is irreducible, meaning that
it cannot be written as a positive sum of any two nontrivial inequalities which hold for all subspace
arrangements.

In the language of convex geometry, we show that In defines a facet of Rn (i.e., a face of codi-
mension 1), which implies that In is an extremal ray of R∨

n . Fix n > 4 and denote by Z ⊂ H := Hn

the kernel of I := In . To show that R ∩ Z is a facet of R := Rn , we need to show that dim(R ∩ Z) =
dim R − 1 = 2n − 2. (The fact that dim R = 2n − 1 is easy to see by considering arrangements of n
subspaces in a one-dimensional ambient space; it also follows from the proposition below.)

For S ⊆ [n] and d � 1, define Ld
S ∈ H as the polymatroid whose value on A ⊆ [n] is

Ld
S(A) := min

{
d, |A ∩ S|}.

This is the rank function of an arrangement of lines in general position in a d-dimensional vector
space, where dim V i = 1 for i ∈ S and V i = 0 otherwise, so Ld

S ∈ R . It will be useful in the future to
note that

Ld
S =

∑
i∈S

L1
{i} (7)

for any S ⊆ [n] such that d � |S|. The following lemma gives some cases when Ld
S ∈ Z ∩ R .
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Lemma 4. The functional I vanishes on Ld
S whenever d � 3. If d = 2, then it vanishes if

either 2 /∈ S and {1,3,n} � S, or

2 ∈ S and S contains no pair {i, i + 1} with 3 � i � n − 1.

If d = 1, it vanishes when

either 2 /∈ S and S ∩ {1,3,n} 	= {3,n}, or

S = {1,2, . . . ,n} or {2, . . . ,k} or {2} ∪ {k, . . . ,n}
for some 2 � k � n.

Proof. The key is that Ld
S is the rank function for a set of lines {V i} in general position, and that

dimensions add for direct sums of subspaces. So when d � |A|, we get

e∗
A

(
Ld

S

) = dim

(∑
a∈A

Va

)
=

∑
a∈A

dim Va =
∑

a∈A∩S

1 = |A ∩ S|.

This gives the first statement by counting the appearances of each index on both sides of (2), since all
terms e∗

A appearing in I have |A| � 3. The other two statements can be proven similarly, using some
simple ad hoc methods to account for the terms e∗

A with |A| > d. �
Lemma 5. The following hold in H :

e[n] = Ln[n] − Ln−1
[n] , (8)

eS = Ln−1
[n] − Ln−2

S − L1
{i} when S = [n] \ {i}, (9)

eS =
∑
A⊇S

(−1)|A\S|+1L|A|−1
A for |S| � n − 2. (10)

Proof. For any S ⊆ {1, . . . ,n}, we can directly compute from the definition that

(
L|S|

S − L|S|−1
S

)
(A) = min

{|S|, |A ∩ S|} − min
{|S| − 1, |A ∩ S|} =

{
1, A ⊇ S,

0, otherwise,

and so L|S|
S − L|S|−1

S = ∑
A⊇S e A . By applying Möbius inversion [10, § 3.7], we can express each eS as

eS =
∑
A⊇S

(−1)|A\S|(L|A|
A − L|A|−1

A

) =
∑
A⊇S

(−1)|A\S|L|A|
A +

∑
A⊇S

(−1)|A\S|+1L|A|−1
A ,

since the Möbius function of Pow(n) is μ(S, A) = (−1)|A\S| for S ⊆ A. The first formula is immediately
verified since the sums only consist of one term in this case. When S = [n] \ {i}, we use that L|S|

S −
Ln[n] = −L1

{i} from (7). Finally, if |S| � n − 2, then we can write the first sum as∑
A⊇S

∑
j∈A

(−1)|A\S|L1
{ j}

using (7) again. The coefficient of L1
{ j} in this sum is∑

A⊇S∪{ j}
(−1)|A\S| = (−1)n−|S| ∑

A⊇S∪{ j}
μ

(
A, [n]),

which is 0 whenever S ∪ { j} 	= [n], by a basic property of the Möbius function. �
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Lemma 6. The following hold in the vector space H :

L3
{i, j,k} − L2

{i, j,k} =
∑

A⊇{i, j,k}
e A, (11)

L1
T ∪{a} + L1

T ∪{b} − L1
T − L1

T ∪{a,b} =
∑

a,b∈A
A∩T =∅

e A . (12)

Proof. The first equation is a special case of the first line of the proof of Lemma 5. The second follows
easily from the definitions. �

Let F be the linear span of R ∩ Z . To compute the dimension of R ∩ Z , we give an explicit basis
of F .

Proposition 7. An explicit basis of F is given by{
eS + αS e{1,3,n}

∣∣ S 	= {1,3,n}},
where for 3 � i � n and 3 � j � n − 1 we define

αS =
{−1, S = {i} or {1,2} or {2, j, j + 1},

1, S = {1,3} or {1,n} or S = {2, i} or { j, j + 1},
0, otherwise.

Consequently, dim F = 2n − 2, and so I defines a facet of R and the new inequalities (2) are irreducible.

Proof. It is clear that the 2n −2 listed elements are linearly independent, hence we just need to show
that each is in F . We proceed by considering various cases for S . Lemma 4 justifies the fact that all
of the various Ld

S used in this proof are in R ∩ Z ; we will not explicitly reference this fact at each
occurrence. We also write r := e{1,3,n} to abbreviate the notation for the “remainder” term.

(1) If |S| � 4, then each term appearing in the expressions for eS in Lemma 5 is in R ∩ Z , so eS ∈ F .
In light of this, we ignore these “higher” terms in all sums below, without specific appeal to this
item.

(2) Suppose |S| = 3. Then from Lemma 6 we have

L3
S − L2

S = eS + (higher terms).

The first summand on the left hand side is always in F , and the second is in F unless S =
{1,3,n} or S = {2, l − 1, l} for some 4 � l � n, so eS ∈ F except possibly in these two cases.

(3) Now suppose S = {i, j}, so that taking T = ∅ in Lemma 6 we get

L1
{i} + L1

{ j} − L1
{i, j} = e{i, j} +

∑
k 	=i, j

e{i, j,k} + (higher terms).

If S 	= {3,n}, then each term on the left hand side is in F , and so using (2) we get that eS ∈ F
except possibly when S ⊆ {1,3,n} or S ⊆ {2, l − 1, l} for some 4 � l � n.

(4) To deal with S = {3,n}, apply Lemma 6 with T = {2,3,n}c , a = 3, b = n to get

e{3,n} + e{2,3,n} ∈ F

(here Ac denotes the complement of A in {1, . . . ,n}). Then (2), along with the assumption that
n > 4, leaves that e{3,n} ∈ F .

(5) A slight modification of the second part of Lemma 6 (taking T = ∅ and replacing {a} with ∅)
shows that e{1} = L1{1,...,n} − L1{1}c ∈ F , and similarly e{2} ∈ F . This takes care of the cases that
αS = 0.
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(6) The argument from (3), applied when S = {1,3} and S = {1,n}, gives

e{1,n} + r ∈ F and e{1,3} + r ∈ F ,

as desired.
(7) For S = {1,2}, we simply note that L1{1} = ∑

A⊇{1} e A , so using (2), (3), and (5) we get that
e{1,2} + e{1,3} + e{1,n} + r ∈ F . But then using (6) we can subtract

e{1,n} + r + e{1,3} + r ∈ F

to get that e{1,2} − r ∈ F .
(8) Since L1{1}c − L1{1,n}c = e{n} + e{1,n} ∈ F , we get from (6) that e{n} − r ∈ F .

(9) Similarly, we have L1{2}c − L1
{2,k}c = e{k} + e{2,k} ∈ F for k � 3. In particular, the previous item gives

that e{2,n} + r ∈ F .
(10) Now take S = {2,k − 1,k} for some 4 � k � n, and define T := {1, . . . ,k}c . Then we have

L1
T ∪{2} + L1

T ∪{k} − L1
T − L1

T ∪{2,k} = e{2,k} +
∑

l/∈{2}∪{k,...,n}
e{2,k,l} + (higher terms)

from Lemma 6, and so by part (2) we get e{2,k} + e{2,k−1,k} ∈ F . In particular, combining this with
the previous item we find that e{2,n−1,n} − r ∈ F .

(11) The reasoning from (3) shows that e{k−1,k} +e{2,k−1,k} for any 4 � k � n, then we use the previous
item to get that e{n−1,n} + r ∈ F .

(12) We use (2) and (3) along with the expression

L1
{2,...,k} − L1

{2,...,k−1} =
∑

{k}⊆A⊆{2,...,k−1}c

e A

to show that e{k} + e{k,k+1} ∈ F for 3 < k < n. For k = 3, we first get that e{3} + e{1,3} + e{3,4} +
e{3,n} + r ∈ F using (2) and (3), and then that e{3} + e{3,4} ∈ F using (4) and (6).

(13) Now using the terms from (12), (9), (10), and (11), in that order, we get the expression

e{k−1,k} + r = (e{k,k+1} + r) − (e{k,k+1} + e{k}) + (e{k} + e{2,k})
− (e{2,k} + e{2,k−1,k}) + (e{2,k−1,k} + e{k−1,k})

which shows that e{k−1,k} + r ∈ F if and only if e{k,k+1} + r ∈ F , for any 4 � k < n. But in (11) we
had that e{n−1,n} + r ∈ F , so it must be that e{k−1,k} + r ∈ F for all 4 � k � n.

This completes the proof of the proposition. �
All parts of Theorem 1 have now been proven.

4. Future directions

Of course, the most natural question to ask next is whether these new inequalities are enough to
define Rn for all n. More precisely, we pose the following question.

Question 8. Are there any further independent inequalities on subspace arrangements besides those
in this new hierarchy? In other words, are there any more extremal rays of R∨

n in addition to those
obtained from:

a) substitutions into inequalities on fewer subspaces, that is, ϕ# f for some ϕ and some f ∈ R∨
k

with k < n; and
b) all functionals obtained from In by permuting the indices {1, . . . ,n}?
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To try to answer this question, one could take the cone in H∗
n defined by the functionals of a)

and b), compute the extremal rays of the dual cone, and determine if these are realizable. This is
what was done in [5] for R4. However, this is beyond the author’s computational power even for
the smallest unknown case, n = 5. An anonymous referee has suggested trying to reduce the problem
by considering only connected polymatroids, which are those (X, rk) such that rk(X) − rk(X \ S) =
rk(S) only when S = X or S = ∅. The cone generated by these should have fewer extremal rays, and
inequalities on disconnected polymatroids should be understandable in terms of tensor products of
inequalities on their connected components.

If the answer to the above question is “no,” then it would be nice to know if Rn is even closed
and/or polyhedral. There are also questions related to the integral points of Rn , that is, those with
integer coordinates. Broadly, we can ask:

Question 9. Is every integral point of the cone Rn (i.e., those with integer coordinates) a realizable
polymatroid?

It is this question that makes the terminology “realizable cone” potentially misleading. It can
roughly be broken up into two questions. First, we would like to know whether the sum of two
polymatroids realizable over different fields is realizable (note here that this is the sum in the vector
space Hn , not to be confused with the direct sum of matroids). Second, there is a saturation prob-
lem: if P is a polymatroid such that there exists some r ∈ Q for which r P is realizable, is P itself
realizable?
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