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Introduction

In this paper we study the second Hochschild cohomology group HH2(Λ) of all finite dimensional
self-injective algebras Λ of finite representation type over an algebraically closed field K .

In general, finite dimensional self-injective algebras of finite representation type over an alge-
braically closed field K were shown by Riedtmann in [9] to fall into one of the types A, D or E ,
depending on the tree class of the stable Auslander–Reiten quiver of the algebra. Riedtmann classified
the stable equivalence representatives of these algebras of type A in [10]; Asashiba then showed that
the stable equivalence classes are exactly the derived equivalence classes for all types A, D and E in
[2, Theorem 2.2]. In [1], the derived equivalence class representatives are given explicitly by quivers
and relations.

Happel showed in [8] that Hochschild cohomology is invariant under derived equivalence. So if A
and B are derived equivalent then HH2(A) ∼= HH2(B). Hence to study HH2(Λ) for all finite dimen-
sional self-injective algebras of finite representation type over an algebraically closed field K , it is
enough to study HH2(Λ) for the representatives of the derived equivalence classes. The algebras of
type A fall into two types: Nakayama algebras and Möbius algebras, and the Hochschild cohomology
of these algebras has already been studied. In [3], Erdmann and Holm give the dimension of the sec-
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ond Hochschild cohomology group of a Nakayama algebra. In [6], Green and Snashall determined the
second Hochschild cohomology group for the Möbius algebras.

The main work of this paper is thus in determining HH2(Λ) for the finite dimensional self-injective
algebras of finite representation type of types D and E . In Section 1 we give a summary of [1] which
gives the explicit derived equivalence representatives we consider. Section 2 gives a short descrip-
tion of the projective resolution of [6] which we use to find HH2(Λ). In Section 3, we give a general
theorem, Theorem 3.6, which we use to show that HH2(Λ) = 0 for most of our algebras. This is moti-
vated by work in [6]. The strategy of the theorem is to show that every element in Hom(Q 2,Λ) is a
coboundary so that HH2(Λ) = 0, where Q 2 is the second projective in a minimal projective resolution
of Λ as a Λ, Λ-bimodule. For all other cases which are not covered by Theorem 3.6, we determine
HH2(Λ) by direct calculation, and find a basis for HH2(Λ) in the instances where HH2(Λ) �= 0. The
standard algebras are considered in Sections 4 and 5 and the non-standard algebras in Section 6.
Finally Theorem 6.5 summarises our results and describes HH2(Λ) for all finite dimensional self-
injective algebras Λ of finite representation type over an algebraically closed field. As a consequence,
we show that dim HH2(Λ) �= dim HH2(Λ′) for a non-standard algebra Λ and its standard form Λ′ ,
where Λ and Λ′ are of type (D3m,1/3,1). This gives an alternative proof that Λ and Λ′ are not
derived equivalent.

1. The derived equivalence representatives

We give here Asashiba’s full classification from [1,2] of the derived equivalence class representa-
tives of the finite dimensional self-injective algebras of finite representation type over an algebraically
closed field. These derived equivalence class representatives are listed according to their type.

From [9], the stable Auslander Reiten quiver of a self-injective algebra Λ of finite representation
type has the form ZΔ/〈g〉, where Δ is a Dynkin graph, g = ζτ−r such that r is a natural number,
ζ is an automorphism of the quiver ZΔ with a fixed vertex, and τ is the Auslander–Reiten translate.
Then typ(Λ) := (Δ, f , t), where t is the order of ζ and f := r/mΔ such that mΔ = n,2n − 3,11,17 or
29 as Δ = An, Dn, E6, E7 or E8, respectively. We take the following results from [2].

Proposition 1.1. (See [2, Theorem 2.2].) Given Λ a self-injective algebra of finite representation type then the
type typ(Λ) is an element of one of the following sets:

{
(An, s/n,1)

∣∣ n, s ∈ N
};{

(A2p+1, s,2)
∣∣ p, s ∈ N

};{
(Dn, s,1)

∣∣ n, s ∈ N, n � 4
};{

(Dn, s,2)
∣∣ n, s ∈ N, n � 4

};{
(D4, s,3)

∣∣ s ∈ N
};{

(D3m, s/3,1)
∣∣ m, s ∈ N, m � 2,3 � s

};{
(En, s,1)

∣∣ n = 6,7,8, s ∈ N
}; and{

(E6, s,2)
∣∣ s ∈ N

}
.

Theorem 1.2. (See [2, Theorem 2.2].) Let Λ and Π be self-injective algebras of finite representation type.

(i) If Λ is standard and Π is non-standard then Λ and Π are not derived equivalent.
(ii) If Λ and Π are either both standard or both non-standard then the following are equivalent:

(1) Λ and Π are derived equivalent;
(2) Λ and Π are stably equivalent;
(3) typ(Λ) = typ(Π).
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Using these results, [1] gives the derived equivalence representatives by quiver and relations; these
are stated here for convenience. The derived equivalence representatives of the standard algebras
are given in 1.3–1.10. The non-standard derived equivalence representatives are given in 1.11. Recall
from [2, Theorem 2.2] that the non-standard derived equivalence representatives only occur when
char K = 2. Note that [ j] denotes the residue of j modulo s where s � 1 and we write paths from left
to right (whereas paths are written from right to left in [1]).

1.3. Λ(An, s/n,1) with s,n � 1.

Λ(An, s/n,1) with s,n � 1 is the Nakayama algebra Ns,n and it is given by the quiver Q (Ns,n):

◦
αs

◦αs−1

. . .

◦
α1

◦
α2 ◦ . . .

with relations R(Ns,n):

αiαi+1 · · ·αi+n = 0, for all i ∈ {1,2, . . . , s} = Z/〈s〉.

1.4. Λ(A2p+1, s,2) with s, p � 1.

Λ(A2p+1, s,2) with s, p � 1 is the Möbius algebra M p,s and it is given by the quiver Q (M p,s):

◦
β

[s−1]
p

· · ·
β

[s−1]
p−1

◦
β

[0]
0

α[0]
0

◦
α

[s−1]
p

· · ·
α

[s−1]
p−1 . . .

◦
β

[0]
1

◦
α[0]

1

. . .

.

.

.

β
[0]
p−1

.

.

.

α
[0]
p−1

.

.

.
.
.
.

◦

β
[0]
p

◦
α[0]

p

◦
α[2]

1

◦
β

[2]
1

◦
α[1]

0

β
[1]
0

◦
α[1]

1 · · ·
α

[1]
p−1 ◦

α
[1]
p ◦
α[2]

0
β

[2]
0

◦
β

[1]
1

· · ·
β

[1]
p−1

◦ β
[1]
p

with relations R(M p,s):
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(i) α[i]
0 · · ·α[i]

p = β
[i]
0 · · ·β[i]

p , for all i ∈ {0, . . . , s − 1},
(ii) for all i ∈ {0, . . . , s − 2},

α[i]
p β

[i+1]
0 = 0, β

[i]
p α[i+1]

0 = 0,

α[s−1]
p α[0]

0 = 0, β
[s−1]
p β

[0]
0 = 0,

(iii) paths of length p + 2 are equal to 0.

1.5. Λ(Dn, s,1) with n � 4, s � 1.

Λ(Dn, s,1) with n � 4, s � 1 is given by the quiver Q (Dn, s):

◦

α[s−1]
1

· · ·
α[s−1]

2

· · ·
β

[s−1]
1 . . .

◦

α
[0]
n−3

◦
α[0]

n−2

β
[0]
0

γ [0]
0

· · ·
γ [s−1]

1 . . .

. . .

.

.

.

α
[0]
2

◦

β
[0]
1

◦

γ
[0]
1

.

.

.

.

.

. .
.
.

◦
α[0]

1

◦
γ

[1]
0

β
[1]
0

α[1]
n−2

◦
γ

[1]
1 ◦

γ [2]
0

β
[2]
0

α[2]
n−2

◦

α[2]
n−3

◦
β

[1]
1

◦
α[1]

n−3

· · ·
α[1]

2

◦

α[1]
1

with relations R(Dn, s,1):

(i) α[i]
n−2α

[i]
n−3 · · ·α[i]

2 α[i]
1 = β

[i]
0 β

[i]
1 = γ [i]

0 γ [i]
1 , for all i ∈ {0, . . . , s − 1} = Z/〈s〉,

(ii) for all i ∈ {0, . . . , s − 1} = Z/〈s〉,

α[i]
1 β

[i+1]
0 = 0, α[i]

1 γ [i+1]
0 = 0,

β
[i]
1 α[i+1]

n−2 = 0, γ [i]
1 α[i+1]

n−2 = 0,

β
[i]
1 γ [i+1]

0 = 0, γ [i]
1 β

[i+1]
0 = 0,

(iii) for all i ∈ {0, . . . , s − 1} = Z/〈s〉 and for all j ∈ {1, . . . ,n − 2} = Z/〈n − 2〉,



D. Al-Kadi / Journal of Algebra 321 (2009) 1049–1078 1053
α[i]
j . . . α[i+1]

j−n+2 = 0,

β
[i]
0 β

[i]
1 β

[i+1]
0 = 0, γ [i]

0 γ [i]
1 γ [i+1]

0 = 0,

β
[i]
1 β

[i+1]
0 β

[i+1]
1 = 0, γ [i]

1 γ [i+1]
0 γ [i+1]

1 = 0.

The set of relations (iii) means that “α-paths” of length n − 1 are equal to 0, “β-paths” of length 3
are equal to 0 and “γ -paths” of length 3 are equal to 0.

1.6. Λ(Dn, s,2) with n � 4, s � 1.

Λ(Dn, s,2) with n � 4, s � 1 is given by the quiver Q (Dn, s) above with relations R(Dn, s,2):

(i) α[i]
n−2α

[i]
n−3 · · ·α[i]

2 α[i]
1 = β

[i]
0 β

[i]
1 = γ [i]

0 γ [i]
1 , for all i ∈ {0, . . . , s − 1} = Z/〈s〉,

(ii) for all i ∈ {0, . . . , s − 1} = Z/〈s〉,

α[i]
1 β

[i+1]
0 = 0, α[i]

1 γ [i+1]
0 = 0,

β
[i]
1 α[i+1]

n−2 = 0, γ [i]
1 α[i+1]

n−2 = 0,

and for all i ∈ {0, . . . , s − 2},

β
[i]
1 γ [i+1]

0 = 0, γ [i]
1 β

[i+1]
0 = 0,

β
[s−1]
1 β

[0]
0 = 0, γ [s−1]

1 γ [0]
0 = 0,

(iii) “α-paths” of length n − 1 are equal to 0, and for all i ∈ {0, . . . , s − 2},

β
[i]
0 β

[i]
1 β

[i+1]
0 = 0, γ [i]

0 γ [i]
1 γ [i+1]

0 = 0,

β
[i]
1 β

[i+1]
0 β

[i+1]
1 = 0, γ [i]

1 γ [i+1]
0 γ [i+1]

1 = 0 and

β
[s−1]
0 β

[s−1]
1 γ [0]

0 = 0, γ [s−1]
0 γ [s−1]

1 β
[0]
0 = 0,

β
[s−1]
1 γ [0]

0 γ [0]
1 = 0, γ [s−1]

1 β
[0]
0 β

[0]
1 = 0.

1.7. Λ(D4, s,3) with s � 1.

Λ(D4, s,3) with s � 1 is given by the quiver Q (D4, s) above with relations R(D4, s,3):

(i) α[i]
0 α[i]

1 = β
[i]
0 β

[i]
1 = γ [i]

0 γ [i]
1 , for all i ∈ {0, . . . , s − 1} = Z/〈s〉,

(ii) for all i ∈ {0, . . . , s − 2},

α[i]
1 β

[i+1]
0 = 0, α[i]

1 γ [i+1]
0 = 0,

β
[i]
1 α[i+1]

0 = 0, γ [i]
1 α[i+1]

0 = 0,

β
[i]
1 γ [i+1]

0 = 0, γ [i]
1 β

[i+1]
0 = 0,

and

α[s−1]
1 α[0]

0 = 0, α[s−1]
1 γ [0]

0 = 0,

β
[s−1]
1 α[0]

0 = 0, β
[s−1]
1 β

[0]
0 = 0,

γ [s−1]
1 β

[0]
0 = 0, γ [s−1]

1 γ [0]
0 = 0,

(iii) paths of length 3 are equal to 0.
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1.8. Λ(D3m, s/3,1) with m � 2 and 3 � s � 1.

Λ(D3m, s/3,1) with m � 2 and 3 � s � 1 is given by the quiver Q (D3m, s/3):

α
[s]
m−1

· · ·

◦
α

[1]
2 ◦

α[s−1]
m

. . .

α[s−1]
m−1

· · · ◦
α[s]

m

◦
β1

α
[1]
1

◦

α
[s]
2

α[1]
m−1

◦

α[2]
2

◦
α

[2]
1

β2

◦βs
α

[s]
1

◦α[s−2]
m

βs−1

α[s−2]
m−1

◦

α
[1]
m.

.

.
◦

α[3]
1

β3

.

.

.
.
.
.

α
[2]
m−1

◦

α[3]
2

◦ α[2]
m ◦

β4
α[4]

1

◦
β6

α[6]
1

◦ α
[6]
2

. . .
◦

α
[4]
2

◦

β5

α
[5]
1

◦
α

[4]
m

α[3]
m−1

◦

α[3]
m

◦
α[5]

2

· · ·

· · · α[4]
m−1

and for s = 1, Q (D3m,1/3):

m

αm

m − 1
αm−1

. . .

1

β

α1

2

α2

3 . . .

with relations R(D3m, s/3,1):
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(i) α[i]
1 α[i]

2 · · ·α[i]
m = βiβi+1, for all i ∈ {1, . . . , s} = Z/〈s〉,

(ii) α[i]
m α[i+2]

1 = 0, for all i ∈ {1, . . . , s} = Z/〈s〉,

(iii) α[i]
j · · ·α[i]

m βi+2α
[i+3]
1 · · ·α[i+3]

j = 0, for all i ∈ {1, . . . , s} = Z/〈s〉 and for all j ∈ {1, . . . ,m} (i.e. paths
of length m + 2 are equal to 0).

In the case s = 1, the relations R(D3m,1/3,1) are:

(i) α1α2 · · ·αm = β2,
(ii) αmα1 = 0,

(iii) α j · · ·αmβα1 · · ·α j = 0 for j = 2, . . . ,m − 1.

1.9. Λ(En, s,1) with n ∈ {6,7,8} and s � 1.

Λ(En, s,1) is given by the quiver Q (En, s):

◦

α
[s−1]
1

· · ·
α

[s−1]
2

· · ·

β
[s−1]
1

. . .

◦
α[0]

n−4

◦
α[0]

n−3

β
[0]
3

γ [0]
2

· · ·
γ [s−1]

1

. . .

◦

β
[0]
2

. . .

.

.

.
◦

γ [0]
1

.

.

.

α[0]
2

◦

β
[0]
1

.

.

. .
.
.

◦
α

[0]
1

◦
γ [1]

2

β
[1]
3

α
[1]
n−3

◦
γ [1]

1 ◦

γ [2]
2

β
[2]
3

α
[2]
n−3

◦

α
[2]
n−2

◦
β

[1]
2

◦ β
[1]
1

◦
α[1]

n−2

· · ·
α[1]

2

◦

α
[1]
1

with relations R(En, s,1):

(i) α[i]
n−3 · · ·α[i]

2 α[i]
1 = β

[i]
3 β

[i]
2 β

[i]
1 = γ [i]

2 γ [i]
1 , for all i ∈ {0, . . . , s − 1},

(ii) for all i ∈ {0, . . . , s − 1} = Z/〈s〉,

α[i]
1 β

[i+1]
3 = 0, α[i]

1 γ [i+1]
2 = 0,
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β
[i]
1 α[i+1]

n−3 = 0, γ [i]
1 α[i+1]

n−3 = 0,

β
[i]
1 γ [i+1]

2 = 0, γ [i]
1 β

[i+1]
3 = 0,

(iii) “α-paths” of length n − 2 are equal to 0, “β-paths” of length 4 are equal to 0 and “γ -paths” of
length 3 are equal to 0.

1.10. Λ(E6, s,2) with s � 1.

Λ(E6, s,2) is given by the quiver Q (E6, s) above with relations R(E6, s,2):

(i) α[i]
3 α[i]

2 α[i]
1 = β

[i]
3 β

[i]
2 β

[i]
1 = γ [i]

2 γ [i]
1 , for all i ∈ {0, . . . , s − 1},

(ii) for all i ∈ {0, . . . , s − 1} = Z/〈s〉,

γ [i]
1 α[i+1]

3 = 0, γ [i]
1 β

[i+1]
3 = 0,

α[i]
1 γ [i+1]

2 = 0, β
[i]
1 γ [i+1]

2 = 0,

and for all i ∈ {0, . . . , s − 2},

α[i]
1 β

[i+1]
3 = 0, β

[i]
1 α[i+1]

3 = 0,

α[s−1]
1 α[0]

3 = 0, β
[s−1]
1 β

[0]
3 = 0,

(iii) “γ -paths” of length 3 are equal to 0 and for all i ∈ {0, . . . , s − 2} and for all j ∈ {1,2,3} = Z/〈3〉,

α[i]
j · · ·α[i+1]

j−3 = 0, β
[i]
j · · ·β[i+1]

j−3 = 0,

α[s−1]
j · · ·α[s−1]

1 β
[0]
3 · · ·β[0]

j−3 = 0, β
[s−1]
j · · ·β[s−1]

1 α[0]
3 · · ·α[0]

j−3 = 0.

Thus we have listed all the derived equivalence representatives of the standard algebras. The de-
rived equivalence representatives of the non-standard algebras are given next.

1.11. Λ(m) with m � 2.

In this case char K = 2 by [2, Theorem 2.2]. The non-standard algebra Λ(m) for each m � 2 is
given by the quiver Q(D3m,1/3):

m

αm

m − 1
αm−1

. . .

1

β

α1

2

α2

3 . . .

with relations R(m):
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(i) α1α2 · · ·αm = β2,
(ii) αmα1 = αmβα1,

(iii) αiαi+1 · · ·αi = 0, for all i ∈ {1, . . . ,m} = Z/〈m〉 (i.e. “α”-paths of length m + 1 are equal to 0).

2. Projective resolutions

To find the Hochschild cohomology groups for any finite dimensional algebra Λ, a projective res-
olution of Λ as a Λ,Λ-bimodule is needed. In this section we look at the projective resolutions of
[6] and [7] in order to describe the second Hochschild cohomology group. Let Λ = K Q/I where Q is
a quiver, and I is an admissible ideal of K Q. Fix a minimal set f 2 of generators for the ideal I . Let
x be one of the minimal relations. Then x = ∑r

j=1 c ja1 j · · ·akj · · ·as j j , that is, x is a linear combina-
tion of paths a1 j · · ·akj · · ·as j j for j = 1, . . . , r and c j ∈ K and there are unique vertices v and w such
that each path a1 j · · ·akj · · ·as j j starts at v and ends at w for all j. We write o(x) = v and t(x) = w .
Similarly o(a) is the origin of the arrow a and t(a) is the end of a.

In [6, Theorem 2.9], a minimal projective resolution of Λ as a Λ,Λ-bimodule is given which
begins:

· · · → Q 3 A3→ Q 2 A2→ Q 1 A1→ Q 0 g→ Λ → 0,

where the projective Λ, Λ-bimodules Q 0, Q 1, Q 2 are given by

Q 0 =
⊕

v,vertex

Λv ⊗ vΛ,

Q 1 =
⊕

a,arrow

Λo(a) ⊗ t(a)Λ, and

Q 2 =
⊕
x∈ f 2

Λo(x) ⊗ t(x)Λ.

The maps g, A1, A2 and A3 are all Λ, Λ-bimodule homomorphisms. The map g : Q 0 → Λ is the
multiplication map so is given by v ⊗ v �→ v . The map A1 : Q 1 → Q 0 is given by o(a) ⊗ t(a) �→
o(a) ⊗ o(a)a − at(a) ⊗ t(a) for each arrow a.

With the notation for x ∈ f 2 given above, the map A2 : Q 2 → Q 1 is given by o(x) ⊗ t(x) �→∑r
j=1 c j(

∑s j

k=1 a1 j · · ·a(k−1) j ⊗a(k+1) j · · ·as j j), where a1 j · · ·a(k−1) j ⊗a(k+1) j · · ·as j j ∈ Λo(akj)⊗ t(akj)Λ.

In order to find the projective Λ, Λ-bimodule Q 3 and the map A3 in the Λ, Λ-bimodule res-
olution of Λ in [6], Green and Snashall start by finding a projective resolution of Λ/r as a right
Λ-module, where r = J (Λ) is the Jacobson radical of Λ, using the notation and procedure of the pa-
per [7]. In [7], Green, Solberg and Zacharia show that there are sets f n , n � 3, and uniform elements
y ∈ f n such that y = ∑

x∈ f n−1 xrx = ∑
z∈ f n−2 zsz for unique elements rx, sz ∈ K Q with special proper-

ties related to a minimal projective Λ-resolution of Λ/r considered as a right Λ-module. In particular,
for y ∈ f 3 we have y ∈ ∐

f 2 K Q ∩ ∐
f 1 I and y may be written y = ∑

f 2
i pi = ∑

qi f 2
i ri with

pi,qi, ri ∈ K Q and pi,qi in the ideal generated by the arrows of K Q such that the elements pi are
unique. Recall that an element y ∈ K Q is uniform if there are vertices v, w such that y = v y = yw .
We write o(y) = v and t(y) = w .

Then [6] gives that Q 3 = ∐
y∈ f 3 Λo(y) ⊗ t(y)Λ and describes the map A3. For y ∈ f 3 in the

notation above, the component of A3(o(y) ⊗ t(y)) in the summand Λo( f 2
i ) ⊗ t( f 2

i )Λ of Q 2 is
Σ(o(y) ⊗ pi − qi ⊗ ri).

Thus we can describe the part of the minimal projective Λ,Λ-bimodule resolution of Λ:

Q 3 A3→ Q 2 A2→ Q 1 A1→ Q 0 g→ Λ → 0.
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Applying Hom(−,Λ) to this resolution gives us the complex

0 → Hom
(

Q 0,Λ
) d1→ Hom

(
Q 1,Λ

) d2→ Hom
(

Q 2,Λ
) d3→ Hom

(
Q 3,Λ

)
where di is the map induced from Ai for i = 1,2,3. Then HH2(Λ) = Ker d3/ Im d2.

Throughout, all tensor products are tensor products over K , and we write ⊗ for ⊗K . When con-
sidering an element of the projective Λ, Λ-bimodule Q 1 = ⊕

a,arrow Λo(a) ⊗ t(a)Λ it is important to
keep track of the individual summands of Q 1. So to avoid confusion we usually denote an element
in the summand Λo(a) ⊗ t(a)Λ by λ ⊗a λ′ using the subscript ‘a’ to remind us in which summand
this element lies. Similarly, an element λ ⊗ f 2

i
λ′ lies in the summand Λo( f 2

i ) ⊗ t( f 2
i )Λ of Q 2 and an

element λ ⊗ f 3
i

λ′ lies in the summand Λo( f 3
i ) ⊗ t( f 3

i )Λ of Q 3. We keep this notation for the rest of

the paper.
Now we are ready to compute HH2(Λ) for the derived equivalence representatives of the finite

dimensional self-injective algebras of finite representation type over an algebraically closed field.
First we recall that the algebras of type (An, s/n,1) and (A2p+1, s,2) have been considered in [3,6]

respectively.

Theorem 2.1. (See [6, Theorem 4.2].) For the Möbius algebra M p,s we have HH2(M p,s) = 0 except when p = 1
and s = 1.

It is well known that if p = 1 and s = 1 then M p,s is the preprojective algebra of type A3. In [4],
a basis for the Hochschild cohomology groups of the preprojective algebras of type An is given.

Proposition 2.2. (See [4, 7.2.1].) For the Möbius algebra Mp,s with p = 1 and s = 1 we have
dim HH2(M p,s) = 1.

In [3], the dimension of HH2 j(Λ) is given for a self-injective Nakayama algebra for all j � 1. In
particular this gives us HH2(Λ) when j = 1. The self-injective Nakayama algebra Λ(An, s/n,1) of [1]
is the algebra Bn+1

s of [3]. Write n + 1 = ms + r where 0 � r < s. From [3], with j = 1, we have the
following result.

Proposition 2.3. (See [3, Proposition 4.4].) For Λ = Λ(An, s/n,1), and with the above notation we have
dim HH2(Λ) = m.

3. A vanishing theorem

In this section we start by recalling some definitions from Section 3 of [6] and from the theory of
Gröbner bases (see [5,6]). Recall that Λ = K Q/I where I is an admissible ideal with fixed minimal
set of generators f 2.

A length-lexicographic order > on the paths of Q is an arbitrary linear order of both the vertices
and the arrows of Q, so that any vertex is smaller than any path of length at least one. For paths
p and q, both not vertices, we define p > q if the length of p is greater than the length of q. If the
lengths are equal, say p = a1 · · ·at and q = b1 · · ·bt where the ai and bi are arrows, then we say p > q
if there is an i,0 � i � t −1, such that a j = b j for j � i but ai+1 > bi+1, where we use here our (fixed)
arbitrary linear order on the arrows of Q.

Let f be an element in K Q written as a linear combination of paths
∑s

j=1 c jρ j with c j ∈ K\{0}
and paths ρ j . Following [6], we say a path ρ occurs in f if ρ = ρ j for some j.

Fix a length-lexicographic order on the set of paths of a quiver Q. Let f be a non-zero element
of K Q. Let tip( f ) denote the largest path occurring in f . Then we define Tip(I) = {tip( f ) | f ∈ I\{0}}.
Define NonTip(I) to be the set of paths in K Q that are not in Tip(I). Note that for vertices v and w ,
v NonTip(I)w is a K -basis of paths for vΛw .
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Definition 3.1. (See [6, Definition 3.1].) The boundary of f 2, denoted by Bdy( f 2), is defined to be the
set

Bdy
(

f 2) = {(
o
(

f 2
1

)
, t

(
f 2
1

))
, . . . ,

(
o
(

f 2
m

)
, t

(
f 2
m

))} = {(
o(x), t(x)

) ∣∣ x ∈ f 2}.
Definition 3.2. (See [6, Definition 3.3].) Let G 2 = ⋃

v NonTip(I)w , where the union is taken over all
(v, w) in Bdy( f 2).

We consider now elements of Hom(Q 2,Λ).

Definition 3.3. (See [6, Definition 3.4].) For p in G 2 and x ∈ f 2 with o(x) = o(p) and t(x) = t(p), define
φp,x : Q 2 → Λ to be the Λ,Λ-bimodule homomorphism given by

o
(

f 2
i

) ⊗ t
(

f 2
i

) �→
{

p if f 2
i = x,

0 otherwise.

Let d2 : Hom(Q 1,Λ) → Hom(Q 2,Λ) be the map induced by A2. Each element of HH2(Λ) may
be represented by a map in Hom(Q 2,Λ) and so is represented by a linear combination over K of
maps φp,x . If every φp,x is in Im d2 then Hom(Q 2,Λ) = Im d2 and hence HH2(Λ) = 0. Our strategy in
Theorem 3.6 is to show that HH2(Λ) = 0 by showing that every φp,x is in Im d2.

First we return to [6] and modify [6, Definition 3.6].

Definition 3.4. Let X be a set of paths in K Q. Define
L0(X) = {p ∈ X | ∃ some arrow a which occurs in p and which does not occur in any element

of X\{p}}.
For p ∈ L0(X), we call such an a an arrow associated to p.
Define Li(X) for i ∈ N by

Li(X) = L0

(
X\

i−1⋃
j=0

L j(X)

)
.

Definition 3.5. (See [6, Definition 3.9].) Let X be a set of paths in NonTip(I). The arrows are said to
separate X if X = ⋃

i�0 Li(X).

Motivated by Theorem 3.10 in [6] we give a new theorem on the vanishing of HH2(Λ) which we
will show applies to all algebras in Asashiba’s list when s � 2. (We will consider the case s = 1 later.)

Theorem 3.6. Let Λ = K Q/I be a finite dimensional algebra where I is an admissible ideal with minimal
generating set f 2 . With the notation of this section, suppose that for all (v, w) ∈ Bdy( f 2) either vΛw = {0}
or there is some path p such that v NonTip(I)w = {p}. In the case where vΛw �= {0} suppose further that
v f 2 w = {p − q1, . . . , p − qt} for paths q1, . . . ,qt . Thus we may write G 2 = {p1, . . . , pr}, where for each
i = 1, . . . , r, we have non-zero paths qi1, . . . ,qiti with o(pi) f 2t(pi) = {pi − qi1, . . . , pi − qiti }.

Let Y = {p1, . . . , pr,qij | 1 � i � r,1 � j � ti}. Suppose that L0(Y ) = Y . Let ai j be an arrow associated to
qij and assume that aij occurs only once in the path qij . Then every element of Hom(Q 2,Λ) is a coboundary,
that is, φp,x ∈ Im d2 for all p ∈ G 2 and x ∈ f 2 , and thus HH2(Λ) = 0.

Proof. It is enough to show that each element φp,x of Hom(Q 2,Λ), where p is a path in G 2 and
x ∈ f 2 with o(x) = o(p) and t(x) = t(p), is a coboundary. By hypothesis G 2 = {p1, . . . , pr}. Note that
the paths p1, . . . , pr are distinct. Consider the path pi where i ∈ {1, . . . , r}. Then by hypothesis there
are vertices vi, wi with vi NonTip(I)wi = {pi} and vi f 2 wi = {pi −qi1, . . . , pi −qiti }. Thus if x ∈ f 2 and
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o(x) = o(pi) and t(x) = t(pi) then x ∈ vi f 2 wi . Thus x ∈ {pi − qi1, . . . , pi − qiti }. Consider x = pi − qij
where j ∈ {1, . . . , ti}.

The map φpi ,x : Q 2 → Λ is given by

o
(

f 2
k

) ⊗ t
(

f 2
k

) �→
{

pi if f 2
k = x,

0 otherwise.

We have Y = {p1, . . . , pr,qij | 1 � i � r,1 � j � ti} and Y = L0(Y ) so qij ∈ L0(Y ). Therefore there
exists some arrow aij which occurs in qij and does not occur in any element of Y \{qij}.

Define ψ : Q 1 → Λ by

o(α) ⊗ t(α) �→
{−aij if α = aij,

0 otherwise.

Now we want to show that ψ A2 = φpi ,x . Take o( f 2
k )⊗t( f 2

k ) ∈ Q 2. We start by finding ψ A2(o( f 2
k )⊗

t( f 2
k )) by considering two cases.

Case. f 2
k = x.

Here, we have ψ A2(o( f 2
k ) ⊗ t( f 2

k )) = ψ A2(o(x) ⊗ t(x)), where x = pi − qij and qij = ρ1aijρ2
for paths ρ1,ρ2 such that aij does not occur in ρ1 or ρ2 since aij occurs only once in qij
by hypothesis. Let pi = σ1 · · ·σl , ρ1 = ε1 · · ·εn , ρ2 = b1 · · ·bm , where the σ ’s, ε ’s, b’s are arrows.
Then ψ A2(o(x) ⊗ t(x)) = ψ[(o(x) ⊗σ1 (σ2 · · ·σl) + σ1 ⊗σ2 (σ3 · · ·σl) + · · · + (σ1σ2 · · ·σl−1) ⊗σl t(x)) −
(o(x)⊗ε1 (ε2 · · ·εn)aijρ2 + ε1 ⊗ε2 (ε3 · · ·εn)aijρ2 +· · ·+ (ε1ε2 · · ·εn−1)⊗εn ai jρ2 +ρ1 ⊗aij ρ2 +ρ1aij ⊗b1

(b2 · · ·bm) + ρ1aijb1 ⊗b2 (b3 · · ·bm) + · · · + ρ1aij(b1b2 · · ·bm−1) ⊗bm t(x))].
As qij, pi ∈ Y = L0(Y ) and aij occurs in qij , we have that aij does not occur in pi . So aij is not

equal to any of the σ ’s, ε ’s or b’s. Therefore

ψ A2
(
o(x) ⊗ t(x)

) = −ψ(ρ1 ⊗aij ρ2)

= −ρ1ψ
(
t(ρ1) ⊗aij o(ρ2)

)
ρ2

= −ρ1ψ
(
o(aij) ⊗aij t(aij)

)
ρ2

= ρ1aijρ2 = qij .

Case. f 2
k �= x.

We consider separately the cases o( f 2
k )Λt( f 2

k ) = 0 and o( f 2
k )Λt( f 2

k ) �= 0.

(a) If o( f 2
k )Λt( f 2

k ) = 0 then ψ A2(o( f 2
k ) ⊗ t( f 2

k )) = o( f 2
k )ψ A2(o( f 2

k ) ⊗ t( f 2
k ))t( f 2

k ) = 0 as
ψ A2(o( f 2

k ) ⊗ t( f 2
k )) ∈ Λ and o( f 2

k )Λt( f 2
k ) = 0.

(b) If o( f 2
k )Λt( f 2

k ) �= 0 then o( f 2
k )Λt( f 2

k ) = Sp{pu}, the vector space spanned by pu , for some 1 �
u � r. Hence f 2

k = pu − qul for some 1 � l � tu .

We have L0(Y ) = Y so aij does not occur in any element of Y \{qij}. Suppose for contradiction that
aij occurs in qul , so that qul = qij as paths in K Q. Then

o
(

f 2
k

) = o(qul) = o(qij) = o(x)

and

t
(

f 2
k

) = t(qul) = t(qij) = t(x).
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Therefore, o( f 2
k )Λt( f 2

k ) = o(x)Λt(x) = Sp{pi}. Hence, pu = pi by the choice of G 2. Therefore, f 2
k =

pu − qul = pi − qij = x. This gives a contradiction since we assumed f 2
k �= x. Hence aij does not occur

in qul .
Now suppose for contradiction that aij occurs in pu so that pu = qij as paths in K Q. Then

o
(

f 2
k

) = o(pu) = o(qij) = o(x)

and

t
(

f 2
k

) = t(pu) = t(qij) = t(x).

Therefore, Sp{pu} = o( f 2
k )Λt( f 2

k ) = o(x)Λt(x) = Sp{pi}. Therefore, pu = pi by the choice of G 2.
Hence pi = pu = qij in K Q. So pi − qij = 0 in K Q. This contradicts pi − qij being a minimal generator
of I . Therefore, aij does not occur in pu .

Thus aij does not occur in f 2
k . So ψ A2(o( f 2

k ) ⊗ t( f 2
k )) = 0.

Hence ψ A2 is the map

o
(

f 2
k

) ⊗ t
(

f 2
k

) �→
{

qij if f 2
k = x,

0 otherwise.

As pi − qij ∈ f 2, we know that pi = qij in Λ. Hence ψ A2 = φpi ,x . Thus φpi ,x , and hence each element
of Hom(Q 2,Λ), is a coboundary. Hence HH2(Λ) = 0. �
4. Application to standard algebras

We now want to apply Theorem 3.6 to our derived equivalence representatives. We start by con-
sidering the standard derived equivalence representatives, and we need minimal relations for each
such algebra in Asashiba’s list.

We start with the algebra Λ = Λ(Dn, s,1). Note that R(Dn, s,1) for s � 1 is not minimal.
For relations of type (i), let β

[i]
0 β

[i]
1 − γ [i]

0 γ [i]
1 ∈ f 2 and β

[i]
0 β

[i]
1 − α[i]

n−2α
[i]
n−3 · · ·α[i]

2 α[i]
1 ∈ f 2. All rela-

tions of type (ii) are in f 2. We now consider the relations of type (iii). So (β
[i]
0 β

[i]
1 − γ [i]

0 γ [i]
1 )γ [i+1]

0 =
(β

[i]
0 β

[i]
1 γ [i+1]

0 − γ [i]
0 γ [i]

1 γ [i+1]
0 ) ∈ I and β

[i]
0 β

[i]
1 γ [i+1]

0 ∈ I . Therefore γ [i]
0 γ [i]

1 γ [i+1]
0 ∈ I and is not

in f 2. Also γ [i−1]
1 (β

[i]
0 β

[i]
1 − γ [i]

0 γ [i]
1 ) = (γ [i−1]

1 β
[i]
0 β

[i]
1 − γ [i−1]

1 γ [i]
0 γ [i]

1 ) ∈ I and γ [i−1]
1 β

[i]
0 β

[i]
1 ∈ I . So

γ [i−1]
1 γ [i]

0 γ [i]
1 ∈ I and is not in f 2. Similarly we can show that neither β

[i]
0 β

[i]
1 β

[i+1]
0 nor β

[i]
1 β

[i+1]
0 β

[i+1]
1

are in f 2.
Now consider “α-paths.” We have β

[i]
0 β

[i]
1 − α[i]

n−2α
[i]
n−3 · · ·α[i]

2 α[i]
1 ∈ f 2. So (β

[i]
0 β

[i]
1 − α[i]

n−2α
[i]
n−3 · · ·

α[i]
2 α[i]

1 )α[i+1]
n−2 ∈ I and β

[i]
0 β

[i]
1 α[i+1]

n−2 ∈ I . Therefore it follows that α[i]
n−2α

[i]
n−3 · · ·α[i]

2 α[i]
1 α[i+1]

n−2 ∈ I and is

not in f 2. Also α[i−1]
1 (β

[i]
0 β

[i]
1 − α[i]

n−2α
[i]
n−3 · · ·α[i]

2 α[i]
1 ) ∈ I and α[i−1]

1 β
[i]
0 β

[i]
1 ∈ I . So α[i−1]

1 α[i]
n−2α

[i]
n−3 · · ·

α[i]
2 α[i]

1 ∈ I and not in f 2.

However, the path α[i]
2 α[i]

1 α[i+1]
n−2 · · ·α[i+1]

2 cannot be obtained from any other elements, so

α[i]
2 α[i]

1 α[i+1]
n−2 · · ·α[i+1]

2 ∈ f 2. In general, α[i]
k α[i]

k−1 · · ·α[i+1]
k+1 α[i+1]

k ∈ f 2 for k = {2, . . . ,n − 3}. So we have
the following proposition.

Proposition 4.1. For Λ = Λ(Dn, s,1) with s � 1, and for all i ∈ {0, . . . , s − 1}, let

f 2
1,1,i = β

[i]
0 β

[i]
1 − γ [i]

0 γ [i]
1 , f 2

1,2,i = β
[i]
0 β

[i]
1 − α[i]

n−2α
[i]
n−3 · · ·α[i]

2 α[i]
1 ,

f 2
2,1,i = α[i]

1 β
[i+1]
0 , f 2

2,2,i = α[i]
1 γ [i+1]

0 ,

f 2
2,3,i = β

[i]
1 α[i+1]

n−2 , f 2
2,4,i = γ [i]

1 α[i+1]
n−2 ,
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f 2
2,5,i = β

[i]
1 γ [i+1]

0 , f 2
2,6,i = γ [i]

1 β
[i+1]
0 and

f 2
3,k,i = α[i]

k · · ·α[i]
1 α[i+1]

n−2 · · ·α[i+1]
k , for k = {2, . . . ,n − 3}.

Then f 2 = { f 2
1,1,i, f 2

1,2,i, f 2
2,1,i, f 2

2,2,i, f 2
2,3,i, f 2

2,4,i, f 2
2,5,i, f 2

2,6,i, f 2
3,k,i} for i = 0, . . . , s − 1 and k = 2, . . . ,

n − 3 is a minimal set of relations.

For the rest of the algebras, we can find a minimal set of relations in a similar way. They are given
in the following propositions.

Proposition 4.2. For Λ = Λ(Dn, s,2) with s � 2, let,
for all i ∈ {0, . . . , s − 1},

f 2
1,1,i = β

[i]
0 β

[i]
1 − γ [i]

0 γ [i]
1 , f 2

1,2,i = β
[i]
0 β

[i]
1 − α[i]

n−2α
[i]
n−3 · · ·α[i]

2 α[i]
1 ,

f 2
2,1,i = α[i]

1 β
[i+1]
0 , f 2

2,2,i = α[i]
1 γ [i+1]

0 ,

f 2
2,3,i = β

[i]
1 α[i+1]

n−2 , f 2
2,4,i = γ [i]

1 α[i+1]
n−2 ,

for all i ∈ {0, . . . , s − 2},

f 2
2,5,i = β

[i]
1 γ [i+1]

0 , f 2
2,6,i = γ [i]

1 β
[i+1]
0 ,

f 2
2,7,s−1 = β

[s−1]
1 β

[0]
0 , f 2

2,8,s−1 = γ [s−1]
1 γ [0]

0 ,

for i ∈ {0, . . . , s − 1},

f 2
3,k,i = α[i]

k · · ·α[i]
1 α[i+1]

n−2 · · ·α[i+1]
k , for k = {2, . . . ,n − 3}.

Then f 2 = { f 2
1,1,i, f 2

1,2,i, f 2
2,1,i, f 2

2,2,i, f 2
2,3,i, f 2

2,4,i for i = 0, . . . , s − 1} ∪ { f 2
2,5,i, f 2

2,6,i for i = 0, . . . , s − 2} ∪
{ f 2

2,7,s−1, f 2
2,8,s−1} ∪ { f 2

3,k,i for i = 0, . . . , s − 1 and k = 2, . . . ,n − 3} is a minimal set of relations.

Note that Proposition 4.2 is for s � 2. For s = 1 the minimal relations are different and are given
in the next proposition.

Proposition 4.3. For Λ = Λ(Dn,1,2), let

f 2
1,1 = β0β1 − γ0γ1, f 2

1,2 = β0β1 − αn−2αn−3 · · ·α2α1,

f 2
2,1 = α1β0, f 2

2,2 = α1γ0,

f 2
2,3 = β1αn−2, f 2

2,4 = γ1αn−2,

f 2
2,5 = β1β0, f 2

2,6 = γ1γ0 and

f 2
3,k = αk · · ·α1αn−2 · · ·αk, for k ∈ {2, . . . ,n − 3}.

Then f 2 = { f 2
1,1, f 2

1,2, f 2
2,1, f 2

2,2, f 2
2,3, f 2

2,4, f 2
2,5, f 2

2,6, f 2
3,k for k = 2, . . . ,n − 3} is a minimal set of relations.

Again for Λ(D4, s,3) we separate the cases s � 2 and s = 1.
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Proposition 4.4. For Λ = Λ(D4, s,3) with s � 2, let,
for all i ∈ {0, . . . , s − 1}:

f 2
1,1,i = β

[i]
0 β

[i]
1 − γ [i]

0 γ [i]
1 , f 2

1,2,i = β
[i]
0 β

[i]
1 − α[i]

0 α[i]
1 ,

f 2
2,1,i = β

[i]
1 α[i+1]

0 , f 2
2,2,i = α[i]

1 γ [i+1]
0 ,

f 2
2,3,i = γ [i]

1 β
[i+1]
0 ,

for all i ∈ {0, . . . , s − 2}:

f 2
2,4,i = α[i]

1 β
[i+1]
0 , f 2

2,5,i = β
[i]
1 γ [i+1]

0 ,

f 2
2,6,i = γ [i]

1 α[i+1]
0 ,

f 2
2,7,s−1 = γ [s−1]

1 γ [0]
0 , f 2

2,8,s−1 = β
[s−1]
1 β

[0]
0 ,

f 2
2,9,s−1 = α[s−1]

1 α[0]
0 ;

f 2
3,1,s−1 = β

[s−1]
1 β

[0]
0 β

[0]
1 , f 2

3,2,s−1 = α[s−1]
0 α[s−1]

1 β
[0]
0 ,

f 2
3,4,s−1 = β

[s−1]
0 β

[s−1]
1 γ [0]

0 , f 2
3,5,s−1 = α[s−1]

1 β
[0]
0 β

[0]
1 and

f 2
3,6,s−1 = β

[s−1]
1 γ [0]

0 γ [0]
1 , f 2

3,7,s−1 = γ [s−1]
1 α[0]

0 α[0]
1 .

Then f 2 = { f 2
1,1,i, f 2

1,2,i, f 2
2,1,i, f 2

2,2,i, f 2
2,3,i , for i = 0, . . . , s − 1} ∪ { f 2

2,4,i, f 2
2,5,i, f 2

2,6,i for i = 0, . . . , s − 2} ∪
{ f 2

2,7,s−1, f 2
2,8,s−1, f2,9,s−1, f 2

3,1,s−1, f 2
3,2,s−1, f 2

3,3,s−1, f 2
3,4,s−1, f 2

3,5,s−1, f 2
3,6,s−1} is a minimal set of rela-

tions.

Proposition 4.5. For Λ = Λ(D4,1,3), let

f 2
1,1 = β0β1 − γ0γ1, f 2

1,2 = β0β1 − α0α1,

f 2
2,1 = β1α0, f 2

2,2 = α1γ0,

f 2
2,3 = γ1β0,

f 2
2,4 = γ1γ0, f 2

2,5 = β1β0 and

f 2
2,6 = α1α0.

Then f 2 = { f 2
1,1, f 2

1,2, f 2
2,1, f 2

2,2, f 2
2,3, f 2

2,4, f 2
2,5, f 2

2,6} is a minimal set of relations.

Proposition 4.6. For the standard algebra Λ = Λ(D3m, s/3,1) with s � 1, for all i ∈ {1, . . . , s}, let

f 2
1,i = βiβi+1 − α[i]

1 · · ·α[i]
m , f 2

2,i = α[i]
m α[i+2]

1 ,

f 2
3,i, j = α[i]

j · · ·α[i]
m βi+2α

[i+3]
1 · · ·α[i+3]

j for all j ∈ {2, . . . ,m − 1}.

Then f 2 = { f 2
1,i, f 2

2,i, f 2
3,i, j for j = 2, . . . ,m − 1 and i = 1, . . . , s} is a minimal set of relations.
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Proposition 4.7. For Λ = Λ(En, s,1) with s � 1 and for all i ∈ {0, . . . , s − 1}, let

f 2
1,1,i = β

[i]
3 β

[i]
2 β

[i]
1 − γ [i]

2 γ [i]
1 , f 2

1,2,i = β
[i]
3 β

[i]
2 β

[i]
1 − α[i]

n−3α
[i]
n−4 · · ·α[i]

2 α[i]
1 ,

f 2
2,1,i = α[i]

1 β
[i+1]
3 , f 2

2,2,i = α[i]
1 γ [i+1]

2 ,

f 2
2,3,i = β

[i]
1 α[i+1]

n−3 , f 2
2,4,i = β

[i]
1 γ [i+1]

2 ,

f 2
2,5,i = γ [i]

1 α[i+1]
n−3 , f 2

2,6,i = γ [i]
1 β

[i+1]
3 ,

f 2
3,k,i = α[i]

k α[i]
k−1 · · ·α[i+1]

k+1 α[i+1]
k for k ∈ {2, . . . ,n − 4} and

f 2
4,i = β

[i]
2 β

[i]
1 β

[i]
3 β

[i+1]
2 .

Then f 2 = { f 2
1,1,i, f 2

1,2,i, f 2
2,1,i, f 2

2,2,i, f 2
2,3,i, f 2

2,4,i, f 2
2,5,i, f 2

2,6,i, f 2
3,k,i for k ∈ {2, . . . ,n−4}, f 2

4,i} is a minimal
set of relations.

Finally, for the algebras of type E6 we have 2 cases to consider.

Proposition 4.8. For Λ = Λ(E6, s,2) with s � 2, let,
for all i ∈ {0, . . . , s − 1}:

f 2
1,1,i = β

[i]
3 β

[i]
2 β

[i]
1 − γ [i]

2 γ [i]
1 , f 2

1,2,i = β
[i]
3 β

[i]
2 β

[i]
1 − α[i]

3 α[i]
2 α[i]

1 ,

f 2
2,1,i = γ [i]

1 α[i+1]
3 , f 2

2,2,i = α[i]
1 β

[i+1]
3 ,

f 2
2,3,i = α[i]

1 γ [i+1]
2 , f 2

2,4,i = β
[i]
1 γ [i+1]

2 ,

and for all i ∈ {0, . . . , s − 2}:

f 2
2,5,i = α[i]

1 β
[i+1]
3 , f 2

2,6,i = β
[i]
1 α[i+1]

3 ,

f 2
2,7,s−1 = α[s−1]

1 α[0]
3 , f 2

2,8,s−1 = β
[s−1]
1 β

[0]
3

f 2
3,1,i = α[i]

2 α[i]
1 α[i+1]

3 α[i+1]
2 , f 2

3,2,i = β
[i]
2 β

[i]
1 β

[i+1]
3 β

[i+1]
2 ,

f 2
3,3,s−1 = α[s−1]

2 α[s−1]
1 β

[0]
3 β

[0]
2 , f 2

3,4,s−1 = β
[s−1]
2 β

[s−1]
1 α[0]

3 α[0]
2 .

Then f 2 = { f 2
1,1,i, f 2

1,2,i, f 2
2,1,i, f 2

2,2,i, f 2
2,3,i, f 2

2,4,i , for i = 0, . . . , s − 1}∪ { f 2
2,5,i, f 2

2,6,i , for i = 0, . . . , s − 2}∪
{ f 2

2,7,s−1, f 2
2,8,s−1} ∪ { f 2

3,1,i, f 2
3,2,i , for i = 0, . . . , s − 2} ∪ { f 2

3,3,s−1, f3,4,s−1} is a minimal set of relations.

Proposition 4.9. For Λ = Λ(E6,1,2), let

f 2
1,1 = β3β2β1 − γ2γ1, f 2

1,2 = β3β2β1 − α3α2α1,

f 2
2,1 = γ1α3, f 2

2,2 = γ1β3,

f 2
2,3 = α1γ2, f 2

2,4 = β1γ2,

f 2
2,5 = α1α3, f 2

2,6 = β1β3,

f 2
3,1 = α2α1β3β2, f 2

3,2 = β2β1α3α2.

Then f 2 = { f 2
1,1, f 2

1,2, f 2
2,1, f 2

2,2, f 2
2,3, f 2

2,4, f 2
2,5, f 2

2,6, f 2
3,1, f 2

3,2} is a minimal set of relations.
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We now apply Theorem 3.6 to the self-injective algebras of type Dn and E6,7,8 using Proposi-
tions 4.2–4.9.

For example consider the algebra Λ(Dn, s,2) for s � 2. Fix an order on the vertices and the arrows:

α[0]
n−2 > α[0]

n−3 > · · · > α[0]
1 > γ [0]

0 > γ [0]
1 > β

[0]
0 > β

[0]
1

> α[1]
n−2 > · · · > β

[1]
1 > · · · > α[s−1]

n−2 > · · · > β
[s−1]
1

and

β
[s−1]
1 > e1,0 > en−2,0 > · · · > e1,1 > en,0 > en−1,0 > · · · > e1,s−1

> en−2,s−1 > · · · > en,s−1 > en−1,s−1.

Then

tip
(

f 2
1,1,i

) = tip
(
β

[i]
0 β

[i]
1 − γ [i]

0 γ [i]
1

) = γ [i]
0 γ [i]

1 and

tip
(

f 2
1,2,i

) = tip
(
β

[i]
0 β

[i]
1 − α[i]

n−2α
[i]
n−3 · · ·α[i]

2 α[i]
1

) = α[i]
n−2α

[i]
n−3 · · ·α[i]

2 α[i]
1

for i = 0, . . . , s − 1. For all other f 2
j ∈ f 2 with f 2

j �= f 2
1,1,i, f 2

1,2,i we know that f 2
j is a path in K Q

so tip( f 2
j ) = f 2

j . In these cases o( f 2
j )NonTip(I)t( f 2

j ) = {0}. Let vi = o( f 2
1,1,i) = o( f 2

1,2,i) and let wi =
t( f 2

1,1,i) = t( f 2
1,2,i) for i = 0, . . . , s − 1. Then (vi, wi) ∈ Bdy( f 2) and vi NonTip(I)wi = {β[i]

0 β
[i]
1 } for all

i = 0, . . . , s − 1. So let p[i] = β
[i]
0 β

[i]
1 for i = 0, . . . , s − 1. Then vi f 2 wi = {β[i]

0 β
[i]
1 − γ [i]

0 γ [i]
1 , β

[i]
0 β

[i]
1 −

α[i]
n−2α

[i]
n−3 · · ·α[i]

2 α[i]
1 } = {p[i] − q[i]

1 , p[i] − q[i]
2 }, where q[i]

1 = γ [i]
0 γ [i]

1 , q[i]
2 = α[i]

n−2α
[i]
n−3 · · ·α[i]

2 α[i]
1 . With

the notation of Theorem 3.6, G 2 = {β[i]
0 β

[i]
1 | i = 0, . . . , s − 1} and Y = {β[i]

0 β
[i]
1 , γ [i]

0 γ [i]
1 ,α[i]

n−2α
[i]
n−3 · · ·

α[i]
2 α[i]

1 ‖ i = 0, . . . , s − 1} = L0(Y ). Choose a[i]
1 = γ [i]

0 and a[i]
2 = α[i]

n−2 so that a[i]
1 and a[i]

2 are arrows

associated to q[i]
1 and q[i]

2 respectively, and a[i]
j occurs once in q[i]

j for j = 1,2. Then by applying

Theorem 3.6, every element of Hom(Q 2,Λ) is a coboundary and so HH2(Λ) = 0.
Similar arguments give the following corollary.

Corollary 4.10. Suppose s � 2. Let Λ be one of the standard algebras Λ(Dn, s,1), Λ(Dn, s,2) for
n � 4, Λ(D4, s,3), Λ(D3m, s/3,1) with m � 2,3 � s, Λ(En, s,1) with n ∈ {6,7,8} or Λ(E6, s,2). Then
HH2(Λ) = 0.

Remark. Theorem 3.6 does not apply if s = 1 since in this case there is some (v, w) ∈ Bdy( f 2) with
dim vΛw > 1.

5. HH2(Λ) for the standard self-injective algebras of finite representation type

In this section we determine HH2(Λ) for the standard algebras Λ(Dn, s,1), Λ(Dn, s,2), Λ(D4, s,3),
Λ(D3m, s/3,1), Λ(En, s,1), Λ(E6, s,2) when s = 1. A sketch of the proof is given in each type. We
start with Λ(Dn, s,2) since HH2(Λ) �= 0 in this case.

Theorem 5.1. For Λ = Λ(Dn,1,2) we have dim HH2(Λ) = 1.

Proof. For Λ = Λ(Dn,1,2) we label the quiver Q (Dn,1) as follows:
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n − 2

αn−3

n − 3 n − 1

β1

n

γ1

1

γ0

β0

αn−2

. . .

2

α1

The set f 2 of minimal relations was given in Proposition 4.3. Recall that the projective Q 3 =⊕
y∈ f 3 Λo(y) ⊗ t(y)Λ = (Λe1 ⊗ en−3Λ) ⊕ (Λe1 ⊗ en−2Λ) ⊕ (Λe1 ⊗ en−1Λ) ⊕ (Λe1 ⊗ enΛ) ⊕ (Λe2 ⊗

e1Λ)⊕ (Λen−1 ⊗ e1Λ)⊕ (Λen ⊗ e1Λ)⊕⊕n−2
m=3(Λem ⊗ em−2Λ). (We note that the projective Q 3 is also

described in [8] although Happel gives no description of the maps in the Λ, Λ-projective resolution
of Λ.) Following [6], and with the notation introduced in Section 1, we may choose the set f 3 to
consist of the following elements:

{
f 3
1,1, f 3

1,2, f 3
1,3, f 3

1,4, f 3
2 , f 3

n−1, f 3
n , f 3

3 , f 3
m

}
, with m ∈ {4, . . . ,n − 2} where

f 3
1,1 = f 2

1,2αn−2αn−3 = β0 f 2
2,3αn−3 − αn−2 f 2

3,n−3 ∈ e1 K Qen−3,

f 3
1,2 = f 2

1,1αn−2 = β0 f 2
2,3 − γ0 f 2

2,4 ∈ e1 K Qen−2,

f 3
1,3 = f 2

1,2β0 = β0 f 2
2,5 − αn−2 · · ·α2 f 2

2,1 ∈ e1 K Qen−1,

f 3
1,4 = f 2

1,1γ0 − f 2
1,2γ0 = αn−2 · · ·α2 f 2

2,2 − γ0 f 2
2,6 ∈ e1 K Qen,

f 3
2 = f 2

2,1β1 − f 2
2,2γ1 = α1 f 2

1,1 ∈ e2 K Qe1,

f 3
n−1 = f 2

2,5β1 − f 2
2,3αn−3 · · ·α1 = β1 f 2

1,2 ∈ en−1 K Qe1,

f 3
n = f 2

2,4αn−3 · · ·α1 − f 2
2,6γ1 = γ1 f 2

1,1 − γ1 f 2
1,2 ∈ en K Qe1,

f 3
3 = f 2

3,2α1 = α2 f 2
2,1β1 − α2α1 f 2

1,2 ∈ e3 K Qe1,

f 3
m = f 2

3,m−1αm−2 = αm−1 f 2
3,m−2 ∈ em K Qem−2

for m ∈ {4, . . . ,n − 2}.

We know that HH2(Λ) = Ker d3/ Im d2. First we will find Im d2. Let f ∈ Hom(Q 1,Λ) and so write

f (e1 ⊗β0 en−1) = c1β0, f (en−1 ⊗β1 e1) = c2β1,

f (e1 ⊗γ0 en) = c3γ0, f (en ⊗γ1 e1) = c4γ1,

f (e1 ⊗αn−2 en−2) = dn−2αn−2



D. Al-Kadi / Journal of Algebra 321 (2009) 1049–1078 1067
and

f (el+1 ⊗αl el) = dlαl for l ∈ {1, . . . ,n − 3},

where c1, c2, c3, c4,dl ∈ K for l ∈ {1, . . . ,n − 2}.
Now we find f A2 = d2 f . We have
f A2(e1 ⊗ f 2

1,1
e1) = f (e1 ⊗β0 en−1)β1 − f (e1 ⊗γ0 en)γ1 +β0 f (en−1 ⊗β1 e1)−γ0 f (en ⊗γ1 e1) = c1β0β1 −

c3γ0γ1 + c2β0β1 − c4γ0γ1 = (c1 − c3 + c2 − c4)β0β1.
Also f A2(e1 ⊗ f 2

1,2
e1) = f (e1 ⊗β0 en−1)β1 + β0 f (en−1 ⊗β1 e1) − f (e1 ⊗αn−2 en−2)αn−3 · · ·α1 −

αn−2 f (en−2 ⊗αn−3 en−3)αn−4 · · ·α1 − . . .−αn−2 · · ·α2 f (e2 ⊗α1 e1) = c1β0β1 +c2β0β1 −dn−2αn−2 · · ·α1 −
· · · − d1αn−2 · · ·α2α1 = (c1 + c2 − dn−2 − · · · − d1)β0β1.

By direct calculation, we may show that f A2 is given by

f A2(e1 ⊗ f 2
1,1

e1) = (c1 − c3 + c2 − c4)β0β1 = c′β0β1,

f A2(e1 ⊗ f 2
1,2

e1) = (c1 + c2 − dn−2 − · · · − d1)β0β1 = c′′β0β1

for some c′, c′′ ∈ K and

f A2
(
o
(

f 2
j

) ⊗ t
(

f 2
j

)) = 0

for all f 2
j �= f 2

1,1, f 2
1,2. So dim Im d2 = 2.

Now we determine Ker d3. Let h ∈ Ker d3, so h ∈ Hom(Q 2,Λ) and d3h = 0. Then h : Q 2 → Λ is
given by

h(e1 ⊗ f 2
1,1

e1) = c1e1 + c2β0β1,

h(e1 ⊗ f 2
1,2

e1) = c3e1 + c4β0β1,

h
(
o
(

f 2
2, j

) ⊗ f 2
2, j

t
(

f 2
2, j

)) = 0, for j ∈ {1, . . . ,4},
h(en−1 ⊗ f 2

2,5
en−1) = c5en−1,

h(en ⊗ f 2
2,6

en) = c6en and

h
(
o
(

f 2
3,k

) ⊗ f 2
3,k

t
(

f 2
3,k

)) = dkαk, for k ∈ {2, . . . ,n − 3}

for some c1, . . . , c6,dk ∈ K for k ∈ {2, . . . ,n − 3}.
Then

h A3(e1 ⊗ f 3
1,1

en−3) = h(e1 ⊗ f 2
1,2

e1)αn−2αn−3 − β0h(en−1 ⊗ f 2
2,3

en−2)αn−3 + αn−2h(en−2 ⊗ f 2
3,n−3

en−3)

= (c3e1 + c4β0β1)αn−2αn−3 − 0 + dn−3αn−2αn−3 = (c3 + dn−3)αn−2αn−3.

As h ∈ Ker d3 we have c3 + dn−3 = 0.
In a similar way, by considering h A3(o( f 3

l ) ⊗ f 3
l

t( f 3
l )) for all f 3

l ∈ f 3, f 3
l �= f 3

1,1 it follows that h is

given by

h(e1 ⊗ f 2
1,1

e1) = c2β0β1,

h(e1 ⊗ f 2
1,2

e1) = c3e1 + c4β0β1,

h
(
o
(

f 2
2, j

) ⊗ f 2 t
(

f 2
2, j

)) = 0, for j ∈ {1, . . . ,4},

2, j



1068 D. Al-Kadi / Journal of Algebra 321 (2009) 1049–1078
h(en−1 ⊗ f 2
2,5

en−1) = c3en−1,

h(en ⊗ f 2
2,6

en) = c3en and

h
(
o
(

f 2
3,k

) ⊗ f 2
3,k

t
(

f 2
3,k

)) = −c3αk, for k ∈ {2, . . . ,n − 3}

for some c2, c3, c4 ∈ K . Hence dim Ker d3 = 3.
Therefore dim HH2(Λ) = dim Ker d3 − dim Im d2 = 3 − 2 = 1. �

5.2. A basis for HH2(Λ) for Λ = Λ(Dn,1,2).

Let η be the map in Ker d3 given by

e1 ⊗ f 2
1,2

e1 �→ e1,

en−1 ⊗ f 2
2,5

en−1 �→ en−1,

en ⊗ f 2
2,6

en �→ en,

o
(

f 2
3,k

) ⊗ f 2
3,k

t
(

f 2
3,k

) �→ −αk, for k ∈ {2, . . . ,n − 3},
else �→ 0.

Clearly, η is a non-zero map. Suppose for contradiction that η ∈ Im d2. Then by the definition
of η, we have η(en ⊗ f 2

2,6
en) = en . On the other hand, η(en ⊗ f 2

2,6
en) = f A2(en ⊗ f 2

2,6
en) for some

f ∈ Hom(Q 1,Λ). So η(en ⊗ f 2
2,6

en) = 0. So we have a contradiction. Therefore η /∈ Im d2.

Thus η + Im d2 is a non-zero element of HH2(Λ) and the set {η + Im d2} is a basis of HH2(Λ).

Theorem 5.3. For Λ = Λ(Dn,1,1) with n � 4, we have HH2(Λ) = 0.

Proof. With the quiver Q(Dn,1) as in Theorem 5.1 and direct calculations for s = 1 we choose the
set f 3 to consist of the following elements:

{
f 3
1,1, f 3

1,2, f 3
1,3, f 3

1,4, f 3
2 , f 3

n−1, f 3
n , f 3

3 , f 3
m

}
, with m ∈ {4, . . . ,n − 2} where

f 3
1,1 = f 2

1,2αn−2αn−3 = β0 f 2
2,3αn−3 − αn−2 f 2

3,n−3 ∈ e1 K Qen−3,

f 3
1,2 = f 2

1,1αn−2 = β0 f 2
2,3 − γ0 f 2

2,4 ∈ e1 K Qen−2,

f 3
1,3 = f 2

1,1β0 − f 2
1,2β0 = αn−2 · · ·α2 f 2

2,1 − γ0 f 2
2,6 ∈ e1 K Qen−1,

f 3
1,4 = f 2

1,2γ0 = β0 f 2
2,5 − αn−2 · · ·α2 f 2

2,2 ∈ e1 K Qen,

f 3
2 = f 2

2,1β1 − f 2
2,2γ1 = α1 f 2

1,1 ∈ e2 K Qe1,

f 3
n−1 = f 2

2,3αn−3 · · ·α1 − f 2
2,5γ1 = β1 f 2

1,1 − β1 f 2
1,2 ∈ en−1 K Qe1,

f 3
n = f 2

2,6β1 − f 2
2,4αn−3 · · ·α1 = γ1 f 2

1,2 ∈ en K Qe1,

f 3
3 = f 2

3,2α1 = α2 f 2
2,1β1 − α2α1 f 2

1,2 ∈ e3 K Qe1,

f 3
m = f 2

3,m−1αm−2 = αm−1 f 2
3,m−2 ∈ em K Qem−2

for m ∈ {4, . . . ,n − 2}.

Then it is straightforward to show that dim Im d2 = dim Ker d3 = 2 and so HH2(Λ) = 0. �
Theorem 5.4. For Λ = Λ(D4,1,3) we have HH2(Λ) = 0.
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Proof. We have the quiver Q(D4,1) as in Theorem 5.1 with n = 4 and, following Asashiba in [1],
write α0 for α2. By direct calculation we choose the following set f 3 = { f 3

1,1, f 3
1,2, f 3

1,3, f 3
2 , f 3

3 , f 3
4 }

where

f 3
1,1 = f 2

1,1γ0 − f 2
1,2γ0 = α0 f 2

2,2 − γ0 f 2
2,4 ∈ e1 K Qe4,

f 3
1,2 = f 2

1,1β0 = β0 f 2
2,5 − γ0 f 2

2,3 ∈ e1 K Qe3,

f 3
1,3 = f 2

1,2α0 = β0 f 2
2,1 − α0 f 2

2,6 ∈ e1 K Qe2,

f 3
2 = f 2

2,6α1 − f 2
2,2γ1 = α1 f 2

1,1 − α1 f 2
1,2 ∈ e2 K Qe1,

f 3
3 = f 2

2,5β1 − f 2
2,1α1 = β1 f 2

1,2 ∈ e3 K Qe1,

f 3
4 = f 2

2,3β1 − f 2
2,4γ1 = γ1 f 2

1,1 ∈ e4 K Qe1.

We can then show that dim Ker d3 = dim Im d2 = 2 and so HH2(Λ) = 0. �
Theorem 5.5. For the standard algebra Λ = Λ(D3m,1/3,1) we have

dim HH2(Λ) =

⎧⎪⎪⎨
⎪⎪⎩

1 if m � 3 and char K �= 2,

3 if m � 3 and char K = 2,

2 if m = 2 and char K �= 2,

4 if m = 2 and char K = 2.

Proof. We consider first the case m � 3. Keeping the notation of 1.8 and Proposition 4.6, the set f 3

may be chosen to consist of the following elements:

{
f 3
1 , f 3

t , f 3
m−1, f 3

m

}
with t ∈ {2, . . . ,m − 2} where

f 3
1 = f 2

1 βα1α2 = β f 2
1 α1α2 + βα1 · · ·αm−1 f 2

2 α2 − α1 f 2
3,2 ∈ e1 K Qe3,

f 3
t = f 2

3,tαt+1 = αt f 2
3,t+1 ∈ et K Qet+1 for t ∈ {2, . . . ,m − 2},

f 3
m−1 = f 2

3,m−1αm = αm−1 f 2
2 α2 · · ·αmβ + αm−1αm f 2

1 β − αm−1αmβ f 2
1 ∈ em−1 K Qe1,

f 3
m = f 2

2 α2 · · ·αmβα1 = −αm f 2
1 βα1 + αmβ f 2

1 α1 + αmβα1 · · ·αm−1 f 2
2 ∈ em K Qe2.

To find Im d2, let f ∈ Hom(Q 1,Λ) and so

f (e1 ⊗β e1) = c1e1 + c2β + c3β
2 + c4β

3,

f (e1 ⊗α1 e2) = d1α1 + k1βα1,

f (el ⊗αl el+1) = dlαl, for l ∈ {2, . . . ,m − 1},
f (em ⊗αm e1) = dmαm + kmαmβ,

where c1, c2, c3, c4,dl,k1,km ∈ K for l ∈ {1, . . . ,m}.
It is straightforward to show that f A2 is given by

f A2(e1 ⊗ f 2
1

e1) = 2c1β − (d1 + d2 + · · · + dm − 2c2)β
2 + (2c3 − k1 − km)β3,

f A2(em ⊗ f 2
2

e2) = (k1 + km)αmβα1,

f (e j ⊗ f 2 e j+1) = 0, for all j ∈ {2, . . . ,m − 1}.

3, j
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So

dim Im d2 =
{

4 if char K �= 2,

2 if char K = 2.

Now let h ∈ Ker d3, so h ∈ Hom(Q 2,Λ) and d3h = 0. Then h : Q 2 → Λ is given by

h(e1 ⊗ f 2
1

e1) = c1e1 + c2β + c3β
2 + c4β

3,

h(em ⊗ f 2
2

e2) = c5αmβα1 and

h(e j ⊗ f 2
3, j

e j+1) = d jα j, for j ∈ {2, . . . ,m − 1},

for some c1, . . . , c5,d j ∈ K where j = 2, . . . ,m − 1.
By considering h A3(e1 ⊗ f 3

1
e3) we see that d2 = 0.

Then, for t ∈ {2, . . . ,m − 2}, we have h A3(et ⊗ f 3
t

et+2) = (dt − dt+1)αtαt+1. Then dt − dt+1 = 0 and
so dt = dt+1 for t = 2, . . . ,m − 2. Hence d2 = d3 = · · · = dm−2 = dm−1. We already have d2 = 0 so
d j = 0 for j = 2, . . . ,m − 1.

Moreover, h A3(em ⊗ f 3
m

e2) = 0 so this gives us no information. Thus, it may be verified that h ∈
Ker d3 is given by

h(e1 ⊗ f 2
1

e1) = c1e1 + c2β + c3β
2 + c4β

3,

h(em ⊗ f 2
2

e2) = c5αmβα1 and

h(e j ⊗ f 2
3, j

e j+1) = 0, for j ∈ {2, . . . ,m − 1}

for some c1, . . . , c5 ∈ K and so dim Ker d3 = 5.
Therefore,

dim HH2(Λ) =
{

5 − 4 = 1 if char K �= 2,

5 − 2 = 3 if char K = 2.

For m = 2, we again have that

dim Im d2 =
{

4 if char K �= 2,

2 if char K = 2.

However, in this case we have that dim Ker d3 = 6. Hence, for m = 2, we have

dim HH2(Λ) =
{

2 if char K �= 2,

4 if char K = 2.

This completes the proof. �
5.6. A basis for HH2(Λ) for the standard algebra Λ = Λ(D3m,1/3,1) for m � 3.

Suppose. char K �= 2.

From Theorem 5.5 we know that dim HH2(Λ) = 1 in this case. Let h be the map given by

e1 ⊗ f 2
1

e1 �→ e1,

else �→ 0.

Then {h + Im d2} is a basis of HH2(Λ) when char K �= 2.
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Suppose. char K = 2.

Here dim HH2(Λ) = 3 from Theorem 5.5. We start by defining non-zero maps h1,h2,h3 in Ker d3.
Let h1 be the map given by

e1 ⊗ f 2
1

e1 �→ e1,

else �→ 0,

h2 be given by

e1 ⊗ f 2
1

e1 �→ β,

else �→ 0,

and h3 be given by

e1 ⊗ f 2
1

e1 �→ β3,

else �→ 0.

It can be shown that these maps are not in Im d2 since char K = 2. Now we will show that {h1 +
Im d2,h2 + Im d2,h3 + Im d2} is a linearly independent set in Ker d3/ Im d2 = HH2(Λ).

Suppose a(h1 + Im d2) + b(h2 + Im d2) + c(h3 + Im d2) = 0 + Im d2 for some a,b, c ∈ K . So ah1 +
bh2 + ch3 ∈ Im d2. Hence ah1 + bh2 + ch3 = f A2 for some f ∈ Hom(Q 1,Λ).

Then (ah1 + bh2 + ch3)(e1 ⊗ f 2
1

e1) = f A2(e1 ⊗ f 2
1

e1). So ae1 + bβ + cβ3 = dβ2 − kβ3 for some

d,k ∈ K . Since {e1, β,β2, β3} is linearly independent in Λ, we have a = b = 0 and c = k. But 0 =
(ah1 + bh2 + ch3)(em ⊗ f 2

2
e2) = f A2(em ⊗ f 2

2
e2) = kαmβα1. So k = 0 and thus c = 0. Hence {h1 +

Im d2,h2 + Im d2,h3 + Im d2} is linearly independent in HH2(Λ) and forms a basis of HH2(Λ) when
char K = 2.

5.7. A basis for HH2(Λ) for the standard algebra Λ = Λ(D3m,1/3,1) for m = 2.

Note first that f 2
1 = β2 − α1α2 and f 2

2 = α2α1.

Suppose. char K �= 2.

From Theorem 5.5 we know that dim HH2(Λ) = 2 in this case. Let h1 be the map given by

e1 ⊗ f 2
1

e1 �→ e1,

else �→ 0,

and h2 be given by

e2 ⊗ f 2
2

e2 �→ e2,

else �→ 0.

A similar argument to that above shows that {h1 + Im d2,h2 + Im d2} is a basis of HH2(Λ) when
char K �= 2.

Suppose. char K = 2.
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Here dim HH2(Λ) = 4 from Theorem 5.5. Let h1 be the map given by

e1 ⊗ f 2
1

e1 �→ e1,

else �→ 0,

h2 be given by

e1 ⊗ f 2
1

e1 �→ β,

else �→ 0,

h3 be given by

e1 ⊗ f 2
1

e1 �→ β3,

else �→ 0,

and h4 be given by

e2 ⊗ f 2
2

e2 �→ e2,

else �→ 0.

Again, a similar argument shows that {h1 + Im d2,h2 + Im d2,h3 + Im d2,h4 + Im d2} is linearly inde-
pendent in HH2(Λ) and forms a basis of HH2(Λ) when char K = 2.

Theorem 5.8. For Λ = Λ(En,1,1) with n = 6,7,8, we have HH2(Λ) = 0.

Proof. For Λ = Λ(En,1,1) we have the quiver Q(En,1) which is described:

n − 3

αn−4

n − 1

β2n − 4 n

γ1

1

γ2

β3

αn−3

. . .

n − 2
β1

2

α1
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The set f 3 may be chosen to consist of the following elements:

{
f 3
1,1, f 3

1,2, f 3
1,3, f 3

1,4, f 3
1,5, f 3

2 , f 3
n−1, f 3

n−2, f 3
n , f 3

3 , f 3
m

}
where

f 3
1,1 = f 2

1,2αn−3αn−4 = β3β2 f 2
2,3αn−4 − αn−3 f 2

3,n−4 ∈ e1 K Qen−4,

f 3
1,2 = f 2

1,1αn−3 = β3β2 f 2
2,3 − γ2 f 2

2,5 ∈ e1 K Qen−3,

f 3
1,3 = f 2

1,1β3β2 = β3 f 2
4 − γ2 f 2

2,6β2 ∈ e1 K Qen−2,

f 3
1,4 = f 2

1,1β3 − f 2
1,2β3 = αn−3αn−4 · · ·α2 f 2

2,1 − γ2 f 2
2,6 ∈ e1 K Qen−1,

f 3
1,5 = f 2

1,2γ2 = β3β2 f 2
2,4 − αn−3αn−4 · · ·α2 f 2

2,2 ∈ e1 K Qen,

f 3
2 = f 2

2,1β2β1 − f 2
2,2γ1 = α1 f 2

1,1 ∈ e2 K Qe1,

f 3
n−1 = f 2

4 β1 = β2β1 f 2
1,1 + β2 f 2

2,4γ1 ∈ en−1 K Qe1,

f 3
n−2 = f 2

2,3αn−4 · · ·α2α1 − f 2
2,4γ1 = β1 f 2

1,1 − β1 f 2
1,2 ∈ en−2 K Qe1,

f 3
n = f 2

2,6β2β1 − f 2
2,5αn−4 · · ·α2α1 = γ1 f 2

1,2 ∈ en K Qe1,

f 3
3 = f 2

3,2α1 = α2 f 2
2,1β2β1 − α2α1 f 2

1,2 ∈ e3 K Qe1,

f 3
m = f 2

3,m−1αm−2 = αm−1 f 2
3,m−2 ∈ em K Qem−2,

for m = 4, . . . ,n − 3.

Then it is easy to check by direct calculations that dim Ker d3 = dim Im d2 = 2 and so HH2(Λ) = 0. �
Theorem 5.9. For Λ = Λ(E6,1,2) we have HH2(Λ) = 0.

Proof. With the notation for Q(E6,1) as in Theorem 5.8 and with n = 6, the set f 3 may be chosen
to consist of the following elements:

{
f 3
1,1, f 3

1,2, f 3
1,3, f 3

1,4, f 3
1,5, f 3

2 , f 3
3 , f 3

4 , f 3
5 , f 3

6

}
where

f 3
1,1 = f 2

1,2γ2 = β3β2 f 2
2,4 − α3α2 f 2

2,3 ∈ e1 K Qe6,

f 3
1,2 = f 2

1,1β3 = β3β2 f 2
2,6 − γ2 f 2

2,2 ∈ e1 K Qe5,

f 3
1,3 = f 2

1,2β3β2 − β3β2 f 2
2,6β2 = −α3 f 2

3,1 ∈ e1 K Qe4,

f 3
1,4 = f 2

1,1α3 − f 2
1,2α3 = α3α2 f 2

2,5 − γ2 f 2
2,1 ∈ e1 K Qe3,

f 3
1,5 = f 2

1,1α3α2 + γ2 f 2
2,1α2 = β3 f 2

3,2 ∈ e1 K Qe2,

f 3
2 = f 2

2,5α2α1 − f 2
2,3γ1 = α1 f 2

1,1 − α1 f 2
1,2 ∈ e2 K Qe1,

f 3
3 = f 2

3,1β1 − α2 f 2
2,3γ1 = α2α1 f 2

1,1 ∈ e3 K Qe1,

f 3
4 = f 2

2,6β2β1 − f 2
2,4γ1 = β1 f 2

1,1 ∈ e4 K Qe1,

f 3
5 = f 2

3,2α1 − β2 f 2
2,6β2β1 = −β2β1 f 2

1,2 ∈ e5 K Qe1,

f 3
6 = f 2

2,2β2β1 − f 2
2,1α2α1 = γ1 f 2

1,2 ∈ e6 K Qe1.

Again by direct calculations we can show that dim Ker d3 = dim Im d2 = 2 and so HH2(Λ) = 0. �
To summarise the results of Sections 4 and 5 we have the following theorem.
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Theorem 5.10. Let Λ be a standard self-injective algebra of finite representation type of type Λ(Dn, s,1),
Λ(D4, s,3) with n � 4, s � 1; Λ(Dn, s,2) (where s may satisfy 3 | s), Λ(D3m, s/3,1) where 3 � s, with
n � 4,m � 2, s � 2; or Λ(En, s,1), Λ(E6, s,2) with n ∈ {6,7,8}, s � 1. Then HH2(Λ) = 0.

Let Λ be Λ(Dn,1,2); then dim HH2(Λ) = 1 and a basis for HH2(Λ) is given in 5.2.
Let Λ be Λ(D3m,1/3,1); then

dim HH2(Λ) =

⎧⎪⎪⎨
⎪⎪⎩

1 if m � 3 and char K �= 2,

3 if m � 3 and char K = 2,

2 if m = 2 and char K �= 2,

4 if m = 2 and char K = 2,

and a basis for HH2(Λ) is given in 5.6 and 5.7.

Thus with the information taken from [3,6] for the algebras of type An , we now know the sec-
ond Hochschild cohomology group for all standard finite dimensional self-injective algebras of finite
representation type over an algebraically closed field K .

6. HH2(Λ) for the non-standard self-injective algebras of finite representation type

Let Λ = Λ(m), m � 2, be the non-standard algebra of 1.11 so we assume now that the characteristic
of K is 2. We may choose a minimal generating set f 2 with elements as follows:

f 2
1 = β2 − α1 · · ·αm, f 2

2 = αmα1 − αmβα1,

f 2
3, j = α jα j+1 · · ·α j for

{
j = 2, . . . ,m − 1 if m � 3,

j = 2 if m = 2.

We know that HH2(Λ) = Ker d3/ Im d2. First we will find Im d2. Let f ∈ Hom(Q 1,Λ) and so

f (e1 ⊗β e1) = c1e1 + c2β + c3β
2 + c4β

3,

f (e1 ⊗α1 e2) = d1α1 + k1βα1,

f (el ⊗αl el+1) = dlαl, for l ∈ {2, . . . ,m − 1},
f (em ⊗αm e1) = dmαm + kmαmβ,

where c1, c2, c3, c4,dl,k1,km ∈ K for l ∈ {1, . . . ,m}.
We have Q 2 = (Λe1 ⊗ f 2

1
e1Λ) ⊕ (Λem ⊗ f 2

2
e2Λ) ⊕ ⊕m−1

j=2 (Λe j ⊗ f 2
3, j

e j+1Λ) if m � 3 and Q 2 =
(Λe1 ⊗ f 2

1
e1Λ) ⊕ (Λe2 ⊗ f 2

2
e2Λ) ⊕ (Λe2 ⊗ f 2

3,2
e3Λ) if m = 2.

Now we find f A2. We have f A2(e1 ⊗ f 2
1

e1) = f (e1 ⊗β e1)β +β f (e1 ⊗β e1)− f (e1 ⊗α1 e2)α2 · · ·αm −
α1 f (e2 ⊗α2 e3)α3 · · ·αm − · · · − α1α2 · · ·αm−1 f (em ⊗αm e1) = (c1e1 + c2β + c3β

2 + c4β
3)β + β(c1e1 +

c2β + c3β
2 + c4β

3) − d1α1 · · ·αm − d2α1 · · ·αm − · · · − dmα1 · · ·αm − k1βα1 · · ·αm − kmα1 · · ·αmβ =
2c1β − (d1 + d2 + · · · + dm − 2c2)β

2 + (2c3 − k1 − km)β3.
Also f A2(em ⊗ f 2

2
e2) = f (em ⊗αm e1)α1 +αm f (e1 ⊗α1 e2)− f (em ⊗αm e1)βα1 −αm f (e1 ⊗β e1)α1 −

αmβ f (e1 ⊗α1 e2) = (dmαm +kmαmβ)α1 +αm(d1α1 +k1βα1)− (dmαm +kmαmβ)βα1 −αm(c1e1 + c2β +
c3β

2 + c4β
3)α1 − αmβ(d1α1 + k1βα1) = (k1 + km − c1 − c2)αmα1.

Finally, for m � 3 and j = 2, . . . ,m − 1 or for m = 2 and j = 2, we have f A2(e j ⊗ f 2
3, j

e j+1) = 0.

Thus f A2 is given by
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f A2(e1 ⊗ f 2
1

e1) = 2c1β − (d1 + d2 + · · · + dm − 2c2)β
2 + (2c3 − k1 − km)β3,

f A2(em ⊗ f 2
2

e2) = (k1 + km − c1 − c2)αmα1,

f (e j ⊗ f 2
3, j

e j+1) = 0, for all j ∈ {2, . . . ,m − 1} if m � 3 or j = 2 if m = 2.

So, since char K = 2, we have dim Im d2 = 3.
Next we determine Ker d3. We need to consider separately the cases m � 3 and m = 2. Suppose

first that m � 3.
For m � 3, we choose the set f 3 to consist of the following elements:

{
f 3
1 , f 3

t , f 3
m−1, f 3

m

}
with t ∈ {2, . . . ,m − 2} where

f 3
1 = f 2

1 βα1α2 = β f 2
1 α1α2 + α1 · · ·αm−1 f 2

2 α2 + (βα1 − α1) f 2
3,2 ∈ e1 K Qe3,

f 3
t = f 2

3,tαt+1 = αt f 2
3,t+1 ∈ et K Qet+2 for t ∈ {2, . . . ,m − 2},

f 3
m−1 = f 2

3,m−1(αm − αmβ) = αm−1 f 2
2 α2 · · ·αm + αm−1αm f 2

1 β − αm−1αmβ f 2
1 ∈ em−1 K Qe1,

f 3
m = f 2

2 α2 · · ·αmα1 = −αm f 2
1 βα1 + αmβ f 2

1 α1 + αmα1 · · ·αm−1 f 2
2 ∈ em K Qe2.

Let h ∈ Ker d3. Then h : Q 2 → Λ is given by

h(e1 ⊗ f 2
1

e1) = c1e1 + c2β + c3β
2 + c4β

3,

h(em ⊗ f 2
2

e2) = c5αmα1 and

h(e j ⊗ f 2
3, j

e j+1) = d jα j, for j ∈ {2, . . . ,m − 1},

for some c1, . . . , c5,d j ∈ K where j = 2, . . . ,m − 1.
Then h A3(e1 ⊗ f 3

1
e3) = h(e1 ⊗ f 2

1
e1)βα1α2 − βh(e1 ⊗ f 2

1
e1)α1α2 − α1 · · ·αm−1h(em ⊗ f 2

2
e2)α2 −

(βα1 − α1)h(e2 ⊗ f 2
3,2

e3) = (c1e1 + c2β + c3β
2 + c4β

3)βα1α2 − β(c1e1 + c2β + c3β
2 + c4β

3)α1α2 −
c5α1 · · ·αm−1αmα1α2 − d2βα1α2 + d2α1α2 = d2(α1α2 − βα1α2). As h ∈ Ker d3 we have d2 = 0.

For t ∈ {2, . . . ,m − 2}, we have h A3(et ⊗ f 3
t

et+2) = h(et ⊗ f 2
3,t

et+1)αt+1 − αth(et+1 ⊗ f 2
3,t+1

et+2) =
dtαtαt+1 − dt+1αtαt+1 = (dt − dt+1)αtαt+1. Then dt − dt+1 = 0 and so dt = dt+1 for t = 2, . . . ,m − 2.
Hence d2 = d3 = · · · = dm−2 = dm−1. We already have d2 = 0 so d j = 0 for j = 2, . . . ,m − 1.

Now

h A3(em−1 ⊗ f 3
m−1

e1) = h(em−1 ⊗ f 2
3,m−1

em)(αm − αmβ) − αm−1h(em ⊗ f 2
2

e2)α2 · · ·αm

− αm−1αmh(e1 ⊗ f 2
1

e1)β + αm−1αmβh(e1 ⊗ f 2
1

e1)

= dm−1αm−1αm − dm−1αm−1αmβ − c5αm−1αmα1α2 · · ·αm

− αm−1αm
(
c1e1 + c2β + c3β

2 + c4β
3)β + αm−1αmβ

(
c1e1 + c2β + c3β

2 + c4β
3)

= dm−1(αm−1αm − αm−1αmβ) = 0,

as dm−1 = 0 from above.
Finally, h A3(em ⊗ f 3

m
e2) = h(em ⊗ f 2

2
e2)α2 · · ·αmα1 + αmh(e1 ⊗ f 2

1
e1)βα1 − αmβh(e1 ⊗ f 2

1
e1)α1 −

αmα1 · · ·αm−1h(em ⊗ f 2
2

e2) = c5αmα1α2 · · ·αmα1 + αm(c1e1 + c2β + c3β
2 + c4β

3)βα1 − αmβ(c1e1 +
c2β + c3β

2 + c4β
3)α1 − c5αmα1 · · ·αm−1αmα1 = −c1αmβα1 + c1αmβα1 = 0, and so this gives no in-

formation on the constants occurring in h.
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Thus h is given by

h(e1 ⊗ f 2
1

e1) = c1e1 + c2β + c3β
2 + c4β

3,

h(em ⊗ f 2
2

e2) = c5αmα1 and

h(e j ⊗ f 2
3, j

e j+1) = 0, for j ∈ {2, . . . ,m − 1}

for some c1, . . . , c5 ∈ K and so dim Ker d3 = 5.
Therefore, for m � 3 we have dim HH2(Λ) = 5 − 3 = 2.
This gives the following theorem.

Theorem 6.1. For Λ = Λ(m) and m � 3 we have dim HH2(Λ) = 2.

6.2. A basis for HH2(Λ) for Λ = Λ(m) and m � 3.

We have char K = 2, m � 3, and dim HH2(Λ) = 2. We start by defining non-zero maps h1,h2 in
Ker d3.

Let h1 be the map given by

e1 ⊗ f 2
1

e1 �→ e1,

else �→ 0,

and h2 be given by

e1 ⊗ f 2
1

e1 �→ β,

else �→ 0.

It can be shown as before that these maps are not in Im d2. Now we will show that {h1 +
Im d2,h2 + Im d2} is a linearly independent set in HH2(Λ).

Suppose a(h1 + Im d2) + b(h2 + Im d2) = 0 + Im d2 for some a,b ∈ K . So ah1 + bh2 ∈ Im d2. Hence
ah1 + bh2 = f A2 for some f ∈ Hom(Q 1,Λ). Then (ah1 + bh2)(e1 ⊗ f 2

1
e1) = f A2(e1 ⊗ f 2

1
e1). So ae1 +

bβ = dβ2 +kβ3 for some d,k ∈ K . Since {e1, β,β2, β3} is linearly independent in Λ, we have a = b = 0.
Hence {h1 + Im d2,h2 + Im d2} is linearly independent in HH2(Λ) and forms a basis of HH2(Λ).

6.3. HH2(Λ) in the case Λ = Λ(m) and m = 2.

In the case m = 2 we showed above that dim Im d2 = 3. But now we have dim Ker d3 = 6. Thus
dim HH2(Λ) = 3. It can be verified that {h1 + Im d2,h2 + Im d2,h3 + Im d2} is a basis of HH2(Λ),
where h1 is the map given by

e1 ⊗ f 2
1

e1 �→ e1,

else �→ 0,

h2 is given by

e1 ⊗ f 2
1

e1 �→ β,

else �→ 0,
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and h3 is given by

e2 ⊗ f 2
2

e2 �→ e2,

e2 ⊗ f 2
3

e1 �→ α2 + α2β,

else �→ 0.

We summarise all these results in the following theorem.

Theorem 6.4. For Λ = Λ(m) where char K = 2, m � 2 we have

dim HH2(Λ) =
{

2 if m � 3,

3 if m = 2.

Moreover, if m � 3 then {h1 + Im d2,h2 + Im d2} is a basis for HH2(Λ) where h1 is the map given by

e1 ⊗ f 2
1

e1 �→ e1,

else �→ 0,

and h2 is given by

e1 ⊗ f 2
1

e1 �→ β,

else �→ 0.

If m = 2 then {h1 + Im d2,h2 + Im d2,h3 + Im d2} is a basis for HH2(Λ) where h1 is the map given by

e1 ⊗ f 2
1

e1 �→ e1,

else �→ 0,

h2 is given by

e1 ⊗ f 2
1

e1 �→ β,

else �→ 0,

and h3 is given by

e2 ⊗ f 2
2

e2 �→ e2,

e2 ⊗ f 2
3

e1 �→ α2 + α2β,

else �→ 0.

This completes the discussion of HH2(Λ) for the non-standard self-injective algebras of finite rep-
resentation type over an algebraically closed field.

To conclude we now summarise HH2(Λ) for all finite dimensional self-injective algebras of finite
representation type over an algebraically closed field.

Theorem 6.5. Let Λ be a finite dimensional self-injective algebra of finite representation type over an al-
gebraically closed field K . If Λ is the standard algebra of type Λ(A2p+1, s,2) with s, p � 2, Λ(Dn, s,1),
Λ(D4, s,3) with n � 4, s � 1, Λ(Dn, s,2), Λ(D3m, s/3,1) with n � 4, m � 2, s � 2 or Λ(En, s,1),
Λ(E6, s,2) with n ∈ {6,7,8}, s � 1; then HH2(Λ) = 0.
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If Λ is of type Λ(An, s/n,1) then dim HH2(Λ) = m where n + 1 = ms + r and 0 � r < s.
For Λ(A3,1,2); then dim HH2(Λ) = 1.
Let Λ be Λ(Dn,1,2); then dim HH2(Λ) = 1.
Let Λ be the standard algebra Λ(D3m,1/3,1); then

dim HH2(Λ) =

⎧⎪⎪⎨
⎪⎪⎩

1 if m � 3 and char K �= 2,

3 if m � 3 and char K = 2,

2 if m = 2 and char K �= 2,

4 if m = 2 and char K = 2.

Let Λ be the non-standard algebra Λ(m) where char K = 2,m � 2. Then dim HH2(Λ) = 2 if m � 3 and
dim HH2(Λ) = 3 if m = 2.

Acknowledgments

This paper is a part of my PhD thesis at the University of Leicester. I thank Taif University in Saudi
Arabia for funding my PhD research, and Dr. Nicole Snashall for her helpful supervision and valuable
suggestions. The author also thanks the referee for his/her helpful comments.

References

[1] H. Asashiba, On a lift of an individual stable equivalence to a standard derived equivalence for representation-finite self-
injective algebras, Algebr. Represent. Theory 6 (2003) 427–447.

[2] H. Asashiba, The derived equivalence classification of representation-finite self-injective algebras, J. Algebra 214 (1999)
182–221.

[3] K. Erdmann, T. Holm, Twisted bimodules and Hochschild cohomology for self-injective algebras of class An , Forum Math. 11
(1999) 177–201.

[4] K. Erdmann, N. Snashall, On Hochschild cohomology of preprojective algebras, I , J. Algebra 205 (1998) 391–412.
[5] E.L. Green, Noncommutative Gröbner bases and projective resolutions, in: Computational Methods for Representations of

Groups and Algebras, Essen, 1997, in: Progr. Math., vol. 173, Birkhäuser, Basel, 1999, pp. 29–60.
[6] E.L. Green, N. Snashall, Projective bimodule resolutions of an algebra and vanishing of the second Hochschild cohomology

group, Forum Math. 16 (2004) 17–36.
[7] E.L. Green, Ø. Solberg, D. Zacharia, Minimal projective resolutions, Trans. Amer. Math. Soc. 353 (7) (2001) 2915–2939.
[8] D. Happel, Hochschild cohomology of finite-dimensional algebras, in: Lecture Notes in Math., vol. 1404, Springer-Verlag,

1989, pp. 108–126.
[9] C. Riedtmann, Algebren, Darstellungsköcher, Überlagerungen und zurück, Comment. Math. Helv. 55 (1980) 199–224.

[10] C. Riedtmann, Representation-finite selfinjective algebras of class An , in: Representation Theory II, in: Lecture Notes in
Math., vol. 832, Springer-Verlag, 1979, pp. 449–520.


	Self-injective algebras and the second Hochschild cohomology group
	Introduction
	The derived equivalence representatives
	Projective resolutions
	A vanishing theorem
	Application to standard algebras
	HH2(Lambda) for the standard self-injective algebras of finite representation type
	HH2(Lambda) for the non-standard self-injective algebras of finite representation type
	Acknowledgments
	References


