Self-injective algebras and the second Hochschild cohomology group

Deena Al-Kadi

Department of Mathematics, University of Leicester, University Road, Leicester, LE1 7RH, England, United Kingdom

Abstract

In this paper we study the second Hochschild cohomology group $\text{HH}^2(\Lambda)$ of a finite dimensional algebra Λ. In particular, we determine $\text{HH}^2(\Lambda)$ where Λ is a finite dimensional self-injective algebra of finite representation type over an algebraically closed field K and show that this group is zero for most such Λ; we give a basis for $\text{HH}^2(\Lambda)$ in the few cases where it is not zero.

© 2008 Elsevier Inc. All rights reserved.

Introduction

In this paper we study the second Hochschild cohomology group $\text{HH}^2(\Lambda)$ of all finite dimensional self-injective algebras Λ of finite representation type over an algebraically closed field K.

In general, finite dimensional self-injective algebras of finite representation type over an algebraically closed field K were shown by Riedtmann in [9] to fall into one of the types A, D or E, depending on the tree class of the stable Auslander–Reiten quiver of the algebra. Riedtmann classified the stable equivalence representatives of these algebras of type A in [10]; Asashiba then showed that the stable equivalence classes are exactly the derived equivalence classes for all types A, D and E in [2, Theorem 2.2]. In [1], the derived equivalence class representatives are given explicitly by quivers and relations.

Happel showed in [8] that Hochschild cohomology is invariant under derived equivalence. So if A and B are derived equivalent then $\text{HH}^2(A) \cong \text{HH}^2(B)$. Hence to study $\text{HH}^2(\Lambda)$ for all finite dimensional self-injective algebras of finite representation type over an algebraically closed field K, it is enough to study $\text{HH}^2(\Lambda)$ for the representatives of the derived equivalence classes. The algebras of type A fall into two types: Nakayama algebras and Möbius algebras, and the Hochschild cohomology of these algebras has already been studied. In [3], Erdmann and Holm give the dimension of the sec-
ond Hochschild cohomology group of a Nakayama algebra. In [6], Green and Snashall determined the second Hochschild cohomology group for the Möbius algebras.

The main work of this paper is thus in determining $HH^2(Λ)$ for the finite dimensional self-injective algebras of finite representation type of types D and E. In Section 1 we give a summary of [1] which gives the explicit derived equivalence representatives we consider. Section 2 gives a short description of the projective resolution of [6] which we use to find $HH^2(Λ)$. In Section 3, we give a general theorem, Theorem 3.6, which we use to show that $HH^2(Λ) = 0$ for most of our algebras. This is motivated by work in [6]. The strategy of the theorem is to show that every element in $\text{Hom}(Q^2, Λ)$ is a coboundary so that $HH^2(Λ) = 0$, where Q^2 is the second projective in a minimal projective resolution of $Λ$ as a $Λ, Λ$-bimodule. For all other cases which are not covered by Theorem 3.6, we determine $HH^2(Λ)$ by direct calculation, and find a basis for $HH^2(Λ)$ in the instances where $HH^2(Λ) \neq 0$. The standard algebras are considered in Sections 4 and 5 and the non-standard algebras in Section 6. Finally Theorem 6.5 summarises our results and describes $HH^2(Λ)$ for all finite dimensional self-injective algebras $Λ$ of finite representation type over an algebraically closed field. As a consequence, we show that $\dim HH^2(Λ) \neq \dim HH^2(Λ')$ for a non-standard algebra $Λ$ and its standard form $Λ'$, where $Λ$ and $Λ'$ are of type $(D_{3m}, 1/3, 1)$. This gives an alternative proof that $Λ$ and $Λ'$ are not derived equivalent.

1. The derived equivalence representatives

We give here Asashiba’s full classification from [1,2] of the derived equivalence class representatives of the finite dimensional self-injective algebras of finite representation type over an algebraically closed field. These derived equivalence class representatives are listed according to their type.

From [9], the stable Auslander Reiten quiver of a self-injective algebra $Λ$ of finite representation type has the form $\mathbb{Z}Δ/⟨g⟩$, where $Δ$ is a Dynkin graph, $g = ζτ^{-r}$ such that r is a natural number, $ζ$ is an automorphism of the quiver $\mathbb{Z}Δ$ with a fixed vertex, and $τ$ is the Auslander–Reiten translate. Then typ($Λ$) := ($Δ, f, t$), where t is the order of $ζ$ and $f := r/m_Δ$ such that $m_Δ = n, 2n − 3, 11, 17$ or 29 as $Δ = A_n, D_n, E_6, E_7$ or E_8, respectively. We take the following results from [2].

Proposition 1.1. (See [2, Theorem 2.2].) Given $Λ$ a self-injective algebra of finite representation type then the type typ($Λ$) is an element of one of the following sets:

\[
\begin{align*}
&\{(A_n, s/n, 1) \mid n, s \in \mathbb{N}\}; \\
&\{(A_{2p+1}, s, 2) \mid p, s \in \mathbb{N}\}; \\
&\{(D_n, s, 1) \mid n, s \in \mathbb{N}, n \geq 4\}; \\
&\{(D_n, s, 2) \mid n, s \in \mathbb{N}, n \geq 4\}; \\
&\{(D_4, s, 3) \mid s \in \mathbb{N}\}; \\
&\{(D_{3m}, s/3, 1) \mid m, s \in \mathbb{N}, m \geq 2, 3 \mid s\}; \\
&\{(E_n, s, 1) \mid n = 6, 7, 8, s \in \mathbb{N}\}; \quad \text{and} \\
&\{(E_6, s, 2) \mid s \in \mathbb{N}\}.
\end{align*}
\]

Theorem 1.2. (See [2, Theorem 2.2].) Let $Λ$ and $Π$ be self-injective algebras of finite representation type.

(i) If $Λ$ is standard and $Π$ is non-standard then $Λ$ and $Π$ are not derived equivalent.

(ii) If $Λ$ and $Π$ are either both standard or both non-standard then the following are equivalent:

1. $Λ$ and $Π$ are derived equivalent;
2. $Λ$ and $Π$ are stably equivalent;
3. typ($Λ$) = typ($Π$).
Using these results, [1] gives the derived equivalence representatives by quiver and relations; these are stated here for convenience. The derived equivalence representatives of the standard algebras are given in 1.3–1.10. The non-standard derived equivalence representatives are given in 1.11. Recall from [2, Theorem 2.2] that the non-standard derived equivalence representatives only occur when \(\text{char} \ K = 2 \). Note that \([j]\) denotes the residue of \(j \) modulo \(s \) where \(s \geq 1 \) and we write paths from left to right (whereas paths are written from right to left in [1]).

1.3. \(\Lambda(A_n, s/n, 1) \) with \(s, n \geq 1 \).

\(\Lambda(A_n, s/n, 1) \) with \(s, n \geq 1 \) is the Nakayama algebra \(N_{s,n} \) and it is given by the quiver \(Q(N_{s,n}) \):

with relations \(R(N_{s,n}) \):

\[\alpha_i \alpha_{i+1} \cdots \alpha_{i+n} = 0, \quad \text{for all } i \in \{1, 2, \ldots, s\} = \mathbb{Z}/(s). \]

1.4. \(\Lambda(A_{2p+1}, s, 2) \) with \(s, p \geq 1 \).

\(\Lambda(A_{2p+1}, s, 2) \) with \(s, p \geq 1 \) is the Möbius algebra \(M_{p,s} \) and it is given by the quiver \(Q(M_{p,s}) \):

with relations \(R(M_{p,s}) \):
(i) \(\alpha_0^{[i]} \cdots \alpha_{p}^{[i]} = \beta_0^{[i]} \cdots \beta_{p}^{[i]} \), for all \(i \in \{0, \ldots, s-1\} \),
(ii) for all \(i \in \{0, \ldots, s-2\} \),
\[
\begin{align*}
\alpha_{p}^{[i]} \beta_{0}^{[i+1]} &= 0, & \beta_{p}^{[i]} \alpha_{0}^{[i+1]} &= 0, \\
\alpha_{p}^{[s-1]} \alpha_{0}^{[0]} &= 0, & \beta_{p}^{[s-1]} \beta_{0}^{[0]} &= 0.
\end{align*}
\]
(iii) paths of length \(p + 2 \) are equal to 0.

1.5. \(\Lambda(D_n, s, 1) \) with \(n \geq 4, s \geq 1 \).

\(\Lambda(D_n, s, 1) \) with \(n \geq 4, s \geq 1 \) is given by the quiver \(Q(D_n, s) \):

![Diagram of \(\Lambda(D_n, s, 1) \) with \(n \geq 4, s \geq 1 \)]

with relations \(R(D_n, s, 1) \):

(i) \(\alpha_{n-2}^{[i]} \alpha_{n-3}^{[i]} \cdots \alpha_{2}^{[i]} \alpha_{1}^{[i]} = \beta_{0}^{[i]} \beta_{1}^{[i]} = \gamma_{0}^{[i]} \gamma_{1}^{[i]} \), for all \(i \in \{0, \ldots, s-1\} = \mathbb{Z}/(s) \),
(ii) for all \(i \in \{0, \ldots, s-1\} = \mathbb{Z}/(s) \),
\[
\begin{align*}
\alpha_{1}^{[i]} \beta_{0}^{[i+1]} &= 0, & \alpha_{1}^{[i]} \gamma_{0}^{[i+1]} &= 0, \\
\beta_{1}^{[i]} \alpha_{n-2}^{[i]} &= 0, & \gamma_{1}^{[i]} \alpha_{n-2}^{[i]} &= 0, \\
\beta_{1}^{[i]} \gamma_{0}^{[i+1]} &= 0, & \gamma_{1}^{[i]} \beta_{0}^{[i+1]} &= 0.
\end{align*}
\]
(iii) for all \(i \in \{0, \ldots, s-1\} = \mathbb{Z}/(s) \) and for all \(j \in \{1, \ldots, n-2\} = \mathbb{Z}/(n-2) \),
\[\alpha_j^{[i]} \ldots \alpha_j^{[i+n]} = 0, \]
\[\beta_0^{[i]} \beta_1^{[i]} \rho_0^{[i+1]} = 0, \quad \gamma_0^{[i]} \gamma_1^{[i]} \gamma_0^{[i+1]} = 0, \]
\[\beta_1^{[i]} \rho_0^{[i]} \rho_1^{[i+1]} = 0, \quad \gamma_1^{[i]} \gamma_0^{[i+1]} \gamma_1^{[i+1]} = 0. \]

The set of relations (iii) means that “\(\alpha\)-paths” of length \(n-1\) are equal to 0, “\(\beta\)-paths” of length 3 are equal to 0 and “\(\gamma\)-paths” of length 3 are equal to 0.

1.6. \(\Lambda(D_n, s, 2)\) with \(n \geq 4, s \geq 1\).

\(\Lambda(D_n, s, 2)\) with \(n \geq 4, s \geq 1\) is given by the quiver \(Q(D_n, s)\) above with relations \(R(D_n, s, 2)\):

(i) \[\alpha_n^{[i]} \alpha_n^{[i-1]} \ldots \alpha_2^{[i]} \alpha_1^{[i]} = \beta_0^{[i]} \beta_1^{[i]} = \gamma_0^{[i]} \gamma_1^{[i]}, \] for all \(i \in \{0, \ldots, s-1\} = \mathbb{Z}/(s),\)

(ii) for all \(i \in \{0, \ldots, s-1\} = \mathbb{Z}/(s),\)

\[\alpha_1^{[i]} \rho_0^{[i+1]} = 0, \quad \alpha_1^{[i]} \gamma_0^{[i+1]} = 0, \]
\[\beta_1^{[i]} \alpha_n^{[i-2]} = 0, \quad \gamma_1^{[i]} \alpha_n^{[i-1]} = 0, \]

and for all \(i \in \{0, \ldots, s-2\},\)

\[\beta_1^{[i]} \gamma_0^{[i+1]} = 0, \quad \gamma_1^{[i]} \rho_0^{[i+1]} = 0, \]
\[\beta_1^{[s-1]} \rho_0^{[s]} = 0, \quad \gamma_1^{[s-1]} \rho_0^{[s]} = 0, \]

(iii) “\(\alpha\)-paths” of length \(n-1\) are equal to 0, and for all \(i \in \{0, \ldots, s-2\},\)

\[\beta_0^{[i]} \beta_1^{[i]} \rho_0^{[i+1]} = 0, \quad \gamma_0^{[i]} \gamma_1^{[i]} \gamma_0^{[i+1]} = 0, \]
\[\beta_1^{[i]} \rho_0^{[i]} \rho_1^{[i+1]} = 0, \quad \gamma_1^{[i]} \gamma_0^{[i+1]} \gamma_1^{[i+1]} = 0 \quad \text{and} \]
\[\beta_0^{[s-1]} \rho_1^{[s]} = 0, \quad \gamma_0^{[s-1]} \gamma_1^{[s-1]} \rho_0^{[s]} = 0, \]
\[\beta_1^{[s-1]} \rho_0^{[s]} \rho_1^{[s]} = 0, \quad \gamma_1^{[s-1]} \rho_0^{[s]} \rho_1^{[s]} = 0. \]

1.7. \(\Lambda(D_4, s, 3)\) with \(s \geq 1\).

\(\Lambda(D_4, s, 3)\) with \(s \geq 1\) is given by the quiver \(Q(D_4, s)\) above with relations \(R(D_4, s, 3)\):

(i) \[\alpha_0^{[i]} \alpha_1^{[i]} = \beta_0^{[i]} \beta_1^{[i]} = \gamma_0^{[i]} \gamma_1^{[i]}, \] for all \(i \in \{0, \ldots, s-1\} = \mathbb{Z}/(s),\)

(ii) for all \(i \in \{0, \ldots, s-2\},\)

\[\alpha_1^{[i]} \rho_0^{[i+1]} = 0, \quad \alpha_1^{[i]} \gamma_0^{[i+1]} = 0, \]
\[\beta_1^{[i]} \alpha_0^{[i+1]} = 0, \quad \gamma_1^{[i]} \alpha_0^{[i+1]} = 0, \]
\[\beta_1^{[i]} \gamma_0^{[i+1]} = 0, \quad \gamma_1^{[i]} \rho_0^{[i+1]} = 0, \]

and

\[\alpha_1^{[s-1]} \alpha_0^{[s]} = 0, \quad \alpha_1^{[s-1]} \gamma_0^{[s]} = 0, \]
\[\beta_1^{[s-1]} \alpha_0^{[s]} = 0, \quad \beta_1^{[s-1]} \rho_0^{[s]} = 0, \]
\[\gamma_1^{[s-1]} \rho_0^{[s]} = 0, \quad \gamma_1^{[s-1]} \gamma_0^{[s]} = 0. \]

(iii) paths of length 3 are equal to 0.
1.8. $\Lambda(D_{3m}, s/3, 1)$ with $m \geq 2$ and $3 \nmid s \geq 1$.

$\Lambda(D_{3m}, s/3, 1)$ with $m \geq 2$ and $3 \nmid s \geq 1$ is given by the quiver $Q(D_{3m}, s/3)$:

![Diagram of $Q(D_{3m}, s/3, 1)$](image)

and for $s = 1$, $Q(D_{3m}, 1/3)$:

![Diagram of $Q(D_{3m}, 1/3)$](image)

with relations $R(D_{3m}, s/3, 1)$:

\((i)\) \(\alpha_1^{[i]} \alpha_2^{[i]} \cdots \alpha_m^{[i]} = \beta_i \beta_{i+1}\), for all \(i \in \{1, \ldots, s\} = \mathbb{Z}/(s)\),

\((ii)\) \(\alpha_m^{[i]} \alpha_1^{[i+2]} = 0\), for all \(i \in \{1, \ldots, s\} = \mathbb{Z}/(s)\),

\((iii)\) \(\alpha_1^{[i]} \cdots \alpha_m^{[i]} \beta_{i+2}^{[i]} \cdots \alpha_j^{[i+3]} = 0\), for all \(i \in \{1, \ldots, s\} = \mathbb{Z}/(s)\) and for all \(j \in \{1, \ldots, m\}\) (i.e. paths of length \(m + 2\) are equal to 0).

In the case \(s = 1\), the relations \(R(D_{3m}, 1/3, 1)\) are:

\((i)\) \(\alpha_1 \alpha_2 \cdots \alpha_m = \beta^2\),

\((ii)\) \(\alpha_m \alpha_1 = 0\),

\((iii)\) \(\alpha_j \cdots \alpha_m \beta \alpha_1 \cdots \alpha_j = 0\) for \(j = 2, \ldots, m - 1\).

1.9. \(\Lambda(E_n, s, 1)\) with \(n \in \{6, 7, 8\}\) and \(s \geq 1\).

\(\Lambda(E_n, s, 1)\) is given by the quiver \(Q(E_n, s)\):

with relations \(R(E_n, s, 1)\):

\((i)\) \(\alpha_1^{[i]} \cdots \alpha_2^{[i]} \alpha_1^{[i]} = \beta_2^{[i]} \beta_2^{[i]} \beta_1^{[i]} = \gamma_2^{[i]} \gamma_1^{[i]}\), for all \(i \in \{0, \ldots, s - 1\}\),

\((ii)\) for all \(i \in \{0, \ldots, s - 1\} = \mathbb{Z}/(s)\),

\[\alpha_1^{[i]} \beta_3^{[i+1]} = 0, \quad \alpha_1^{[i]} \gamma_2^{[i+1]} = 0,\]
\[\beta_1^{[i]} \alpha_2^{[i+1]} = 0, \quad \gamma_1^{[i]} \alpha_3^{[i+1]} = 0, \]
\[\beta_1^{[i]} \gamma_2^{[i+1]} = 0, \quad \gamma_1^{[i]} \beta_3^{[i+1]} = 0, \]

(iii) “\(\alpha \)-paths” of length \(n - 2 \) are equal to 0, “\(\beta \)-paths” of length 4 are equal to 0 and “\(\gamma \)-paths” of length 3 are equal to 0.

1.10. \(\Lambda(E_6, s, 2) \) with \(s \geq 1 \).

\(\Lambda(E_6, s, 2) \) is given by the quiver \(Q(E_6, s) \) above with relations \(R(E_6, s, 2) \):

(i) \(\alpha_2^{[i]} \alpha_1^{[i]} = \beta_3^{[i]} \beta_2^{[i]} \beta_1^{[i]} = \gamma_2^{[i]} \gamma_1^{[i]} \), for all \(i \in \{0, \ldots, s - 1\} \),

(ii) for all \(i \in \{0, \ldots, s - 1\} = \mathbb{Z}/(s) \),

\[\alpha_1^{[i]} \beta_3^{[i+1]} = 0, \quad \gamma_1^{[i]} \beta_3^{[i+1]} = 0, \]
\[\alpha_1^{[i]} \gamma_2^{[i+1]} = 0, \quad \beta_1^{[i]} \gamma_2^{[i+1]} = 0, \]

and for all \(i \in \{0, \ldots, s - 2\} \),

\[\alpha_1^{[i]} \beta_3^{[i+1]} = 0, \quad \beta_1^{[i]} \alpha_3^{[i+1]} = 0, \]
\[\alpha_1^{[s-1]} \alpha_3^{[0]} = 0, \quad \beta_1^{[s-1]} \beta_3^{[0]} = 0, \]

(iii) “\(\gamma \)-paths” of length 3 are equal to 0 and for all \(i \in \{0, \ldots, s - 2\} \) and for all \(j \in \{1, 2, 3\} = \mathbb{Z}/(3) \),

\[\alpha_j^{[i]} \cdots \alpha_{j-3}^{[i+1]} = 0, \quad \beta_j^{[i]} \cdots \beta_{j-3}^{[i+1]} = 0, \]
\[\alpha_j^{[s-1]} \cdots \alpha_{j-3}^{[s-1]} \beta_3^{[0]} \cdots \beta_{j-3}^{[0]} = 0, \quad \beta_j^{[s-1]} \cdots \beta_{j-3}^{[s-1]} \alpha_3^{[0]} \cdots \alpha_{j-3}^{[0]} = 0. \]

Thus we have listed all the derived equivalence representatives of the standard algebras. The derived equivalence representatives of the non-standard algebras are given next.

1.11. \(\Lambda(m) \) with \(m \geq 2 \).

In this case \(\text{char } K = 2 \) by [2, Theorem 2.2]. The non-standard algebra \(\Lambda(m) \) for each \(m \geq 2 \) is given by the quiver \(Q(D_{2m}, 1/3) \):

\[\begin{array}{c}
\alpha_1 \\
\downarrow \\
2 \\
\vdots \\
\alpha_2 \\
\downarrow \\
3 \\
\vdots \\
\beta \\
\alpha_m \\
\downarrow \\
m - 1 \\
\alpha_{m-1} \\
m \\
\end{array} \]

with relations \(R(m) \):
We write that each path \(a \) multiplication map so is given by \(v \) unique. Recall that an element \(y \) solution of \(\varpi \in \Lambda \), and \(x \) be one of the minimal relations. Then \(x = \sum_{j=1}^{r} c_{j} a_{ij} \cdots a_{k_{ij}} \cdots a_{s_{ijk}} \), that is, \(x \) is a linear combination of paths \(a_{ij} \cdots a_{k_{ij}} \cdots a_{s_{ijk}} \) for \(j = 1, \ldots, r \) and \(c_{j} \in K \) and there are unique vertices \(v \) and \(w \) such that each path \(a_{ij} \cdots a_{k_{ij}} \cdots a_{s_{ijk}} \) starts at \(v \) and ends at \(w \) for all \(j \). We write \(o(x) = v \) and \(t(x) = w \). Similarly \(o(a) \) is the origin of the arrow \(a \) and \(t(a) \) is the end of \(a \).

In [6, Theorem 2.9], a minimal projective resolution of \(\Lambda \) as a \(\Lambda, \Lambda \)-bimodule is given which begins:

\[
\cdots \to Q^{2} \xrightarrow{A_{3}} Q^{2} \xrightarrow{A_{2}} Q^{1} \xrightarrow{A_{1}} Q^{0} \xrightarrow{g} \Lambda \to 0,
\]

where the projective \(\Lambda, \Lambda \)-bimodules \(Q^{0}, Q^{1}, Q^{2} \) are given by

\[
Q^{0} = \bigoplus_{\nu: \text{vertex}} \Lambda \nu \otimes \nu \Lambda,
\]

\[
Q^{1} = \bigoplus_{\alpha: \text{arrow}} \Lambda o(\alpha) \otimes t(\alpha) \Lambda, \quad \text{and}
\]

\[
Q^{2} = \bigoplus_{x \in f^{2}} \Lambda o(x) \otimes t(x) \Lambda.
\]

The maps \(g, A_{1}, A_{2} \) and \(A_{3} \) are all \(\Lambda, \Lambda \)-bimodule homomorphisms. The map \(g: Q^{0} \to \Lambda \) is the multiplication map so is given by \(v \otimes v \mapsto v \). The map \(A_{1}: Q^{1} \to Q^{0} \) is given by \(o(a) \otimes t(a) \mapsto o(a) \otimes o(a)a - at(a) \otimes t(a) \) for each arrow \(a \).

With the notation for \(x \in f^{2} \) given above, the map \(A_{2}: Q^{2} \to Q^{1} \) is given by \(o(x) \otimes t(x) \mapsto \sum_{j=1}^{r} c_{j} (\sum_{k=1}^{j} a_{ij} \cdots a_{k_{ij}} \cdots a_{s_{ijk}}) \), where \(a_{ij} \cdots a_{k_{ij}} \cdots a_{s_{ijk}} \in \Lambda o(a_{ij}) \otimes t(a_{ij}) \Lambda \).

In order to find the projective \(\Lambda, \Lambda \)-bimodule \(Q^{3} \) and the map \(A_{3} \) in the \(\Lambda, \Lambda \)-bimodule resolution of \(\Lambda \) in [6], Green and Snashall start by finding a projective resolution of \(\Lambda/\tau \) as a right \(\Lambda \)-module, where \(\tau = \text{rad}(\Lambda) \) is the Jacobson radical of \(\Lambda \), using the notation and procedure of the paper [7]. In [7], Green, Solberg and Zacharia show that there are sets \(f^{n} \), \(n \geq 3 \), and uniform elements \(y \in f^{n} \) such that \(y = \sum_{x \in f^{n-1}} x_{x} = \sum_{z \in f^{n-2}} z_{z} \) for unique elements \(x_{x}, z_{z} \in KQ \) with special properties related to a minimal projective \(\Lambda \)-resolution of \(\Lambda/\text{rad}(\Lambda) \) considered as a right \(\Lambda \)-module. In particular, for \(y \in f^{3} \) we have \(y = \prod f^{2}KQ \cap \bigcap f^{2}I \) and \(y \) may be written \(y = \sum f_{3}^{2}p_{i} = \sum q_{i}f_{3}^{2}r_{i} \) with \(p_{i}, q_{i}, r_{i} \in KQ \) and \(p_{i}, q_{i}, r_{i} \) in the ideal generated by the arrows of \(KQ \) such that the elements \(p_{i} \) are unique. Recall that an element \(y \in KQ \) is uniform if there are vertices \(v, w \) such that \(y = v y = y w \). We write \(o(y) = v \) and \(t(y) = w \).

Then [6] gives that \(Q^{3} = \prod_{y \in f^{3}} \Lambda o(y) \otimes t(y) \Lambda \) and describes the map \(A_{3} \). For \(y \in f^{3} \) in the notation above, the component of \(A_{3}(o(y) \otimes t(y)) \) in the summand \(\Lambda o(f_{3}^{2}) \otimes t(f_{3}^{2}) \Lambda \) of \(Q^{2} \) is \(\Sigma(o(y) \otimes p_{i} - q_{i} \otimes r_{i}) \).

Thus we can describe the part of the minimal projective \(\Lambda, \Lambda \)-bimodule resolution of \(\Lambda \):

\[
Q^{2} \xrightarrow{A_{3}} Q^{2} \xrightarrow{A_{2}} Q^{1} \xrightarrow{A_{1}} Q^{0} \xrightarrow{g} \Lambda \to 0.
\]
Applying $\text{Hom}(-, \Lambda)$ to this resolution gives us the complex

$$0 \rightarrow \text{Hom}(Q^0, \Lambda) \xrightarrow{d_1} \text{Hom}(Q^1, \Lambda) \xrightarrow{d_2} \text{Hom}(Q^2, \Lambda) \xrightarrow{d_3} \text{Hom}(Q^3, \Lambda)$$

where d_i is the map induced from A_i for $i = 1, 2, 3$. Then $\text{HH}^2(\Lambda) = \text{Ker}d_3/\text{Im}d_2$.

Throughout, all tensor products are tensor products over K, and we write \otimes for \otimes_K. When considering an element of the projective Λ, Λ-bimodule $Q^1 = \bigoplus_{a, \text{arrow}} \Lambda o(a) \otimes t(a) \Lambda$ it is important to keep track of the individual summands of Q^1. So to avoid confusion we usually denote an element in the summand $\Lambda o(a) \otimes t(a) \Lambda$ by $\lambda \otimes a \lambda'$ using the subscript ‘a’ to remind us in which summand this element lies. Similarly, an element $\lambda \otimes f^2_1 \lambda'$ lies in the summand $\Lambda o(f^2_1) \otimes t(f^2_1) \Lambda$ of Q^2 and an element $\lambda \otimes f^3_1 \lambda'$ lies in the summand $\Lambda o(f^3_1) \otimes t(f^3_1) \Lambda$ of Q^3. We keep this notation for the rest of the paper.

Now we are ready to compute $\text{HH}^2(\Lambda)$ for the derived equivalence representatives of the finite dimensional self-injective algebras of finite representation type over an algebraically closed field.

First we recall that the algebras of type $(A_n, s/n, 1)$ and $(A_{2p+1}, s, 2)$ have been considered in [3,6] respectively.

Theorem 2.1. (See [6, Theorem 4.2].) For the M"{o}bius algebra $M_{p,s}$ we have $\text{HH}^2(M_{p,s}) = 0$ except when $p = 1$ and $s = 1$.

It is well known that if $p = 1$ and $s = 1$ then $M_{p,s}$ is the preprojective algebra of type A_3. In [4], a basis for the Hochschild cohomology groups of the preprojective algebras of type A_n is given.

Proposition 2.2. (See [4, 7.2.1].) For the M"{o}bius algebra $M_{p,s}$ with $p = 1$ and $s = 1$ we have $\dim \text{HH}^2(M_{p,s}) = 1$.

In [3], the dimension of $\text{HH}^2(\Lambda)$ is given for a self-injective Nakayama algebra for all $j \geq 1$. In particular this gives us $\text{HH}^2(\Lambda)$ when $j = 1$. The self-injective Nakayama algebra $\Lambda(A_n, s/n, 1)$ of [1] is the algebra B_{n+1}^q of [3]. Write $n + 1 = ms + r$ where $0 \leq r < s$. From [3], with $j = 1$, we have the following result.

Proposition 2.3. (See [3, Proposition 4.4].) For $\Lambda = \Lambda(A_n, s/n, 1)$, and with the above notation we have $\dim \text{HH}^2(\Lambda) = m$.

3. A vanishing theorem

In this section we start by recalling some definitions from Section 3 of [6] and from the theory of Gröbner bases (see [5,6]). Recall that $\Lambda = K Q/I$ where I is an admissible ideal with fixed minimal set of generators f^2.

A length-lexicographic order $>$ on the paths of Q is an arbitrary linear order of both the vertices and the arrows of Q, so that any vertex is smaller than any path of length at least one. For paths p and q, both not vertices, we define $p > q$ if the length of p is greater than the length of q. If the lengths are equal, say $p = a_1 \cdots a_t$, and $q = b_1 \cdots b_t$ where the a_i and b_i are arrows, then we say $p > q$ if there is an i, $0 \leq i \leq t - 1$, such that $a_i = b_j$ for $j < i$ but $a_{i+1} > b_{i+1}$, where we use here our (fixed) arbitrary linear order on the arrows of Q.

Let f be an element in $K Q$ written as a linear combination of paths $\sum_{j=1}^t c_j \rho_j$ with $c_j \in K \setminus \{0\}$ and paths ρ_j. Following [6], we say a path ρ occurs in f if $\rho = \rho_j$ for some j.

Fix a length-lexicographic order on the set of paths of a quiver Q. Let f be a non-zero element of $K Q$. Let $\text{tip}(f)$ denote the largest path occurring in f. Then we define $\text{Tip}(I) = \{ \text{tip}(f) \mid f \in I \setminus \{0\} \}$. Define $\text{NonTip}(I)$ to be the set of paths in $K Q$ that are not in $\text{Tip}(I)$. Note that for vertices v and w, $v \text{NonTip}(I) w$ is a K-basis of paths for $v \Lambda w$.

Definition 3.1. (See [6, Definition 3.1].) The boundary of f^2, denoted by $\text{Bdy}(f^2)$, is defined to be the set

$$\text{Bdy}(f^2) = \{(o(f^2)_i, t(f^2)_i), \ldots, (o(f^2)_m, t(f^2)_m)\} = \{(o(x), t(x)) \mid x \in f^2\}.$$

Definition 3.2. (See [6, Definition 3.3].) Let $G^2 = \bigcup v \text{NonTip}(l)w$, where the union is taken over all (v, w) in $\text{Bdy}(f^2)$.

We consider now elements of $\text{Hom}(Q^2, \Lambda)$.

Definition 3.3. (See [6, Definition 3.4].) For p in G^2 and $x \in f^2$ with $o(x) = o(p)$ and $t(x) = t(p)$, define $\phi_{p,x}: Q^2 \rightarrow \Lambda$ to be the Λ, Λ-bimodule homomorphism given by

$$o(f^2) \otimes t(f^2) \mapsto \begin{cases} p & \text{if } f^2 = x, \\ 0 & \text{otherwise.} \end{cases}$$

Let $d_2: \text{Hom}(Q^1, \Lambda) \rightarrow \text{Hom}(Q^2, \Lambda)$ be the map induced by A_2. Each element of $\text{HH}^2(\Lambda)$ may be represented by a map in $\text{Hom}(Q^2, \Lambda)$ and so is represented by a linear combination over K of maps $\phi_{p,x}$. If every $\phi_{p,x}$ is in $\text{Im}d_2$ then $\text{Hom}(Q^2, \Lambda) = \text{Im}d_2$ and hence $\text{HH}^2(\Lambda) = 0$. Our strategy in Theorem 3.6 is to show that $\text{HH}^2(\Lambda) = 0$ by showing that every $\phi_{p,x}$ is in $\text{Im}d_2$.

First we return to [6] and modify [6, Definition 3.6].

Definition 3.4. Let X be a set of paths in KQ. Define

$$L_0(X) = \{p \in X \mid \exists \text{ some arrow } a \text{ which occurs in } p \text{ and which does not occur in any element of } X\{p\}\}.$$

For $p \in L_0(X)$, we call such an a an arrow associated to p.

Define $L_i(X)$ for $i \in \mathbb{N}$ by

$$L_i(X) = L_0\left(X \setminus \bigcup_{j=0}^{i-1} L_j(X)\right).$$

Definition 3.5. (See [6, Definition 3.9].) Let X be a set of paths in $\text{NonTip}(l)$. The arrows are said to separate X if $X = \bigcup_{i \geq 0} L_i(X)$.

Motivated by Theorem 3.10 in [6] we give a new theorem on the vanishing of $\text{HH}^2(\Lambda)$ which we will show applies to all algebras in Asashiba’s list when $s \geq 2$. (We will consider the case $s = 1$ later.)

Theorem 3.6. Let $\Lambda = KQ/l$ be a finite dimensional algebra where l is an admissible ideal with minimal generating set f^2. With the notation of this section, suppose that for all $(v, w) \in \text{Bdy}(f^2)$ either $v\Lambda w = \{0\}$ or there is some path p such that $v \text{NonTip}(l)w = \{p\}$. In the case where $v\Lambda w \neq \{0\}$ suppose further that $vf^2w = \{p - q_1, \ldots, p - q_t\}$ for paths q_1, \ldots, q_t. Thus we may write $G^2 = \{p_1, \ldots, p_r\}$, where for each $i = 1, \ldots, r$, we have non-zero paths q_{i1}, \ldots, q_{it_i} with $o(p_i)f^2\text{Im}(p_i) = \{p_i - q_{i1}, \ldots, p_i - q_{it_i}\}$.

Let $Y = \{p_1, \ldots, p_r, q_{ij} \mid 1 \leq i \leq r, 1 \leq j \leq t_i\}$. Suppose that $L_0(Y) = Y$. Let a_{ij} be an arrow associated to q_{ij} and assume that a_{ij} occurs only once in the path q_{ij}. Then every element of $\text{Hom}(Q^2, \Lambda)$ is a coboundary, that is, $\phi_{p,x} \in \text{Im}d_2$ for all $p \in G^2$ and $x \in f^2$, and thus $\text{HH}^2(\Lambda) = 0$.

Proof. It is enough to show that each element $\phi_{p,x}$ of $\text{Hom}(Q^2, \Lambda)$, where p is a path in G^2 and $x \in f^2$ with $o(x) = o(p)$ and $t(x) = t(p)$, is a coboundary. By hypothesis $G^2 = \{p_1, \ldots, p_r\}$, Note that the paths p_1, \ldots, p_r are distinct. Consider the path p_i where $i \in \{1, \ldots, r\}$. Then by hypothesis there are vertices v_i, w_i with $v_i \text{NonTip}(l)w_i = \{p_i\}$ and $v_if^2w_i = \{p_i - q_{i1}, \ldots, p_i - q_{it_i}\}$. Thus if $x \in f^2$ and
\(o(x) = o(p_i) \) and \(t(x) = t(p_i) \) then \(x \in v_i f^2 w_i \). Thus \(x \in \{ p_i - q_{ij}, \ldots, p_i - q_{jl} \} \). Consider \(x = p_i - q_{ij} \) where \(j \in \{1, \ldots, t_i \} \).

The map \(\phi_{p_1,x} : Q^2 \to \Lambda \) is given by

\[
\phi(f^2_k) \otimes t(f^2_k) = \begin{cases} p_i & \text{if } f^2_k = x, \\ 0 & \text{otherwise.} \end{cases}
\]

We have \(Y = \{ p_1, \ldots, p_r, q_{ij} \mid 1 \leq i \leq r, 1 \leq j \leq t_i \} \) and \(Y = L_0(Y) \) so \(q_{ij} \in L_0(Y) \). Therefore there exists some arrow \(a_{ij} \) which occurs in \(q_{ij} \) and does not occur in any element of \(Y \setminus \{ q_{ij} \} \).

Define \(\psi : Q^1 \to \Lambda \) by

\[
\psi(\alpha) \otimes t(\alpha) = \begin{cases} -a_{ij} & \text{if } \alpha = a_{ij}, \\ 0 & \text{otherwise.} \end{cases}
\]

Now we want to show that \(\psi A_2 = \phi_{p_1,x} \). Take \(\phi(f^2_k) \otimes t(f^2_k) \in Q^2 \). We start by finding \(\psi A_2(\phi(f^2_k) \otimes t(f^2_k)) \) by considering two cases.

Case. \(f^2_k = x \).

Here, we have \(\psi A_2(\phi(f^2_k) \otimes t(f^2_k)) = \psi A_2(\phi(x) \otimes t(x)) \), where \(x = p_i - q_{ij} \) and \(q_{ij} = \rho_1 a_{ij} \rho_2 \) for paths \(\rho_1, \rho_2 \) such that \(a_{ij} \) does not occur in \(\rho_1 \) or \(\rho_2 \) since \(a_{ij} \) occurs only once in \(q_{ij} \) by hypothesis. Let \(p_i = \sigma_1 \cdots \sigma_l, \rho_1 = \epsilon_1 \cdots \epsilon_n, \rho_2 = b_1 \cdots b_m \), where the \(\sigma \)'s, \(\epsilon \)'s, \(b \)'s are arrows. Then \(\psi A_2(\phi(x) \otimes t(x)) = \psi(\phi(x) \otimes \sigma_1 (\sigma_2 \cdots \sigma_l) + \phi(\sigma_1 \otimes \sigma_2 (\sigma_3 \cdots \sigma_l) + \cdots + (\sigma_1 \sigma_2 \cdots \sigma_l) \otimes t(x)) - \phi(x) \otimes \epsilon_1 (\epsilon_2 \cdots \epsilon_n) a_{ij} \rho_2 + \epsilon_1 \otimes \epsilon_2 (\epsilon_3 \cdots \epsilon_n) a_{ij} \rho_2 + \cdots + (\epsilon_1 \epsilon_2 \cdots \epsilon_n) a_{ij} \rho_2 + \rho_1 \otimes a_{ij} \rho_2 + \rho_1 a_{ij} \otimes (b_1 \cdots b_m) + \rho_1 a_{ij} b_1 \otimes (b_2 \cdots b_m) + \cdots + \rho_1 a_{ij} (b_1 b_2 \cdots b_{m-1}) \otimes b_m(t(x)) \).

As \(q_{ij}, p_i \in Y = L_0(Y) \) and \(a_{ij} \) occurs in \(q_{ij} \), we have that \(a_{ij} \) does not occur in \(p_i \). So \(a_{ij} \) is not equal to any of the \(\sigma \)'s, \(\epsilon \)'s or \(b \)'s. Therefore

\[
\psi A_2(\phi(x) \otimes t(x)) = -\psi(\rho_1 \otimes a_{ij} \rho_2)
\]

\[
= -\rho_1 \psi(t(\rho_1) \otimes a_{ij} \phi(\rho_2)) \rho_2
\]

\[
= -\rho_1 \psi(\phi(a_{ij}) \otimes a_{ij} t(\alpha)) \rho_2
\]

\[
= \rho_1 a_{ij} \rho_2 = q_{ij}.
\]

Case. \(f^2_k \neq x \).

We consider separately the cases \(\phi(f^2_k) \Lambda t(f^2_k) = 0 \) and \(\phi(f^2_k) \Lambda t(f^2_k) \neq 0 \).

(a) If \(\phi(f^2_k) \Lambda t(f^2_k) = 0 \) then \(\psi A_2(\phi(f^2_k) \otimes t(f^2_k)) = \phi(f^2_k) \psi A_2(\phi(f^2_k) \otimes t(f^2_k)) t(f^2_k) = 0 \) as \(\psi A_2(\phi(f^2_k) \otimes t(f^2_k)) \in \Lambda \) and \(\phi(f^2_k) \Lambda t(f^2_k) = 0 \).

(b) If \(\phi(f^2_k) \Lambda t(f^2_k) \neq 0 \) then \(\phi(f^2_k) \Lambda t(f^2_k) = Sp(p_u), \) the vector space spanned by \(p_u \), for some \(1 \leq u \leq r \). Hence \(f^2_k = p_u - q_{ul} \) for some \(1 \leq l \leq t_u \).

We have \(L_0(Y) = Y \) so \(a_{ij} \) does not occur in any element of \(Y \setminus \{ q_{ij} \} \). Suppose for contradiction that \(a_{ij} \) occurs in \(q_{ul} \), so that \(q_{ul} = q_{ij} \) as paths in \(K \mathcal{Q} \). Then

\[
o(f^2_k) = o(q_{ul}) = o(q_{ij}) = o(x)
\]

and

\[
t(f^2_k) = t(q_{ul}) = t(q_{ij}) = t(x).
\]
Therefore, \(o(\mathcal{A}_k \lambda(f_k^2)) = o(x) \lambda(x) = \mathcal{S}(p_1) \). Hence, \(p_u = p_1 \) by the choice of \(G^2 \). Therefore, \(f_k^2 = p_u - q_{ul} = p_1 - q_{ij} = x \). This gives a contradiction since we assumed \(f_k^2 \neq x \). Hence \(a_{ij} \) does not occur in \(q_{ul} \).

Now suppose for contradiction that \(a_{ij} \) occurs in \(p_u \) so that \(p_u = q_{ij} \) as paths in \(K \mathcal{Q} \). Then

\[
o(\mathcal{A}_k) = o(p_u) = o(q_{ij}) = o(x)
\]

and

\[
\lambda(f_k^2) = \lambda(p_u) = \lambda(q_{ij}) = \lambda(x).
\]

Therefore, \(\mathcal{S}(p_u) = o(f_k^2) \lambda(f_k^2) = o(x) \lambda(x) = \mathcal{S}(p_1) \). Therefore, \(p_u = p_1 \) by the choice of \(G^2 \). Hence \(p_1 = p_u = q_{ij} \) in \(K \mathcal{Q} \). So \(p_1 - q_{ij} = 0 \) in \(K \mathcal{Q} \). This contradicts \(p_1 - q_{ij} \) being a minimal generator of \(I \). Therefore, \(a_{ij} \) does not occur in \(p_u \).

Thus \(a_{ij} \) does not occur in \(f_k^2 \). So \(\psi A_2 \circ \lambda(f_k^2) \Rightarrow \lambda(f_k^2)) = 0 \).

Hence \(\psi A_2 \) is the map

\[
o(f_k^2) \Rightarrow \lambda(f_k^2) \mapsto \begin{cases} q_{ij} & \text{if } f_k^2 = x, \\ 0 & \text{otherwise.} \end{cases}
\]

As \(p_1 - q_{ij} \in f^2 \), we know that \(p_1 = q_{ij} \) in \(\Lambda \). Hence \(\psi A_2 = \phi_{p_1,x} \). Thus \(\phi_{p_1,x} \), and hence each element of \(\text{Hom}(Q^2, \Lambda) \), is a coboundary. Hence \(HH^2(\Lambda) = 0 \). \(\Box \)

4. Application to standard algebras

We now want to apply Theorem 3.6 to our derived equivalence representatives. We start by considering the standard derived equivalence representatives, and we need minimal relations for each such algebra in Asashiba’s list.

We start with the algebra \(\Lambda = \Lambda(D_n, s, 1) \). Note that \(R(D_n, s, 1) \) for \(s \geq 1 \) is not minimal.

For relations of type (i), let \(r_0[I]r_1[I^1] = \gamma[I]^1[I] \in f^2 \) and \(r_0[I]r_1[I] = \alpha_n - \alpha_{n-3} \alpha_n - \alpha_2 \alpha_1[I] \in f^2 \). All relations of type (ii) are in \(f^2 \). We now consider the relations of type (iii). So \(r_0[I]r_1[I^1] = \gamma[I]^1[I] = \alpha_{n-2} \alpha_{n-3} \alpha_n - \alpha_2 \alpha_1[I] \in f^2 \). Also \(\gamma[I]^1[I] = \alpha_{n-2} \alpha_{n-3} \alpha_n - \alpha_2 \alpha_1[I] \in f^2 \).

Now consider “\(\alpha \)-paths.” We have \(r_0[I]r_1[I] = \gamma[I]^1[I] \in f^2 \). So \(\gamma[I]^1[I] = \alpha_{n-2} \alpha_{n-3} \alpha_n - \alpha_2 \alpha_1[I] \in f^2 \).

However, the path \(\alpha_{n-1} \alpha_n \alpha_{n-2} \alpha_1[I] \in f^2 \).

In general, \(\alpha_{k+1} \alpha_{k+2} \alpha_{k+3} \alpha_n \alpha_{n-1} \alpha_n \alpha_{n-2} \alpha_1[I] \in f^2 \).

Proposition 4.1

For \(\Lambda = \Lambda(D_n, s, 1) \) with \(s \geq 1 \), and for all \(i \in \{0, \ldots, n-1\} \), let

\[
\begin{align*}
f_{1,1,i}^2 &= r_0[I]r_1[I] - \gamma[I]^1[I], \\
f_{1,2,i}^2 &= r_0[I]r_1[I] - \alpha_{n-2} \alpha_{n-3} \alpha_{n-4} \alpha_2 \alpha_1[I], \\
f_{2,1,i}^2 &= \alpha_{n-1} \alpha_n \alpha_{n-2} \alpha_1[I], \\
f_{2,2,i}^2 &= \alpha_{n-2} \alpha_{n-3} \alpha_1[I], \\
f_{2,3,i}^2 &= \alpha_{n-1} \alpha_n \alpha_{n-2} \alpha_2 \alpha_1[I], \\
f_{2,4,i}^2 &= \gamma[I]^1[I].
\end{align*}
\]
\[\begin{align*}
 f^2_{2,5,i} &= \rho_1^{[i]} \gamma_0^{[i+1]} - \rho_0^{[i]} \gamma_0, \\
 f^2_{2,6,i} &= \rho_0^{[i]} \rho_1^{[i]} - \alpha_1^{[i]} \alpha_1^{[i+1]} - \alpha_n-2 \alpha_n^{-3} \alpha_2 \alpha_1, \\
 f^2_{3,k,i} &= \alpha_k^{[i]} \alpha_1^{[i+1]} \alpha_n^{-2} \alpha_n^{-3} \alpha_2 \alpha_k, \text{ for } k = \{2, \ldots, n-3\}.
\end{align*} \]

Then \(f^2 = \{ f^2_{1,1,i}, f^2_{1,2,i}, f^2_{1,3,i}, f^2_{2,1,i}, f^2_{2,2,i}, f^2_{2,3,i}, f^2_{2,4,i}, f^2_{2,5,i}, f^2_{2,6,i}, f^2_{3,k,i} \} \) for \(i = 0, \ldots, s - 1 \) and \(k = 2, \ldots, n - 3 \) is a minimal set of relations.

For the rest of the algebras, we can find a minimal set of relations in a similar way. They are given in the following propositions.

Proposition 4.2. For \(\Lambda = \Lambda(D_n, s, 2) \) with \(s \geq 2 \), let, for all \(i \in \{0, \ldots, s-1\} \),
\[
\begin{align*}
 f^2_{1,1,i} &= \rho_0^{[i]} \rho_1^{[i]} - \alpha_1^{[i]} \gamma_0^{[i+1]}, \\
 f^2_{1,2,i} &= \rho_0^{[i]} \rho_1^{[i]} - \alpha_1^{[i]} \gamma_0^{[i+1]}, \\
 f^2_{2,1,i} &= \alpha_1^{[i]} \rho_0^{[i+1]}, \\
 f^2_{2,2,i} &= \alpha_1^{[i]} \gamma_0^{[i+1]}, \\
 f^2_{2,3,i} &= \rho_0^{[i]} \rho_1^{[i]} - \alpha_1^{[i]} \alpha_n^{-2}, \\
 f^2_{2,4,i} &= \gamma_1^{[i]} \alpha_n^{-2}, \\
 f^2_{2,5,i} &= \rho_0^{[i]} \rho_1^{[i]} - \alpha_1^{[i]} \alpha_n^{-2}, \\
 f^2_{2,6,i} &= \gamma_1^{[i]} \alpha_n^{-2}, \\
 f^2_{3,k,i} &= \alpha_k^{[i]} \alpha_1^{[i+1]} \alpha_n^{-2} \alpha_n^{-3} \alpha_2 \alpha_k, \text{ for } k = \{2, \ldots, n-3\}.
\end{align*} \]

Then \(f^2 = \{ f^2_{1,1,i}, f^2_{1,2,i}, f^2_{1,3,i}, f^2_{2,1,i}, f^2_{2,2,i}, f^2_{2,3,i}, f^2_{2,4,i}, f^2_{2,5,i}, f^2_{2,6,i}, f^2_{3,k,i} \} \) for \(i = 0, \ldots, s - 1 \) and \(k = 2, \ldots, n - 3 \) is a minimal set of relations.

Note that Proposition 4.2 is for \(s \geq 2 \). For \(s = 1 \) the minimal relations are different and are given in the next proposition.

Proposition 4.3. For \(\Lambda = \Lambda(D_n, 1, 2) \), let
\[
\begin{align*}
 f^2_{1,1} &= \rho_0 \beta_1 - \gamma_0 \gamma_1, \quad f^2_{1,2} = \rho_0 \beta_1 - \alpha_n^{-2} \beta_1 \rho_1, \\
 f^2_{2,1} &= \alpha_1 \beta_0, \quad f^2_{2,2} = \alpha_1 \gamma_0, \\
 f^2_{2,3} &= \beta_1 \alpha_n^{-2}, \quad f^2_{2,4} = \gamma_1 \alpha_n^{-2}, \\
 f^2_{2,5} &= \beta_1 \beta_0, \quad f^2_{2,6} = \gamma_1 \gamma_0 \quad \text{and} \\
 f^2_{3,k} &= \alpha_k \cdots \alpha_1 \alpha_n^{-2} \cdots \alpha_k, \quad \text{for } k \in \{2, \ldots, n-3\}.
\end{align*} \]

Then \(f^2 = \{ f^2_{1,1}, f^2_{1,2}, f^2_{1,3}, f^2_{2,1}, f^2_{2,2}, f^2_{2,3}, f^2_{2,4}, f^2_{2,5}, f^2_{2,6}, f^2_{3,k} \} \) for \(k = 2, \ldots, n - 3 \) is a minimal set of relations.

Again for \(\Lambda(D_4, s, 3) \) we separate the cases \(s \geq 2 \) and \(s = 1 \).
Proposition 4.4. For \(\Lambda = \Lambda(D_4, s, 3) \) with \(s \geq 2 \), let,
for all \(i \in \{0, \ldots, s-1\} \):

\[
\begin{align*}
f_{1,1,i}^2 &= \beta_0 \rho_1 - \gamma_0 \alpha_1, \\
f_{1,2,i}^2 &= \beta_0 \rho_1 - \alpha_0 \alpha_1, \\
f_{2,1,i}^2 &= \beta_1 \alpha_0, \\
f_{2,2,i}^2 &= \alpha_1 \gamma_0, \\
f_{2,3,i}^2 &= \gamma_1 \rho_0.
\end{align*}
\]

for all \(i \in \{0, \ldots, s-2\} \):

\[
\begin{align*}
f_{2,4,i}^2 &= \alpha_1 \rho_0, \\
f_{2,5,i}^2 &= \beta_1 \gamma_0, \\
f_{2,6,i}^2 &= \gamma_1 \alpha_0, \\
f_{2,7,s-1}^2 &= \beta_1^{[s-1]} \gamma_0^{[0]}, \\
f_{2,8,s-1}^2 &= \beta_1^{[s-1]} \rho_0^{[0]}, \\
f_{2,9,s-1}^2 &= \alpha_1^{[s-1]} \rho_0^{[0]}, \\
f_{3,1,s-1}^2 &= \beta_0^{[s-1]} \rho_0^{[0]} \rho_1^{[0]}, \\
f_{3,2,s-1}^2 &= \alpha_0^{[s-1]} \alpha_1^{[s-1]} \rho_0^{[0]}, \\
f_{3,3,s-1}^2 &= \alpha_0^{[s-1]} \rho_0^{[0]} \rho_1^{[0]}, \\
f_{3,4,s-1}^2 &= \beta_0^{[s-1]} \rho_0^{[0]} \rho_1^{[0]}, \\
f_{3,5,s-1}^2 &= \alpha_0^{[s-1]} \rho_0^{[0]} \rho_1^{[0]}, \\
f_{3,6,s-1}^2 &= \alpha_1^{[s-1]} \rho_0^{[0]} \rho_1^{[0]}.
\end{align*}
\]

Then \(f^2 = \{f_{1,1,i}^2, f_{1,2,i}^2, f_{2,1,i}^2, f_{2,2,i}^2, f_{2,3,i}^2, f_{2,4,i}^2, f_{2,5,i}^2, f_{2,6,i}^2 \text{ for } i = 0, \ldots, s-1\} \cup \{f_{2,4,i}^2, f_{2,5,i}^2, f_{2,6,i}^2 \text{ for } i = 0, \ldots, s-2\} \cup \{f_{2,7,s-1}^2, f_{2,8,s-1}^2, f_{2,9,s-1}^2, f_{3,1,s-1}^2, f_{3,2,s-1}^2, f_{3,3,s-1}^2, f_{3,4,s-1}^2, f_{3,5,s-1}^2, f_{3,6,s-1}^2 \} \) is a minimal set of relations.

Proposition 4.5. For \(\Lambda = \Lambda(D_4, 1, 3) \), let

\[
\begin{align*}
f_{1,1}^2 &= \beta_0 \beta_1 - \gamma_0 \gamma_1, \\
f_{1,2}^2 &= \beta_0 \beta_1 - \alpha_0 \alpha_1, \\
f_{2,1}^2 &= \beta_1 \alpha_0, \\
f_{2,2}^2 &= \alpha_1 \gamma_0, \\
f_{2,3}^2 &= \gamma_1 \rho_0, \\
f_{2,4}^2 &= \gamma_1 \gamma_0, \\
f_{2,5}^2 &= \beta_1 \beta_0 \quad \text{and} \\
f_{2,6}^2 &= \alpha_1 \alpha_0.
\end{align*}
\]

Then \(f^2 = \{f_{1,1}^2, f_{1,2}^2, f_{2,1}^2, f_{2,2}^2, f_{2,3}^2, f_{2,4}^2, f_{2,5}^2, f_{2,6}^2 \} \) is a minimal set of relations.

Proposition 4.6. For the standard algebra \(\Lambda = \Lambda(D_{3m}, s/3, 1) \) with \(s \geq 1 \), for all \(i \in \{1, \ldots, s\} \), let

\[
\begin{align*}
f_{1,i}^2 &= \beta_i \beta_{i+1} - \alpha_i^{[i]} \cdots \alpha_m^{[i]}, \\
f_{2,i}^2 &= \alpha_i^{[i]} \alpha_1^{[i+2]}, \\
f_{3,i,j}^2 &= \alpha_j^{[i]} \cdots \alpha_m^{[i]} \beta_{i+2} \alpha_1^{[i+3]} \cdots \alpha_j^{[i+3]} \quad \text{for all } j \in \{2, \ldots, m-1\}.
\end{align*}
\]

Then \(f^2 = \{f_{1,i}^2, f_{2,i}^2, f_{3,i,j}^2 \text{ for } j = 2, \ldots, m-1 \text{ and } i = 1, \ldots, s\} \) is a minimal set of relations.
Proposition 4.7. For $\Lambda = \Lambda(E_n, s, 1)$ with $s \geq 1$ and for all $i \in \{0, \ldots, s - 1\}$, let

$$f_{1,1,i}^2 = \beta_1^i \beta_2^i \beta_1^i - \gamma_2^i \gamma_1^i,$$

$$f_{1,2,i}^2 = \beta_2^i \beta_2^i \beta_1^i - \alpha_3^i \alpha_3^i \alpha_1^i,$$

$$f_{2,1,i}^2 = \alpha_1^i \beta_3^i,$$

$$f_{2,2,i}^2 = \alpha_1^i \gamma_2^i,$$

$$f_{2,3,i}^2 = \alpha_1^i \alpha_3^i,$$

$$f_{2,4,i}^2 = \beta_1^i \gamma_2^i,$$

$$f_{2,5,i}^2 = \gamma_1^i \alpha_3^i,$$

$$f_{2,6,i}^2 = \gamma_1^i \beta_3^i,$$

$$f_{3,k,i}^2 = \alpha_k^i \alpha_{k-1}^i \cdots \alpha_{k+1}^i \alpha_k^i$$ for $k \in \{2, \ldots, n - 4\}$ and

$$f_{4,i}^2 = \beta_2^i \beta_1^i \beta_3^i \beta_2^i.$$

Then $f^2 = \{f_{1,1,i}, f_{1,2,i}, f_{2,1,i}, f_{2,2,i}, f_{2,3,i}, f_{2,4,i}, f_{2,5,i}, f_{2,6,i}, f_{3,k,i}, f_{4,i}\}$ for $k \in \{2, \ldots, n - 4\}$, $f_{4,i}$ is a minimal set of relations.

Finally, for the algebras of type E_6 we have 2 cases to consider.

Proposition 4.8. For $\Lambda = \Lambda(E_6, s, 2)$ with $s \geq 2$, let,

for all $i \in \{0, \ldots, s - 1\}$:

$$f_{1,1,i}^2 = \beta_2^i \beta_2^i \beta_1^i - \gamma_2^i \gamma_1^i,$$

$$f_{1,2,i}^2 = \beta_2^i \beta_2^i \beta_1^i - \alpha_3^i \alpha_3^i \alpha_1^i,$$

$$f_{2,1,i}^2 = \gamma_1^i \alpha_3^i,$$

$$f_{2,2,i}^2 = \gamma_1^i \beta_3^i,$$

$$f_{2,3,i}^2 = \gamma_1^i \alpha_3^i,$$

$$f_{2,4,i}^2 = \beta_1^i \gamma_2^i,$$

$$f_{2,5,i}^2 = \gamma_1^i \alpha_3^i,$$

$$f_{2,6,i}^2 = \gamma_1^i \beta_3^i,$$

and for all $i \in \{0, \ldots, s - 2\}$:

$$f_{2,5,i}^2 = \alpha_1^i \beta_3^i,$$

$$f_{2,6,i}^2 = \beta_1^i \alpha_3^i,$$

$$f_{2,7,i}^2 = \alpha_1^i \alpha_3^i \alpha_1^i,$$

$$f_{2,8,i}^2 = \beta_1^i \alpha_3^i \beta_3^i,$$

$$f_{3,1,i}^2 = \alpha_1^i \alpha_3^i \alpha_1^i,$$

$$f_{3,2,i}^2 = \beta_1^i \alpha_3^i \beta_3^i,$$

$$f_{3,3,i}^2 = \alpha_1^i \alpha_3^i \alpha_1^i,$$

$$f_{3,4,i}^2 = \beta_1^i \alpha_3^i \beta_3^i.$$

Then $f^2 = \{f_{1,1,i}, f_{1,2,i}, f_{2,1,i}, f_{2,2,i}, f_{2,3,i}, f_{2,4,i}, f_{2,5,i}, f_{2,6,i}, f_{3,1,i}, f_{3,2,i}, f_{3,3,i}, f_{3,4,i}\}$ for $i = 0, \ldots, s - 1$ ∪ $\{f_{2,5,i}, f_{2,6,i}\}$, for $i = 0, \ldots, s - 2$ ∪ $\{f_{2,7,i}, f_{2,8,i}\}$, for $i = 0, \ldots, s - 2$ ∪ $\{f_{3,1,i}, f_{3,2,i}\}$ is a minimal set of relations.

Proposition 4.9. For $\Lambda = \Lambda(E_6, 1, 2)$, let

$$f_{1,1}^2 = \beta_3 \beta_2 \beta_1 - \gamma_2 \gamma_1,$$

$$f_{1,2}^2 = \beta_3 \beta_2 \beta_1 - \alpha_3 \alpha_2 \alpha_1,$$

$$f_{2,1}^2 = \gamma_1 \alpha_3,$$

$$f_{2,2}^2 = \gamma_1 \beta_3,$$

$$f_{2,3}^2 = \alpha_1 \gamma_2,$$

$$f_{2,4}^2 = \beta_1 \gamma_2,$$

$$f_{2,5}^2 = \alpha_1 \alpha_3,$$

$$f_{2,6}^2 = \beta_1 \beta_3,$$

$$f_{3,1}^2 = \alpha_2 \alpha_1 \beta_3,$$

$$f_{3,2}^2 = \beta_2 \beta_1 \alpha_3 \beta_2.$$

Then $f^2 = \{f_{1,1}, f_{1,2}, f_{2,1}, f_{2,2}, f_{2,3}, f_{2,4}, f_{2,5}, f_{2,6}, f_{3,1}, f_{3,2}\}$ is a minimal set of relations.
We now apply Theorem 3.6 to the self-injective algebras of type D_n and $E_{6,7,8}$ using Propositions 4.2–4.9.

For example consider the algebra $\Lambda(D_n, s, 2)$ for $s \geq 2$. Fix an order on the vertices and the arrows:

$$\alpha_n^{[0]} > \alpha_{n-1}^{[0]} > \cdots > \alpha_1^{[0]} > \gamma_0^{[0]} > \gamma_1^{[0]} > \beta_0^{[0]} > \beta_1^{[0]}$$

$$> \alpha_n^{[1]} > \cdots > \beta_1^{[1]} > \cdots > \alpha_{n-2}^{[s-1]} > \cdots > \beta_1^{[s-1]}$$

and

$$\beta_1^{[s-1]} > e_{1,0} > e_{n-2,0} > \cdots > e_{1,1} > e_{n,0} > e_{n-1,0} > \cdots > e_{1,s-1}$$

$$> e_{n-2,s-1} > \cdots > e_{n,s-1} > e_{n-1,s-1}.$$

Then

$$\text{tip}(f_{1,1,i}^2) = \text{tip}(\beta_0^{[i]} \beta_1^{[i]} - \gamma_0^{[i]} \gamma_1^{[i]}) = \gamma_0^{[i]} \gamma_1^{[i]}$$

and

$$\text{tip}(f_{1,2,i}^2) = \text{tip}(\beta_0^{[i]} \beta_1^{[i]} - \alpha_{n-2}^{[i]} \alpha_{n-3}^{[i]} \cdots \alpha_2^{[i]} \alpha_1^{[i]}) = \alpha_{n-2}^{[i]} \alpha_{n-3}^{[i]} \cdots \alpha_2^{[i]} \alpha_1^{[i]}$$

for $i = 0, \ldots, s - 1$. For all other $f_j^2 \in f^2$ with $f_j^2 \neq f_{1,1,i}^2, f_{1,2,i}^2$ we know that f_j^2 is a path in KQ so $\text{tip}(f_j^2) = f_j^2$. In these cases $\omega(f_j^2) = \text{NonTip}(I)(f_j^2) = \emptyset$. Let $v_i = \omega(f_{1,1,i}^2) = \omega(f_{1,2,i}^2)$ and let $w_i = t(f_{1,1,i}^2) = t(f_{1,2,i}^2)$ for $i = 0, \ldots, s - 1$. Then $(v_i, w_i) \in \text{Bdy}(f^2)$ and $v_i, \text{NonTip}(I) w_i = \beta_0^{[i]} \beta_1^{[i]}$ for all $i = 0, \ldots, s - 1$. So let $p^{[i]} = \beta_0^{[i]} \beta_1^{[i]}$ for $i = 0, \ldots, s - 1$. Then $v_i f_2 w_i = (\beta_0^{[i]} \beta_1^{[i]} - \gamma_0^{[i]} \gamma_1^{[i]}), \beta_0^{[i]} \beta_1^{[i]} - \alpha_{n-2}^{[i]} \alpha_{n-3}^{[i]} \cdots \alpha_2^{[i]} \alpha_1^{[i]} = (p^{[i]} - q_1^{[i]} - p^{[i]} - q_2^{[i]}), where \quad q_1^{[i]} = \gamma_0^{[i]} \gamma_1^{[i]}, \quad q_2^{[i]} = \alpha_{n-2}^{[i]} \alpha_{n-3}^{[i]} \cdots \alpha_2^{[i]} \alpha_1^{[i]}$. With the notation of Theorem 3.6, $G^2 = \{ \beta_0^{[i]} \beta_1^{[i]} | i = 0, \ldots, s - 1 \}$ and $Y = \{ \beta_0^{[i]} \beta_1^{[i]} , \gamma_0^{[i]} \gamma_1^{[i]} , \alpha_{n-2}^{[i]} \alpha_{n-3}^{[i]} \cdots \alpha_2^{[i]} \alpha_1^{[i]} \}$. Choose $a_1^{[i]} = \gamma_0^{[i]}$ and $a_2^{[i]} = \alpha_{n-2}^{[i]}$, so that $a_1^{[i]}$ and $a_2^{[i]}$ are arrows associated to $q_1^{[i]}$ and $q_2^{[i]}$ respectively, and $a_j^{[i]}$ occurs once in $q_j^{[i]}$ for $j = 1, 2$. Then by applying Theorem 3.6, every element of $\text{Hom}(Q^2, \Lambda)$ is a coboundary and so $\text{HH}^2(\Lambda) = 0$.

Similar arguments give the following corollary.

Corollary 4.10. Suppose $s \geq 2$. Let Λ be one of the standard algebras $\Lambda(D_n, s, 1), \Lambda(D_n, s, 2)$ for $n \geq 4$, $\Lambda(D_4, s, 3), \Lambda(D_{3m}, s/3, 1)$ with $m \geq 2, 3 \mid n$, $\Lambda(E_n, s, 1)$ with $n \in \{6, 7, 8\}$ or $\Lambda(E_6, s, 2)$. Then $\text{HH}^2(\Lambda) = 0$.

Remark. Theorem 3.6 does not apply if $s = 1$ since in this case there is some $(v, w) \in \text{Bdy}(f^2)$ with $\dim \text{Im} w > 1$.

5. $\text{HH}^2(\Lambda)$ for the standard self-injective algebras of finite representation type

In this section we determine $\text{HH}^2(\Lambda)$ for the standard algebras $\Lambda(D_n, s, 1), \Lambda(D_n, s, 2), \Lambda(D_4, s, 3), \Lambda(D_{3m}, s/3, 1), \Lambda(E_n, s, 1), \Lambda(E_6, s, 2)$ when $s = 1$. A sketch of the proof is given in each type. We start with $\Lambda(D_n, s, 2)$ since $\text{HH}^2(\Lambda) \neq 0$ in this case.

Theorem 5.1. For $\Lambda = \Lambda(D_n, 1, 2)$ we have $\dim \text{HH}^2(\Lambda) = 1$.

Proof. For $\Lambda = \Lambda(D_n, 1, 2)$ we label the quiver $Q(D_n, 1)$ as follows:
The set f^2 of minimal relations was given in Proposition 4.3. Recall that the projective $Q^3 = \bigoplus_{y \in f^3} \Lambda \alpha(y) \otimes t(y) = (\Lambda e_1 \otimes e_{n-3}) \oplus (\Lambda e_1 \otimes e_{n-2}) \oplus (\Lambda e_1 \otimes e_{n-1}) \oplus (\Lambda e_1 \otimes e_n) \oplus (\Lambda e_2 \otimes e_1) \oplus (\Lambda e_{n-1} \otimes e_1) \oplus (\Lambda e_n \otimes e_1) \oplus \bigoplus_{m=2}^{n-2} (\Lambda e_m \otimes e_{m-2}) \Lambda)$. (We note that the projective Q^3 is also described in [8] although Happel gives no description of the maps in the $\Lambda \Lambda$-projective resolution of Λ.) Following [6], and with the notation introduced in Section 1, we may choose the set f^3 to consist of the following elements:

$$\{f^3_{1,1}, f^3_{1,2}, f^3_{1,3}, f^3_{1,4}, f^3_{n-1}, f^3_n, f^3_{3, f_m^3}\}, \text{ with } m \in \{4, \ldots, n - 2\}$$

where

$$\begin{align*}
f^3_{1,1} &= f^2_{1,2} \alpha_{n-2} \alpha_{n-3} = \beta_0 f^2_{1,3} \alpha_{n-3} - \alpha_{n-2} f^2_{2,n-3} \in e_1 K \Omega e_{n-3}, \\
f^3_{1,2} &= f^2_{1,1} \alpha_{n-2} = \beta_0 f^2_{1,3} - \gamma_0 f^2_{2,4} \in e_1 K \Omega e_{n-2}, \\
f^3_{1,3} &= f^2_{1,2} \beta_0 = \beta_0 f^2_{2,5} - \alpha_{n-2} \cdots \alpha_2 f^2_{2,1} \in e_1 K \Omega e_{n-1}, \\
f^3_{1,4} &= f^2_{1,1} \gamma_0 - f^2_{1,2} \gamma_0 = \alpha_{n-2} \cdots \alpha_2 f^2_{2,2} - \gamma_0 f^2_{2,6} \in e_1 K \Omega e_n, \\
f^3_2 &= f^2_{2,1} \beta_1 - f^2_{2,2} \gamma_1 = \alpha_1 f^2_{1,1} \in e_2 K \Omega e_1, \\
f^3_{n-1} &= f^2_{2,5} \beta_1 - f^2_{2,4} \alpha_{n-3} \cdots \alpha_1 = \beta_1 f^2_{1,2} \in e_{n-1} K \Omega e_1, \\
f^3_n &= f^2_{2,4} \alpha_{n-3} \cdots \alpha_1 = \gamma_1 f^2_{1,1} - \gamma_1 f^2_{2,2} \in e_n K \Omega e_1, \\
f^3_2 &= f^2_{3,2} \alpha_1 = \alpha_2 f^2_{2,1} \beta_1 - \alpha_2 f^2_{1,2} \in e_3 K \Omega e_1, \\
f^3_m &= f^2_{3,m-1} \alpha_{m-2} = \alpha_{m-1} f^2_{3,m-2} \in e_m K \Omega e_{m-2} \text{ for } m \in \{4, \ldots, n - 2\}.
\end{align*}$$

We know that $\text{HH}^2(\Lambda) = \text{Ker} d_3 / \text{Im} d_2$. First we will find $\text{Im} d_2$. Let $f \in \text{Hom}(Q^1, \Lambda)$ and so write

$$f(e_1 \otimes \beta_0 e_{n-1}) = c_1 \beta_0, \quad f(e_n \otimes \beta_1 e_1) = c_2 \beta_1,$$

$$f(e_1 \otimes \gamma_0 e_n) = c_3 \gamma_0, \quad f(e_n \otimes \gamma_1 e_1) = c_4 \gamma_1,$$

$$f(e_1 \otimes \alpha_{n-2} e_{n-2}) = d_{n-2} \alpha_{n-2}.$$
and
\[f(e_{l+1} \otimes e_l) = d_l \alpha_l \quad \text{for } l \in \{1, \ldots, n-3\}, \]
where \(c_1, c_2, c_3, c_4, d_l \in K \) for \(l \in \{1, \ldots, n-2\}. \)

Now we find \(fA_2 = d_2 f. \) We have
\[
\begin{align*}
 fA_2(e_1 \otimes_{f_{1,2}^2} e_1) &= f(e_1 \otimes_{f_{1,2}^1} e_1) - f(e_1 \otimes_{f_{1,2}^1} e_1) - \gamma_0 f(e_1 \otimes_{f_{1,2}^1} e_1) = c_1 \beta_0 \beta_1 - c_3 \gamma_0 \gamma_1 - c_2 \beta_0 \beta_1 - c_4 \gamma_0 \gamma_1 + (c_1 - c_3 + 2 - c_4) \beta_0 \beta_1.
\end{align*}
\]
Also
\[
\begin{align*}
 A_2(e_1 \otimes_{f_{1,2}^2} e_1) &= f(e_1 \otimes_{f_{1,2}^1} e_1) + \beta_0 f(e_1 \otimes_{f_{1,2}^1} e_1) - \gamma_0 f(e_1 \otimes_{f_{1,2}^1} e_1) = c_1 \beta_0 \beta_1 + c_2 \beta_0 \beta_1 - d_1 \alpha_{n-2} - d_2 \alpha_{n-2} - d_3 \alpha_{n-2} - d_4 \alpha_{n-2}.
\end{align*}
\]
By direct calculation, we may show that \(fA_2 \) is given by
\[
\begin{align*}
 fA_2(e_1 \otimes_{f_{1,2}^1} e_1) &= (c_1 - c_3 + 2 - d_2) \beta_0 \beta_1 = c' \beta_0 \beta_1, \\
 fA_2(e_1 \otimes_{f_{1,2}^2} e_1) &= (c_1 + 2 - d_2 - d_3) \beta_0 \beta_1 = c'' \beta_0 \beta_1
\end{align*}
\]
for some \(c', c'' \in K \) and
\[
fA_2(\sigma(f_j^2) \otimes t(f_j^2)) = 0
\]
for all \(f_j^2 \neq f_{1,1}^2, f_{1,2}^2. \) So \(\dim \ker d_2 = 2. \)

Now we determine \(\ker d_3. \) Let \(h \in \ker d_3, \) so \(h \in \text{Hom}(Q^2, \Lambda) \) and \(d_3 h = 0. \) Then \(h : Q^2 \to \Lambda \) is given by
\[
\begin{align*}
 h(e_1 \otimes_{f_{1,2}^1} e_1) &= c_1 e_1 + c_2 \beta_0 \beta_1, \\
 h(e_1 \otimes_{f_{1,2}^1} e_1) &= c_3 e_1 + c_4 \beta_0 \beta_1, \\
 h(\sigma(f_j^2) \otimes_{f_{1,2}^1} t(f_j^2)) &= 0, \quad \text{for } j \in \{1, \ldots, 4\}, \\
 h(e_{n-1} \otimes_{f_{2,6}^1} e_{n-1}) &= c_5 e_{n-1}, \\
 h(e_n \otimes_{f_{2,6}^1} e_n) &= c_6 e_n \quad \text{and} \\
 h(\sigma(f_j^2) \otimes_{f_{1,2}^1} t(f_j^2)) &= d_k \alpha_k, \quad \text{for } k \in \{2, \ldots, n-3\}
\end{align*}
\]
for some \(c_1, \ldots, c_6, d_k \in K \) for \(k \in \{2, \ldots, n-3\}. \)

Then
\[
\begin{align*}
 hA_3(e_1 \otimes_{f_{1,1}^1} e_{n-3}) &= h(e_1 \otimes_{f_{1,2}^1} e_1) \alpha_{n-3} + \beta_0 h(e_{n-1} \otimes_{f_{2,3}^1} e_{n-2}) + \alpha_{n-2} h(e_{n-2} \otimes_{f_{1,2}^1} e_{n-3}) \\
 &= (c_3 e_1 + c_4 \beta_0 \beta_1) \alpha_{n-3} + (c_3 + d_3) \alpha_{n-2} \alpha_{n-3}.
\end{align*}
\]
As \(h \in \ker d_3 \) we have \(c_3 + d_3 - 0. \)

In a similar way, by considering \(hA_3(\sigma(f_j^2) \otimes_{f_{1,1}^1} t(f_j^2)) \) for all \(f_j^2 \in f_3^3, f_j^2 \neq f_1^3, \) it follows that \(h \) is given by
\[
\begin{align*}
 h(e_1 \otimes_{f_{1,1}^1} e_1) &= c_2 \beta_0 \beta_1, \\
 h(e_1 \otimes_{f_{1,2}^1} e_1) &= c_3 e_1 + c_4 \beta_0 \beta_1, \\
 h(\sigma(f_j^2) \otimes_{f_{1,2}^1} t(f_j^2)) &= 0, \quad \text{for } j \in \{1, \ldots, 4\},
\end{align*}
\]
\[h(e_{n-1} \otimes f_{2,5} e_{n-1}) = c_3 e_{n-1}, \]
\[h(e_n \otimes f_{2,6} e_n) = c_3 e_n \quad \text{and} \]
\[h(\alpha(f_{3,k}^2) \otimes f_{3,k} \iota(f_{3,k}^2)) = -c_3 \alpha_k, \quad \text{for } k \in \{2, \ldots, n-3\} \]

for some \(c_2, c_3, c_4 \in K \). Hence \(\dim \ker d_3 = 3 \).

Therefore \(\dim \HH^2(\Lambda) = \dim \ker d_3 - \dim \im d_2 = 3 - 2 = 1. \)

5.2. A basis for \(\HH^2(\Lambda) \) for \(\Lambda = \Lambda(D_n, 1, 2) \).

Let \(\eta \) be the map in \(\ker d_3 \) given by

\[e_1 \otimes f_{1,2}^2 e_1 \mapsto e_1, \]
\[e_{n-1} \otimes f_{2,5}^2 e_{n-1} \mapsto e_{n-1}, \]
\[e_n \otimes f_{2,6}^2 e_n \mapsto e_n, \]
\[\alpha(f_{3,k}^2) \otimes f_{3,k} \iota(f_{3,k}^2) \mapsto -\alpha_k, \quad \text{for } k \in \{2, \ldots, n-3\}, \]
\[\text{else } \mapsto 0. \]

Clearly, \(\eta \) is a non-zero map. Suppose for contradiction that \(\eta \in \im d_2 \). Then by the definition of \(\eta \), we have \(\eta(e_n \otimes f_{2,6}^2 e_n) = e_n \). On the other hand, \(\eta(e_n \otimes f_{2,6}^2 e_n) = f A_2(e_n \otimes f_{2,6}^2 e_n) \) for some \(f \in \text{Hom}(Q^1, \Lambda) \). So \(\eta(e_n \otimes f_{2,6}^2 e_n) = 0 \). So we have a contradiction. Therefore \(\eta \notin \im d_2 \).

Thus \(\eta + \im d_2 \) is a non-zero element of \(\HH^2(\Lambda) \) and the set \(\{\eta + \im d_2\} \) is a basis of \(\HH^2(\Lambda) \).

Theorem 5.3. For \(\Lambda = \Lambda(D_n, 1, 1) \) with \(n \geq 4 \), we have \(\HH^2(\Lambda) = 0 \).

Proof. With the quiver \(Q(D_n, 1) \) as in Theorem 5.1 and direct calculations for \(s = 1 \) we choose the set \(f^3 \) to consist of the following elements:

\[\{f_{1,1}^3, f_{1,2}^3, f_{1,3}^3, f_{1,4}^3, f_{2,1}^3, f_{2,2}^3, f_{2,3}^3, f_{2,4}^3, f_{2,5}^3, f_{m}^3\}, \quad \text{with } m \in \{4, \ldots, n-2\} \text{ where} \]

\[f_{1,1}^3 = f_{2,1}^3 \alpha_n \alpha_{n-2} \alpha_{n-3} = \beta_0 f_{2,3}^2 \alpha_{n-3} - \alpha_{n-2} f_{3,n-3}^2 e_1 K Q e_{n-3}, \]
\[f_{1,2}^3 = f_{2,1}^3 \alpha_n = \beta_0 f_{2,3}^2 - \gamma_0 f_{2,4}^2 e_1 K Q e_{n-2}, \]
\[f_{1,3}^3 = f_{2,1}^3 \beta_0 - f_{2,2}^3 \beta_0 = \alpha_{n-2} \cdots \alpha_{2} f_{2,1}^2 - \gamma_0 f_{2,6}^2 e_1 K Q e_{n-1}, \]
\[f_{1,4}^3 = f_{2,2}^3 \gamma_0 = \beta_0 f_{2,5}^2 - \alpha_{n-2} \cdots \alpha_{2} f_{2,2}^2 e_1 K Q e_n, \]
\[f_{2}^3 = f_{2,1}^3 \beta_1 - f_{2,2}^3 \gamma_1 = \alpha_1 f_{2,1}^2 e_2 K Q e_1, \]
\[f_{2,1}^3 = f_{2,3}^3 \alpha_n \cdots \alpha_1 - f_{2,5}^3 \gamma_1 = \beta_1 f_{2,1}^2 - \beta_1 f_{2,2}^2 e_{n-1} K Q e_1, \]
\[f_{2}^3 = f_{2,6}^3 \beta_1 - f_{2,4}^3 \alpha_n \cdots \alpha_1 = \gamma_1 f_{2,2}^2 e_n K Q e_1, \]
\[f_{3}^3 = f_{3,2}^3 \alpha_1 = \alpha_2 f_{2,1}^2 \beta_1 - \alpha_2 \alpha_1 f_{1,2}^2 e_3 K Q e_1, \]
\[f_{m}^3 = f_{3,m-1}^3 \alpha_{m-2} = \alpha_{m-1} f_{3,m-2}^2 e_m K Q e_{m-2} \quad \text{for } m \in \{4, \ldots, n-2\}. \]

Then it is straightforward to show that \(\dim \im d_2 = \dim \ker d_3 = 2 \) and \(\HH^2(\Lambda) = 0. \)

Theorem 5.4. For \(\Lambda = \Lambda(D_4, 1, 3) \) we have \(\HH^2(\Lambda) = 0. \)
Proof. We have the quiver $Q(D_4, 1)$ as in Theorem 5.1 with $n = 4$ and, following Asashiba in [1], write α_0 for α_2. By direct calculation we choose the following set $f^3 = \{f^3_{1,1}, f^3_{1,2}, f^3_{1,3}, f^3_{2,1}, f^3_{2,2}, f^3_{3,1}, f^3_{3,2}, f^3_{4,1}, f^3_{4,2}\}$ where

$$
\begin{align*}
 f^3_{1,1} &= f^2_{1,1} \gamma_0 - f^2_{1,2} \gamma_0 &= \alpha_0 f^2_{2,2} - \gamma_0 f^2_{2,4} \in e_1 K e_4, \\
 f^3_{1,2} &= f^2_{1,1} \beta \gamma_0 &= \beta_0 f^2_{2,5} - \gamma_0 f^2_{2,3} \in e_1 K e_3, \\
 f^3_{1,3} &= f^2_{1,2} \alpha_0 &= \beta_0 f^2_{2,1} - \alpha_0 f^2_{2,6} \in e_1 K e_2, \\
 f^3_{2} &= f^2_{2,6} \alpha_1 - f^2_{2,2} \gamma_1 &= \alpha_1 f^2_{1,1} - \alpha_1 f^2_{1,2} \in e_2 K e_1, \\
 f^3_{3} &= f^2_{2,5} \beta - f^2_{2,1} \alpha &= \beta_1 f^2_{1,2} \in e_3 K e_1, \\
 f^3_{4} &= f^2_{2,4} \gamma - f^2_{2,4} \gamma &= \gamma f^2_{1,1} \in e_4 K e_1.
\end{align*}
$$

We can then show that $\dim \ker d_3 = \dim \im d_2 = 2$ and so $\HH^2(\Lambda) = 0$. □

Theorem 5.5. For the standard algebra $\Lambda = \Lambda(D_{3m}, 1/3, 1)$ we have

$$
\dim \HH^2(\Lambda) = \begin{cases}
 1 & \text{if } m \geq 3 \text{ and } \text{char } K \neq 2, \\
 3 & \text{if } m \geq 3 \text{ and } \text{char } K = 2, \\
 2 & \text{if } m = 2 \text{ and } \text{char } K \neq 2, \\
 4 & \text{if } m = 2 \text{ and } \text{char } K = 2.
\end{cases}
$$

Proof. We consider first the case $m \geq 3$. Keeping the notation of 1.8 and Proposition 4.6, the set f^3 may be chosen to consist of the following elements:

$$
\{f^3_t, f^3_{m-1}, f^3_m\} \text{ with } t \in \{2, \ldots, m - 2\}
$$

where

$$
\begin{align*}
 f^3_t &= f^2_t \beta \alpha_1 \alpha_2 &= \beta f^2_t \alpha_1 \alpha_2 + \beta \alpha_1 \cdots \alpha_{m-1} f^2_t \alpha_2 - \alpha_1 f^2_{t,2} \in e_1 K e_3, \\
 f^3_t &= f^2_{t,1} \alpha_{t+1} &= \alpha_t f^2_{t,1} + e_1 K e_{t+1} \text{ for } t \in \{2, \ldots, m - 2\}, \\
 f^3_{m-1} &= f^2_{m-1} \alpha_m &= \alpha_{m-1} f^2_{m-1} \alpha_2 + \alpha_{m-1} f^2_{m-1} \beta_{m-1} f^2_{m-1} \alpha_1 - \alpha_{m-1} \alpha_{m-1} f^2_{m-1} \alpha_1 \in e_{m-1} K e_1, \\
 f^3_m &= f^2_2 \alpha_2 \cdots \alpha_m \alpha_1 &= -\alpha_m f^2_2 \beta_1 \alpha_1 + \alpha_m f^2_1 \alpha_1 + \alpha_m f^2_1 \alpha_1 \cdots \alpha_{m-1} f^2_1 \in e_m K e_2.
\end{align*}
$$

To find $\im d_2$, let $f \in \Hom(Q^1, \Lambda)$ and so

$$
\begin{align*}
 f(e_1 \otimes_1 e_1) &= c_1 e_1 + c_2 \beta + c_3 \beta^2 + c_4 \beta^3, \\
 f(e_1 \otimes_{\alpha_1} e_2) &= d_1 \alpha_1 + k_1 \beta \alpha_1, \\
 f(e_l \otimes_{\alpha_l} e_{l+1}) &= d_l \alpha_1, \text{ for } l \in \{2, \ldots, m - 1\}, \\
 f(e_m \otimes_{\alpha_m} e_1) &= d_m \alpha_m + k_m \alpha_m \beta.
\end{align*}
$$

where $c_1, c_2, c_3, c_4, d_1, k_1, k_m \in K$ for $l \in \{1, \ldots, m\}$.

It is straightforward to show that $f A_2$ is given by

$$
\begin{align*}
 f A_2(e_1 \otimes f^2_{i,1} e_1) &= 2c_1 \beta - (d_1 + d_2 + \cdots + d_m - 2c_2) \beta^2 + (2c_3 - k_1 - k_m) \beta^3, \\
 f A_2(e_m \otimes f^2_{i,1} e_2) &= (k_1 + k_m) \alpha_m \beta \alpha_1, \\
 f(e_j \otimes f^2_{i,j} e_{j+1}) &= 0, \text{ for all } j \in \{2, \ldots, m - 1\}.
\end{align*}
$$
So
\[
\dim \text{Im } d_2 = \begin{cases}
4 & \text{if } \text{char } K \neq 2, \\
2 & \text{if } \text{char } K = 2.
\end{cases}
\]

Now let \(h \in \text{Ker } d_3 \), so \(h \in \text{Hom}(Q^2, \Lambda) \) and \(d_3 h = 0 \). Then \(h : Q^2 \to \Lambda \) is given by
\[
h(e_1 \otimes f_1^2 e_1) = c_1 e_1 + c_2 \beta + c_3 \beta^2 + c_4 \beta^3,
\]
\[
h(e_m \otimes f_2^2 e_2) = c_5 \alpha_m \beta \alpha_1 \quad \text{and}
\]
\[
h(e_j \otimes f_{3,j}^2 e_j+1) = d_j \alpha_j, \quad \text{for } j \in \{2, \ldots, m-1\},
\]
for some \(c_1, \ldots, c_5, d_j \in K \) where \(j = 2, \ldots, m-1 \).

By considering \(h A_3(e_1 \otimes f_3^2 e_3) \) we see that \(d_2 = 0 \).

Then, for \(t \in \{2, \ldots, m-2\} \), we have \(h A_3(e_t \otimes f_3^t e_{t+2}) = (d_t - d_{t+1}) \alpha_t \alpha_{t+1} \). Then \(d_t - d_{t+1} = 0 \) and so \(d_j = d_{j+1} \) for \(t = 2, \ldots, m-2 \). Hence \(d_2 = d_3 = \cdots = d_{m-2} = d_{m-1} \). We already have \(d_2 = 0 \) so \(d_j = 0 \) for \(j = 2, \ldots, m-1 \).

Moreover, \(h A_3(e_m \otimes f_3^m e_2) = 0 \) so this gives us no information. Thus, it may be verified that \(h \in \text{Ker } d_3 \) is given by
\[
h(e_1 \otimes f_1^2 e_1) = c_1 e_1 + c_2 \beta + c_3 \beta^2 + c_4 \beta^3,
\]
\[
h(e_m \otimes f_2^2 e_2) = c_5 \alpha_m \beta \alpha_1 \quad \text{and}
\]
\[
h(e_j \otimes f_{3,j}^2 e_j+1) = 0, \quad \text{for } j \in \{2, \ldots, m-1\}
\]
for some \(c_1, \ldots, c_5 \in K \) and so \(\dim \text{Ker } d_3 = 5 \).

Therefore,
\[
\dim \text{HH}^2(\Lambda) = \begin{cases}
5 - 4 = 1 & \text{if } \text{char } K \neq 2, \\
5 - 2 = 3 & \text{if } \text{char } K = 2.
\end{cases}
\]

For \(m = 2 \), we again have that
\[
\dim \text{Im } d_2 = \begin{cases}
4 & \text{if } \text{char } K \neq 2, \\
2 & \text{if } \text{char } K = 2.
\end{cases}
\]

However, in this case we have that \(\dim \text{Ker } d_3 = 6 \). Hence, for \(m = 2 \), we have
\[
\dim \text{HH}^2(\Lambda) = \begin{cases}
2 & \text{if } \text{char } K \neq 2, \\
4 & \text{if } \text{char } K = 2.
\end{cases}
\]

This completes the proof. \(\square \)

5.6. A basis for \(\text{HH}^2(\Lambda) \) for the standard algebra \(\Lambda = \Lambda(D_{3m}, 1/3, 1) \) for \(m \geq 3 \).

Suppose. \(\text{char } K \neq 2 \).

From Theorem 5.5 we know that \(\dim \text{HH}^2(\Lambda) = 1 \) in this case. Let \(h \) be the map given by
\[
e_1 \otimes f_1^2 e_1 \mapsto e_1,
\]
\[
\text{else} \mapsto 0.
\]

Then \(\{h + \text{Im } d_2\} \) is a basis of \(\text{HH}^2(\Lambda) \) when \(\text{char } K \neq 2 \).
Suppose. char $K = 2$.

Here $\dim \operatorname{HH}^2(\Lambda) = 3$ from Theorem 5.5. We start by defining non-zero maps h_1, h_2, h_3 in $\operatorname{Ker} d_3$. Let h_1 be the map given by

$$e_1 \otimes f_1^2 e_1 \mapsto e_1, \quad \text{else} \mapsto 0,$$

h_2 be given by

$$e_1 \otimes f_2^2 e_1 \mapsto \beta, \quad \text{else} \mapsto 0,$$

and h_3 be given by

$$e_1 \otimes f_3^2 e_1 \mapsto \beta^3, \quad \text{else} \mapsto 0.$$

It can be shown that these maps are not in $\operatorname{Im} d_2$ since $\operatorname{char} K = 2$. Now we will show that \{ $h_1 + \operatorname{Im} d_2, h_2 + \operatorname{Im} d_2, h_3 + \operatorname{Im} d_2$ \} is a linearly independent set in $\operatorname{Ker} d_3/\operatorname{Im} d_2 = \operatorname{HH}^2(\Lambda)$.

Suppose $a(h_1 + \operatorname{Im} d_2) + b(h_2 + \operatorname{Im} d_2) + c(h_3 + \operatorname{Im} d_2) = 0 + \operatorname{Im} d_2$ for some $a, b, c \in K$. So $ah_1 + bh_2 + ch_3 \in \operatorname{Im} d_2$. Hence $ah_1 + bh_2 + ch_3 = f A_2$ for some $f \in \operatorname{Hom}(Q^1, \Lambda)$.

Then $(ah_1 + bh_2 + ch_3)(e_1 \otimes f_1^2 e_1) = f A_2(e_1 \otimes f_1^2 e_1)$. So $ae_1 + b\beta + c\beta^3 = d\beta^2 - k\beta^3$ for some $d, k \in K$. Since $\{ e_1, \beta, \beta^2, \beta^3 \}$ is linearly independent in Λ, we have $a = b = 0$ and $c = k$. But $0 = (ah_1 + bh_2 + ch_3)(e_m \otimes f_2^2 e_2) = f A_2(e_m \otimes f_2^2 e_2) = k\alpha_0 \alpha_1$. So $k = 0$ and thus $c = 0$. Hence $\{ h_1 + \operatorname{Im} d_2, h_2 + \operatorname{Im} d_2, h_3 + \operatorname{Im} d_2 \}$ is linearly independent in $\operatorname{HH}^2(\Lambda)$ and forms a basis of $\operatorname{HH}^2(\Lambda)$ when $\operatorname{char} K = 2$.

5.7. A basis for $\operatorname{HH}^2(\Lambda)$ for the standard algebra $\Lambda = \Lambda(D_{3m}, 1/3, 1)$ for $m = 2$.

Note first that $f_1^2 = \beta^2 - \alpha_1 \alpha_2$ and $f_2^2 = \alpha_2 \alpha_1$.

Suppose. char $K \neq 2$.

From Theorem 5.5 we know that $\dim \operatorname{HH}^2(\Lambda) = 2$ in this case. Let h_1 be the map given by

$$e_1 \otimes f_1^2 e_1 \mapsto e_1, \quad \text{else} \mapsto 0,$$

and h_2 be given by

$$e_2 \otimes f_2^2 e_2 \mapsto e_2, \quad \text{else} \mapsto 0.$$

A similar argument to that above shows that \{ $h_1 + \operatorname{Im} d_2, h_2 + \operatorname{Im} d_2$ \} is a basis of $\operatorname{HH}^2(\Lambda)$ when $\operatorname{char} K \neq 2$.

Suppose. char $K = 2$.
Here \(\dim \text{HH}^2(\Lambda) = 4 \) from Theorem 5.5. Let \(h_1 \) be the map given by
\[
\begin{align*}
 e_1 \otimes f_1^2 e_1 &\mapsto e_1, \\
 \text{else} &\mapsto 0.
\end{align*}
\]

\(h_2 \) be given by
\[
\begin{align*}
 e_1 \otimes f_1^2 e_1 &\mapsto \beta, \\
 \text{else} &\mapsto 0.
\end{align*}
\]

\(h_3 \) be given by
\[
\begin{align*}
 e_1 \otimes f_1^2 e_1 &\mapsto \beta^3, \\
 \text{else} &\mapsto 0.
\end{align*}
\]

and \(h_4 \) be given by
\[
\begin{align*}
 e_2 \otimes f_2^2 e_2 &\mapsto e_2, \\
 \text{else} &\mapsto 0.
\end{align*}
\]

Again, a similar argument shows that \(\{h_1 + \text{Im}d_2, h_2 + \text{Im}d_2, h_3 + \text{Im}d_2, h_4 + \text{Im}d_2\} \) is linearly independent in \(\text{HH}^2(\Lambda) \) and forms a basis of \(\text{HH}^2(\Lambda) \) when \(\text{char} K = 2 \).

Theorem 5.8. For \(\Lambda = \Lambda(E_n, 1, 1) \) with \(n = 6, 7, 8 \), we have \(\text{HH}^2(\Lambda) = 0 \).

Proof. For \(\Lambda = \Lambda(E_n, 1, 1) \) we have the quiver \(Q(E_n, 1) \) which is described:
The set f^3 may be chosen to consist of the following elements:

$$\{ f^3_{1,1}, f^3_{1,2}, f^3_{1,3}, f^3_{1,4}, f^3_{1,5}, f^3_{2}, f^3_{n-1}, f^3_{n-2}, f^3_{3}, f^3_{4}, f^3_{5}, f^3_{6} \}$$

where

$$f^3_{1,1} = f^2_{1,2} \gamma_2 = \beta_3 \beta_4 f^2_{2,4} - \alpha_3 \alpha_2 f^2_{2,3} \in e_1 K Q e_6,$$

$$f^3_{1,2} = f^3_{2,1} = \beta_3 \beta_2 f^2_{2,2} - \alpha_3 \alpha_2 f^2_{2,3} \in e_1 K Q e_5,$$

$$f^3_{1,3} = f^3_{2,3} = \beta_3 \beta_2 f^2_{2,5} - \alpha_3 \alpha_2 f^2_{2,4} \in e_1 K Q e_5,$$

$$f^3_{1,4} = f^3_{2,4} = \beta_3 \beta_2 f^2_{2,6} - \alpha_3 \alpha_2 f^2_{2,5} \in e_1 K Q e_5,$$

$$f^3_{2,1} = f^3_{2,2} = \beta_3 \beta_2 f^2_{2,5} - \alpha_3 \alpha_2 f^2_{2,4} \in e_1 K Q e_5,$$

$$f^3_{2,3} = f^3_{2,4} = \beta_3 \beta_2 f^2_{2,6} - \alpha_3 \alpha_2 f^2_{2,5} \in e_1 K Q e_5,$$

$$f^3_{2,5} = f^3_{2,6} = \beta_3 \beta_2 f^2_{2,5} - \alpha_3 \alpha_2 f^2_{2,4} \in e_1 K Q e_5.$$

Then it is easy to check by direct calculations that $\dim \ker d_3 = \dim \im d_2 = 2$ and so $\HH^2(\Lambda) = 0$. □

Theorem 5.9. For $\Lambda = \Lambda(E_6, 1, 2)$ we have $\HH^2(\Lambda) = 0$.

Proof. With the notation for $Q(E_6, 1)$ as in Theorem 5.8 and with $n = 6$, the set f^3 may be chosen to consist of the following elements:

$$\{ f^3_{1,1}, f^3_{1,2}, f^3_{1,3}, f^3_{1,4}, f^3_{1,5}, f^3_{2}, f^3_{3}, f^3_{4}, f^3_{5}, f^3_{6} \}$$

where

$$f^3_{1,1} = f^3_{1,2} = f^3_{1,3} = f^3_{1,4} = f^3_{1,5} = f^3_{2} = f^3_{3} = f^3_{4} = f^3_{5} = f^3_{6} = \beta_3 \beta_2 f^2_{2,5} - \alpha_3 \alpha_2 f^2_{2,4} \in e_1 K Q e_5.$$

Again by direct calculations we can show that $\dim \ker d_3 = \dim \im d_2 = 2$ and so $\HH^2(\Lambda) = 0$. □

To summarise the results of Sections 4 and 5 we have the following theorem.
Theorem 5.10. Let Λ be a standard self-injective algebra of finite representation type of type $\Lambda(D_n, s, 1)$, $\Lambda(D_n, s, 3)$ with $n \geq 4$, $s \geq 1$; $\Lambda(D_n, s, 2)$ (where s may satisfy $3 \mid s$), $\Lambda(D_m, s, 3/1)$ where $3 \nmid s$, with $n \geq 4$, $m \geq 2$, $s \geq 2$; or $\Lambda(E_n, s, 1)$, $\Lambda(E_8, s, 2)$ with $n \in \{6, 7, 8\}$, $s \geq 1$. Then $\text{HH}^2(\Lambda) = 0$.

Let $\Lambda = \Lambda(D_n, 1, 2)$; then $\dim \text{HH}^2(\Lambda) = 1$ and a basis for $\text{HH}^2(\Lambda)$ is given in 5.2.

Let $\Lambda = \Lambda(D_{3m}, 1/3, 1)$; then

$$
\dim \text{HH}^2(\Lambda) = \begin{cases}
1 & \text{if } m \geq 3 \text{ and char } K \neq 2, \\
3 & \text{if } m \geq 3 \text{ and char } K = 2, \\
2 & \text{if } m = 2 \text{ and char } K \neq 2, \\
4 & \text{if } m = 2 \text{ and char } K = 2,
\end{cases}
$$

and a basis for $\text{HH}^2(\Lambda)$ is given in 5.6 and 5.7.

Thus with the information taken from [3.6] for the algebras of type A_n, we now know the second Hochschild cohomology group for all standard finite dimensional self-injective algebras of finite representation type over an algebraically closed field K.

6. $\text{HH}^2(\Lambda)$ for the non-standard self-injective algebras of finite representation type

Let $\Lambda = \Lambda(m)$, $m \geq 2$, be the non-standard algebra of 1.11 so we assume now that the characteristic of K is 2. We may choose a minimal generating set f^2 with elements as follows:

$$
f_j^2 = \beta^2 - \alpha_1 \cdots \alpha_m, \quad f_k^2 = \alpha_m \beta \alpha_1, \quad f_{j+1}^2 = \alpha_j \alpha_{j+1} \cdots \alpha_m \text{ for } \begin{cases}
\text{if } m \geq 3, \\
\text{if } m = 2.
\end{cases}
$$

We know that $\text{HH}^2(\Lambda) = \text{Ker} d_3/\text{Im} d_2$. First we will find $\text{Im} d_2$. Let $f \in \text{Hom}(Q^1, \Lambda)$ and so

$$
f(e_1 \otimes_\beta e_1) = c_1 e_1 + c_2 \beta + c_3 \beta^2 + c_4 \beta^3, \\
f(e_1 \otimes_{\alpha_1} e_2) = d_1 \alpha_1 + k_1 \beta \alpha_1, \\
f(e_1 \otimes_{\alpha_m} e_{l+1}) = d_l \alpha_l, \quad \text{for } l \in \{2, \ldots, m - 1\}, \\
f(e_m \otimes_{\alpha_m} e_1) = d_m \alpha_m + k_m \alpha_m \beta,
$$

where $c_1, c_2, c_3, c_4, d_1, k_1, k_m \in K$ for $l \in \{1, \ldots, m\}$.

We have $Q^2 = (\Lambda e_1 \otimes f_j^2 e_1 \Lambda) \oplus (\Lambda e_m \otimes f_j^2 e_2 \Lambda) \oplus \bigoplus_{j=2}^{m-1} (\Lambda e_j \otimes f_{j+1}^2 e_{j+1} \Lambda)$ if $m \geq 3$ and $Q^2 = (\Lambda e_1 \otimes f_j^2 e_1 \Lambda) \oplus (\Lambda e_m \otimes f_j^2 e_2 \Lambda) \oplus (\Lambda e_2 \otimes f_j^2 e_3 \Lambda)$ if $m = 2$.

Now we find fA_2. We have $f A_2(e_1 \otimes f_j^2 e_1) = f(e_1 \otimes_{\beta} e_1) \beta + f(e_1 \otimes_{\alpha_1} e_1) \alpha_2 \cdots \alpha_m - \alpha_1 f(e_2 \otimes_{\alpha_2} e_2) \alpha_3 \cdots \alpha_m - \cdots - \alpha_1 \alpha_2 \cdots \alpha_m \alpha_{m-1} f(e_m \otimes_{\alpha_m} e_1) = (c_1 e_1 + c_2 \beta + c_3 \beta^2 + c_4 \beta^3) \beta + \beta (c_1 e_1 + c_2 \beta + c_3 \beta^2 + c_4 \beta^3) - d_1 \alpha_1 \cdots \alpha_m - d_2 \alpha_2 \cdots \alpha_{m-1} - \cdots - d_m \alpha_m \alpha_{m-1} \cdots \alpha_m - k_1 \beta \alpha_1 \cdots \alpha_m - k_m \alpha_1 \cdots \alpha_m = 2c_1 \beta - (d_1 + d_2 + \cdots + d_m - 2c_2) \beta^2 + (2c_3 - k_1 - k_m) \beta^3$.

Also $f A_2(e_m \otimes f_j^2 e_2) = f(e_m \otimes_{\alpha_m} e_1) \alpha_1 \alpha_2 \cdots \alpha_m - \alpha_1 f(e_2 \otimes_{\alpha_2} e_2) \alpha_3 \cdots \alpha_m - \cdots - \alpha_1 \alpha_2 \cdots \alpha_m \alpha_{m-1} f(e_m \otimes_{\alpha_m} e_1) = (d_1 \alpha_1 + d_2 \alpha_2 + \cdots + d_m \alpha_m) \beta + \beta (d_1 \alpha_1 + d_2 \alpha_2 + \cdots + d_m \alpha_m) - (d_m \alpha_m + k_m \alpha_m) \beta \alpha_1 - \alpha_m (c_1 e_1 + c_2 \beta + c_3 \beta^2 + c_4 \beta^3) \alpha_1 - \alpha_m (d_1 \alpha_1 + k_1 \beta \alpha_1 - k_1 \beta \alpha_1 \cdots \alpha_m - k_m \alpha_1 \cdots \alpha_m) = (k_1 + k_m - c_1 - c_2) \alpha_m \alpha_1$.

Finally, for $m \geq 3$ and $j = 2, \ldots, m - 1$ or for $m = 2$ and $j = 2$, we have $f A_2(e_j \otimes f_j^2 e_{j+1}) = 0$.

Thus $f A_2$ is given by
\[f A_2(e_1 \otimes f_1 e_1) = 2c_1 \beta - (d_1 + d_2 + \cdots + d_m - 2c_2)\beta^2 + (2c_3 - k_1 - k_m)\beta^3, \]
\[f A_2(e_m \otimes f_2 e_2) = (k_1 + k_m - c_1 - c_2)\alpha_m\alpha_1, \]
\[f(e_j \otimes f_{3,j} e_{j+1}) = 0, \quad \text{for all } j \in \{2, \ldots, m-1\} \text{ if } m \geq 3 \text{ or } j = 2 \text{ if } m = 2. \]

So, since char \(K = 2 \), we have \(\dim \text{Im} d_2 = 3. \)

Next we determine \(\text{Ker} d_3 \). We need to consider separately the cases \(m \geq 3 \) and \(m = 2 \). Suppose first that \(m \geq 3. \)

For \(m \geq 3 \), we choose the set \(f^3 \) to consist of the following elements:

\[\{ f_1^3, f_3^3, f_{m-1}^3, f_m^3 \} \quad \text{with } t \in \{2, \ldots, m-2\} \text{ where} \]

\[f_1^3 = f_1^2 \beta \alpha_1 \alpha_2, \quad f_3^3 = f_3^2 \alpha_t \alpha_{t+1}, \quad f_{m-1}^3 = f_{m-1}^2 \alpha_m \alpha_1, \quad f_m^3 = f_m^2 \alpha_2 \cdots \alpha_m. \]

Let \(h \in \text{Ker} d_3 \). Then \(h : Q^2 \to \Lambda \) is given by

\[h(e_1 \otimes f_1^1 e_1) = c_1 e_1 + c_2 \beta + c_3 \beta^2 + c_4 \beta^3, \]
\[h(e_m \otimes f_2^1 e_2) = c_5 \alpha_m \alpha_1 \quad \text{and} \]
\[h(e_j \otimes f_{3,j}^1 e_{j+1}) = d_j \alpha_j, \quad \text{for } j \in \{2, \ldots, m-1\}, \]

for some \(c_1, \ldots, c_5, d_j \in K \) where \(j = 2, \ldots, m-1 \).

Then \(h A_3(e_1 \otimes f_1^3 e_3) = h(e_1 \otimes f_1^1 e_1) \beta \alpha_1 \alpha_2 - h(e_1 \otimes f_1^1 e_1) \alpha_1 \alpha_2 - \alpha_1 \cdots \alpha_m - h(e_m \otimes f_2^1 e_2) \alpha_2 - (\beta \alpha_1 - \alpha_1)h(e_2 \otimes f_2^1 e_2) = (c_1 e_1 + c_2 \beta + c_3 \beta^2 + c_4 \beta^3)\beta \alpha_1 \alpha_2 - \beta (c_1 e_1 + c_2 \beta + c_3 \beta^2 + c_4 \beta^3)\alpha_1 \alpha_2 - c_5 \alpha_1 \cdots \alpha_m \alpha_1 \alpha_2 = d_2 \alpha_2 \alpha_1 \alpha_2 + d_3 \alpha_2 \alpha_1 \alpha_2 = d_2 \alpha_2 \alpha_1 \alpha_2 - \beta (c_1 e_1 + c_2 \beta + c_3 \beta^2 + c_4 \beta^3). \]

As \(h \in \text{Ker} d_3 \) we have \(d_2 = 0 \).

For \(t \in \{2, \ldots, m-2\} \), we have

\[h A_3(e_t \otimes f_{3,t}^1 e_{t+2}) = h(e_t \otimes f_{3,t}^1 e_{t+1}) \alpha_t \alpha_{t+1} = h(e_t \otimes f_{3,t}^1 e_{t+2}) = d_t \alpha_t \alpha_{t+1} = d_{t+1} \alpha_t \alpha_{t+1} = (d_t - d_{t+1}) \alpha_t \alpha_{t+1}. \]

Then \(d_t = d_{t+1} = 0 \) and so \(d_t = d_{t+1} \) for \(t = 2, \ldots, m-2 \). Hence \(d_2 = d_3 = \cdots = d_{m-2} = d_{m-1} \). We already have \(d_2 = 0 \) so \(d_j = 0 \) for \(j = 2, \ldots, m-1 \).

Now

\[h A_3(e_m \otimes f_{m-1}^1 e_1) = h(e_m \otimes f_{m-1}^1 e_m) (\alpha_m - \alpha_m \beta) - \alpha_m - 1 h(e_m \otimes f_2^1 e_2) \alpha_2 \cdots \alpha_m\]
\[- \alpha_m - 1 h(e_1 \otimes f_1^1 e_1) \beta + \alpha_m - 1 h(e_1 \otimes f_1^1 e_1) \alpha_1 - (\beta \alpha_1 - \alpha_1)h(e_2 \otimes f_2^1 e_2) = (c_1 e_1 + c_2 \beta + c_3 \beta^2 + c_4 \beta^3)\beta \alpha_1 \alpha_2 - \beta (c_1 e_1 + c_2 \beta + c_3 \beta^2 + c_4 \beta^3)\alpha_1 \alpha_2 - c_5 \alpha_1 \cdots \alpha_m \alpha_1 \alpha_2 = d_2 \alpha_2 \alpha_1 \alpha_2 + d_3 \alpha_2 \alpha_1 \alpha_2 = d_2 \alpha_2 \alpha_1 \alpha_2 - \beta (c_1 e_1 + c_2 \beta + c_3 \beta^2 + c_4 \beta^3). \]

as \(d_{m-1} = 0 \) from above.

Finally, \(h A_3(e_m \otimes f_m^1 e_2) = h(e_m \otimes f_2^1 e_2) \alpha_2 \cdots \alpha_m \alpha_1 + \alpha_m h(e_1 \otimes f_1^1 e_1) \alpha_1 - \alpha_m h(e_1 \otimes f_1^1 e_1) \alpha_1 - \alpha_m \alpha_1 \cdots \alpha_m \alpha_1 h(e_m \otimes f_2^1 e_2) = c_5 \alpha_m \alpha_1 \alpha_2 \cdots \alpha_m \alpha_1 + \alpha_m (c_1 e_1 + c_2 \beta + c_3 \beta^2 + c_4 \beta^3) \alpha_1 - \alpha_m (c_1 e_1 + c_2 \beta + c_3 \beta^2 + c_4 \beta^3) \alpha_1 - c_5 \alpha_m \alpha_1 \cdots \alpha_m \alpha_1 = -c_1 \alpha_m \beta \alpha_1 + c_1 \alpha_m \beta \alpha_1 = 0, \)
"
Thus h is given by

$$h(e_1 \otimes f_1^2 e_1) = c_1 e_1 + c_2 \beta + c_3 \beta^2 + c_4 \beta^3,$$

$$h(e_m \otimes f_2^2 e_2) = c_5 \alpha \quad \text{and}$$

$$h(e_j \otimes f_{3,j}^2 e_{j+1}) = 0, \quad \text{for } j \in \{2, \ldots, m-1\}$$

for some $c_1, \ldots, c_5 \in K$ and so $\dim \ker d_3 = 5$.

Therefore, for $m \geq 3$ we have $\dim \HH^2(\Lambda) = 5 - 3 = 2$.

This gives the following theorem.

Theorem 6.1. For $\Lambda = \Lambda(m)$ and $m \geq 3$ we have $\dim \HH^2(\Lambda) = 2$.

6.2. A basis for $\HH^2(\Lambda)$ for $\Lambda = \Lambda(m)$ and $m \geq 3$.

We have $\text{char } K = 2$, $m \geq 3$, and $\dim \HH^2(\Lambda) = 2$. We start by defining non-zero maps h_1, h_2 in $\ker d_3$.

Let h_1 be the map given by

$$e_1 \otimes f_1^2 e_1 \mapsto e_1,$$

else $\mapsto 0,$

and h_2 be given by

$$e_1 \otimes f_1^2 e_1 \mapsto \beta,$$

else $\mapsto 0.$

It can be shown as before that these maps are not in $\text{Im } d_2$. Now we will show that $\{h_1 + \text{Im } d_2, h_2 + \text{Im } d_2\}$ is a linearly independent set in $\HH^2(\Lambda)$.

Suppose $a(h_1 + \text{Im } d_2) + b(h_2 + \text{Im } d_2) = 0 + \text{Im } d_2$ for some $a, b \in K$. So $ah_1 + bh_2 \in \text{Im } d_2$. Hence $ah_1 + bh_2 = fA_2$ for some $f \in \text{Hom}(Q^1, \Lambda)$. Then $(ah_1 + bh_2)(e_1 \otimes f_1^2 e_1) = fA_2(e_1 \otimes f_1^2 e_1)$. So $ae_1 + b\beta = d\beta^2 + k\beta^3$ for some $d, k \in K$. Since $\{e_1, \beta, \beta^2, \beta^3\}$ is linearly independent in Λ, we have $a = b = 0$.

Hence $\{h_1 + \text{Im } d_2, h_2 + \text{Im } d_2\}$ is linearly independent in $\HH^2(\Lambda)$ and forms a basis of $\HH^2(\Lambda)$.

6.3. $\HH^2(\Lambda)$ in the case $\Lambda = \Lambda(m)$ and $m = 2$.

In the case $m = 2$ we showed above that $\dim \text{Im } d_2 = 3$. But now we have $\dim \ker d_3 = 6$. Thus $\dim \HH^2(\Lambda) = 3$. It can be verified that $\{h_1 + \text{Im } d_2, h_2 + \text{Im } d_2, h_3 + \text{Im } d_2\}$ is a basis of $\HH^2(\Lambda)$, where h_1 is the map given by

$$e_1 \otimes f_1^2 e_1 \mapsto e_1,$$

else $\mapsto 0,$

h_2 is given by

$$e_1 \otimes f_1^2 e_1 \mapsto \beta,$$

else $\mapsto 0,$
and h_3 is given by
\[
\begin{align*}
e_2 \otimes f^2_2 e_2 & \mapsto e_2, \\
e_2 \otimes f^3_2 e_1 & \mapsto \alpha_2 + \alpha_2 \beta, \\
\text{else} & \mapsto 0.
\end{align*}
\]

We summarise all these results in the following theorem.

Theorem 6.4. For $\Lambda = \Lambda(m)$ where $\text{char } K = 2$, $m \geq 2$ we have
\[
\dim \HH^2(\Lambda) = \begin{cases}
2 & \text{if } m \geq 3, \\
3 & \text{if } m = 2.
\end{cases}
\]

Moreover, if $m \geq 3$ then $\{h_1 + \text{Im } d_2, h_2 + \text{Im } d_2\}$ is a basis for $\HH^2(\Lambda)$ where h_1 is the map given by
\[
\begin{align*}
e_1 \otimes f^2_1 e_1 & \mapsto e_1, \\
\text{else} & \mapsto 0,
\end{align*}
\]
and h_2 is given by
\[
\begin{align*}
e_1 \otimes f^2_1 e_1 & \mapsto \beta, \\
\text{else} & \mapsto 0.
\end{align*}
\]

If $m = 2$ then $\{h_1 + \text{Im } d_2, h_2 + \text{Im } d_2, h_3 + \text{Im } d_2\}$ is a basis for $\HH^2(\Lambda)$ where h_1 is the map given by
\[
\begin{align*}
e_1 \otimes f^2_1 e_1 & \mapsto e_1, \\
\text{else} & \mapsto 0,
\end{align*}
\]
h_2 is given by
\[
\begin{align*}
e_1 \otimes f^2_1 e_1 & \mapsto \beta, \\
\text{else} & \mapsto 0,
\end{align*}
\]
and h_3 is given by
\[
\begin{align*}
e_2 \otimes f_2 e_2 & \mapsto e_2, \\
e_2 \otimes f^3_2 e_1 & \mapsto \alpha_2 + \alpha_2 \beta, \\
\text{else} & \mapsto 0.
\end{align*}
\]

This completes the discussion of $\HH^2(\Lambda)$ for the non-standard self-injective algebras of finite representation type over an algebraically closed field.

To conclude we now summarise $\HH^2(\Lambda)$ for all finite dimensional self-injective algebras of finite representation type over an algebraically closed field.

Theorem 6.5. Let Λ be a finite dimensional self-injective algebra of finite representation type over an algebraically closed field K. If Λ is the standard algebra of type $\Lambda(A_{2p+1}, s, 2)$ with $s, p \geq 2$, $\Lambda(D_n, s, 1)$, $\Lambda(D_4, s, 3)$ with $n \geq 4$, $s \geq 1$, $\Lambda(D_n, s, 2)$, $\Lambda(D_{nm}, s/3, 1)$ with $n \geq 4$, $m \geq 2$, $s \geq 2$ or $\Lambda(E_n, s, 1)$, $\Lambda(E_6, s, 2)$ with $n \in \{6, 7, 8\}, s \geq 1$; then $\HH^2(\Lambda) = 0$.
If Λ is of type $\Lambda(A_n, s/n, 1)$ then $\dim \text{HH}^2(\Lambda) = m$ where $n + 1 = ms + r$ and $0 \leq r < s$.

For $\Lambda(A_3, 1, 2)$; then $\dim \text{HH}^2(\Lambda) = 1$.

Let Λ be $\Lambda(D_n, 1, 2)$; then $\dim \text{HH}^2(\Lambda) = 1$.

Let Λ be the standard algebra $\Lambda(D_{3m}, 1/3, 1)$; then

$$
\dim \text{HH}^2(\Lambda) = \begin{cases}
1 & \text{if } m \geq 3 \text{ and } \text{char } K \neq 2, \\
3 & \text{if } m \geq 3 \text{ and } \text{char } K = 2, \\
2 & \text{if } m = 2 \text{ and } \text{char } K \neq 2, \\
4 & \text{if } m = 2 \text{ and } \text{char } K = 2.
\end{cases}
$$

Let Λ be the non-standard algebra $\Lambda(m)$ where char $K = 2, m \geq 2$. Then $\dim \text{HH}^2(\Lambda) = 2$ if $m \geq 3$ and $\dim \text{HH}^2(\Lambda) = 3$ if $m = 2$.

Acknowledgments

This paper is a part of my PhD thesis at the University of Leicester. I thank Taif University in Saudi Arabia for funding my PhD research, and Dr. Nicole Snashall for her helpful supervision and valuable suggestions. The author also thanks the referee for his/her helpful comments.

References