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Introduction

In this paper we study the second Hochschild cohomology group HH2(A) of all finite dimensional
self-injective algebras A of finite representation type over an algebraically closed field K.

In general, finite dimensional self-injective algebras of finite representation type over an alge-
braically closed field K were shown by Riedtmann in [9] to fall into one of the types A, D or E,
depending on the tree class of the stable Auslander-Reiten quiver of the algebra. Riedtmann classified
the stable equivalence representatives of these algebras of type A in [10]; Asashiba then showed that
the stable equivalence classes are exactly the derived equivalence classes for all types A, D and E in
[2, Theorem 2.2]. In [1], the derived equivalence class representatives are given explicitly by quivers
and relations.

Happel showed in [8] that Hochschild cohomology is invariant under derived equivalence. So if A
and B are derived equivalent then HH?(A) = HH?(B). Hence to study HH2(A) for all finite dimen-
sional self-injective algebras of finite representation type over an algebraically closed field K, it is
enough to study HH?(A) for the representatives of the derived equivalence classes. The algebras of
type A fall into two types: Nakayama algebras and Mobius algebras, and the Hochschild cohomology
of these algebras has already been studied. In [3], Erdmann and Holm give the dimension of the sec-
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ond Hochschild cohomology group of a Nakayama algebra. In [6], Green and Snashall determined the
second Hochschild cohomology group for the Mobius algebras.

The main work of this paper is thus in determining HH?(A) for the finite dimensional self-injective
algebras of finite representation type of types D and E. In Section 1 we give a summary of [1] which
gives the explicit derived equivalence representatives we consider. Section 2 gives a short descrip-
tion of the projective resolution of [6] which we use to find HH?(A). In Section 3, we give a general
theorem, Theorem 3.6, which we use to show that HH%(A) = 0 for most of our algebras. This is moti-
vated by work in [6]. The strategy of the theorem is to show that every element in Hom(Q?2, A) is a
coboundary so that HH?(A) = 0, where Q2 is the second projective in a minimal projective resolution
of A as a A, A-bimodule. For all other cases which are not covered by Theorem 3.6, we determine
HH?(A) by direct calculation, and find a basis for HH?(A) in the instances where HH?(A) # 0. The
standard algebras are considered in Sections 4 and 5 and the non-standard algebras in Section 6.
Finally Theorem 6.5 summarises our results and describes HH2(A) for all finite dimensional self-
injective algebras A of finite representation type over an algebraically closed field. As a consequence,
we show that dimHH?(A) # dimHH?(A’) for a non-standard algebra A and its standard form A’,
where A and A’ are of type (Dsm,1/3,1). This gives an alternative proof that A and A’ are not
derived equivalent.

1. The derived equivalence representatives

We give here Asashiba’s full classification from [1,2] of the derived equivalence class representa-
tives of the finite dimensional self-injective algebras of finite representation type over an algebraically
closed field. These derived equivalence class representatives are listed according to their type.

From [9], the stable Auslander Reiten quiver of a self-injective algebra A of finite representation
type has the form ZA/(g), where A is a Dynkin graph, g = ¢7 " such that r is a natural number,
¢ is an automorphism of the quiver ZA with a fixed vertex, and 7 is the Auslander-Reiten translate.
Then typ(A) := (A4, f,t), where t is the order of ¢ and f :=r/m, such that my =n,2n—3,11,17 or
29 as A = Ap, Dy, Eg, E7 or Eg, respectively. We take the following results from [2].

Proposition 1.1. (See [2, Theorem 2.2].) Given A a self-injective algebra of finite representation type then the
type typ(A) is an element of one of the following sets:

{(An.s/n, 1) |n,seN};
{(Azp41,5,2) | p,seN};
{(Dn,s, 1) |n,seN, n>4};
{(Dn.s,2)|n,seN, n>4};
{(D4,s.3)|seN};

{(D3m.s/3.1) |m,seN, m>2,31s}:
{(En.s.1)|n=6,7,8, seN}; and

{(E6.5,2) | seN}.
Theorem 1.2. (See [2, Theorem 2.2].) Let A and IT be self-injective algebras of finite representation type.

(i) If A is standard and IT is non-standard then A and IT are not derived equivalent.

(ii) If A and IT are either both standard or both non-standard then the following are equivalent:
(1) A and IT are derived equivalent;
(2) A and IT are stably equivalent;
(3) typ(A) =typ(IT).
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Using these results, [1] gives the derived equivalence representatives by quiver and relations; these
are stated here for convenience. The derived equivalence representatives of the standard algebras
are given in 1.3-1.10. The non-standard derived equivalence representatives are given in 1.11. Recall
from [2, Theorem 2.2] that the non-standard derived equivalence representatives only occur when
char K = 2. Note that [j] denotes the residue of j modulo s where s > 1 and we write paths from left
to right (whereas paths are written from right to left in [1]).

1.3. A(Ap, s/n, 1) withs,n > 1.

A(Ap,s/n, 1) with s,n > 1 is the Nakayama algebra Ns, and it is given by the quiver Q (Ns):

Us—1
O <— O
f;///
(o)
(3] l
(o)
=\
(o)
with relations R(Ns ):
oiti1 - Qipn =0, forallie{l1,2,...,s} =7Z/(s).

14. A(Azp+1,S,2) withs, p > 1.
A(Azp+1,5,2) with s, p > 1 is the Mobius algebra M, s and it is given by the quiver Q (Mps):

[s—1]
ﬂp_1
0 <L ...
-1
gy

O <— 0 <—— -~

B Q51 g1
/ ) .
%o

o o
0 0
ﬁ% 1 \L ot[ 1
[0] U] [2] [21
By \L ¥p_1 31 T Bi

(0] (2]
o Q
P 1
ﬁ[}\ Ot([)” aﬁ” OtE,,]l a,ljlp

with relations R(Mp s):
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(i) ozg] a{,']_ﬁ([]mnﬂ{,ﬂ,forallie{O,...,s—l},
(ii) for all i € {0,...,s — 2},

i] pli+1 i i+1
al[)l]:B([]l 1 — 0’ ﬁ[']a[l 1 — O,

—1] [0 1] 5[0
0‘1[75 ]a([)]zo’ ﬂ[S ],3”

(iii) paths of length p + 2 are equal to 0.

1.5. A(Dy,s, 1) withn>4,s>1

A(Dp,s,1) withn >4,s > 1 is given by the quiver Q (Dy, s):

aésfu
0O <=——
ol _
1 gl
"‘r[Ez
o o
[s—1]
0] g
ol Po (0]
-3 Yo
(o] o
oy ) 7" 7 2]
hi i 1 Po
Y %
o) [e] 0 (o] ! o)
o,
ﬁ([J” }3{”
:
o o
with relations R(Dy, s, 1):
(i) ,[11]201[’]3~ 2 ﬂ[']ﬁ[’] y y[‘] forallie{0,...,s—1}=2/(s),
(ii) for all i € {0, . s—l}_Z/()
QBT _ g glily [i411 _ g
[l] [l+l] [l] [i+1]
Bi =0, Vo, 5, =0,
ﬁ[z] [i+11 _ o ']/3['+”

(iii) for all i €{0,...,s—1}=2Z/(s) and for all je{1,...,n—2}=7Z/(n — 2),
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[i] [i+1] _
oo =0

+1 +1
’Bmﬂlmﬁ[l 1 =0, yollly]l']yoll 1 =0,

i 1 1 1 1
ﬂgtlﬁ([)H- ]/3{1-0- 1 0, % y[H— ]]/1“+ ] —0.

The set of relations (iii) means that “oc-paths” of length n — 1 are equal to 0, “B-paths” of length 3
are equal to 0 and “y-paths” of length 3 are equal to 0.

1.6. A(Dy,s,2) withn>4,s > 1.
A(Dy,s,2) withn>4,s>1 is given by the quiver Q (Dp, s) above with relations R(Dy, s, 2):

(i) ol poly - aé”ai” =By B = yiA for all i€ (0, ..., s — 1} = Z/s),
(ii) for allie{0,...,s =1} =7Z/(s),

i] pli-+1 +1
allglit—o,  allyl* o,
(i1, li+1] _ ['] [i+1]
1,5 =0, Y1 %y =0,

and for all i € {0, ...,s — 2},

ﬁ[l] [i+1] =0, [11’8[1+1]
—1] 5[0 1
‘31[5 ]‘3([) ] =0, J/1[5 ])/[ ] =0,

(iii) “a-paths” of length n — 1 are equal to 0, and for all i € {0, ...,s — 2},

T ol 1
’B([)l]ﬂ][llﬂg‘*' I 0, Yo y]lllylH' 1 =0,

ﬂgi]ﬁ([]i—kl]ﬂ{i—o—l] =0, % y[l+l]y[l+1] —0 and

-1 -1],,[0 -1 —1] 5[0
BB =0,y o,

B s—1 0 0 0 s—1 B 0 B 0 0
1.7. 1‘(D4, S, 3) Wlt“ S 2 1

A(Dy,s,3) with s > 1 is given by the quiver Q (D4, s) above with relations R(Dy, S, 3):
(i) a([)']agl] = ﬁg]ﬂ{'] =%, [0 forall i € {0,...,s— 1} =Z/(s)
(i) for all i € {0,...,s —2},

agi]ﬁ([)iﬂ] =0, agl]y[wu 0.
,3{”0:}}*” =0, )/1[ ]a([)l+l] =0,

il li+1 i] gli+1
gyt =0, g =0,

and
T B S e )
plgll —g  pglslglol g
ylsIglO —g sy l0l g

(iii) paths of length 3 are equal to 0.
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1.8. A(D3m,s/3, 1) withm>2and3{s> 1.

A(D3m,s/3,1) with m > 2 and 31s > 1 is given by the quiver Q (D3m, s/3):

and for s =1, Q (D3m, 1/3):

with relations R(D3p, /3, 1):
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(i) aglag] ol = BiBiyq, forallie{1,....s}=Z/(s),
(i) allal™ =0, for alli e (1,...,s} = Z/(s),

(i) ! el B0l 5”3] 0, forallie{l,...,s}

of length m + 2 are equal to 0).

In the case s =1, the relations R(D3py, 1/3,1) are:

(i) arag - om = B2,
(ii) ama; =0,
(iii) etj---ampPay ---aj=0for j=2,...,m—1.

19. A(E,s, 1) withne {6,7,8}ands > 1

A(En, s, 1) is given by the quiver Q (Ey, s):

=7Z/(s) and for all je{1,...

0(537”
0O <~— -
als-)
o] %11
an—3 ﬁ]
o o]
[s—1]
01 ﬁ%o] "1
Fn_g4
0
o VZ[ I
o]
0
Y
0] 12) :
o " Vs .
0]
o 0] 21
Bi (11 [1] B3
V; Y
(o) o ] o
o0 / 2]
1 1
m | A A
oy o —1> o o
o
0 —> —> 0
1 1
) @

with relations R(Ej, s, 1):

(i) aﬂ . ag]a ﬂ[']ﬂ[']ﬂ[’] y y['] forallie{0,...,s—1},

(ii) for allie{0,...,s—1}=27Z/(s)

i] pli+1 i i+1
a{l]ﬁgz ] =0, 065”)/2“ ] =0,

1055

,m} (i.e. paths

a2
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[1] [i+1] _ [1] [i+1] _
ﬂ n -3 _0’ ]/1 n—3 _0’

i+1 1
B0 gz,

(iii) “c-paths” of length n — 2 are equal to 0, “B-paths” of length 4 are equal to 0 and “y-paths” of
length 3 are equal to 0.

1.10. A(Eg, s, 2) withs > 1
A(Eg, s, 2) is given by the quiver Q (Eg, s) above with relations R(Eg, s, 2):

(i) oflo ol ﬁ[']ﬂ[’]ﬁm yiyll foralliefo,...,s -1},
(ii) forallie{0,...,s—1}=27Z/(s),

y[l]all-HJ 0, [ilﬂ[i+1l =0,
dlilylitl g plil)fix1l _q

and for allie{0,...,s —2},
[I]IB[H'” 0 ﬁ['] [i+1] =0
—1] [0 —1] 4[0
a‘ES ]a:[;] =0’ ﬂ‘ES ]’Bg ]=O,

(iii) “y-paths” of length 3 are equal to 0 and for all i € {0,...,s — 2} and for all j € {1,2,3}=2Z/(3),
[i] [i+1] [i] [i+1]
aj oy =0, B 513_’

-1 -1 0 0 —1 1
alf 1...045 lﬁél...ﬂj[,j3:0, ,3][5 I ,3[5 lo

or _
i 3 =0.

..a]7

Thus we have listed all the derived equivalence representatives of the standard algebras. The de-
rived equivalence representatives of the non-standard algebras are given next.

1.11. A(m) withm > 2

In this case char K =2 by [2, Theorem 2.2]. The non-standard algebra A(m) for each m > 2 is
given by the quiver Q(D3y, 1/3):

Om—1
m-<——m-—1

Um

B

Q)
y

2

o2

with relations R(m):
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(i) aray - om = B2,
(ii) amay = ampBay,
(iii) ojtjy1---; =0, forallie{1,...,m}=7/{m) (i.e. “a”-paths of length m + 1 are equal to 0).

2. Projective resolutions

To find the Hochschild cohomology groups for any finite dimensional algebra A, a projective res-
olution of A as a A, A-bimodule is needed. In this section we look at the projective resolutions of
[6] and [7] in order to describe the second Hochschild cohomology group. Let A = KQ/I where Q is
a quiver, and I is an admissible ideal of KQ. Fix a minimal set f2 of generators for the ideal I. Let
x be one of the minimal relations. Then x = Z;‘:l Cja1j - Akj - 0s;j, that is, x is a linear combina-
tion of paths ayj---ayj---as;5 for j=1,...,r and cj € K and there are unique vertices v and w such
that each path aqj---a;-- -@s;j starts at v and ends at w for all j. We write o(x) = v and t(x) = w.
Similarly o(a) is the origin of the arrow a and t(a) is the end of a.

In [6, Theorem 2.9], a minimal projective resolution of A as a A, A-bimodule is given which
begins:

A A A
> Q32028082 a0,

where the projective A, A-bimodules Q% Q', Q2 are given by

QO: @ AVR VA,

v,vertex

Q'= P a@et@A, and

a,arrow

Q=P A0 @t 4.

xef?

The maps g, A1, A, and As are all A, A-bimodule homomorphisms. The map g: Q% — A is the
multiplication map so is given by v ® v — v. The map A1:Q! — QO is given by o(a) ® t(a) —
o(a) ® o(a)a — at(a) ® t(a) for each arrow a.

With the notation for x € f2 given above, the map A;:Q2 — Q! is given by o(x) ® t(x) >
Yy €O @1 Q) ® A1y -+ -Gy ), WheTe @1+ Qg1)j @ gy -+ s, € Ao(ay)) @ Hayg) A.

In order to find the projective A, A-bimodule Q3 and the map As in the A, A-bimodule res-
olution of A in [6], Green and Snashall start by finding a projective resolution of A/v as a right
A-module, where t = J(A) is the Jacobson radical of A, using the notation and procedure of the pa-
per [7]. In [7], Green, Solberg and Zacharia show that there are sets f, n > 3, and uniform elements
y € f™" such that y = erfn_l Xry = Zzef,,_z zs, for unique elements ry, s; € KQ with special proper-
ties related to a minimal projective A-resolution of A/t considered as a right A-module. In particular,
for y € f> we have y € [[f2KQN][f'I and y may be written y =" f2p; = 3 q;f?r; with
pi,qi,ri € KQ and pj, q; in the ideal generated by the arrows of KQ such that the elements p; are
unique. Recall that an element y € KQ is uniform if there are vertices v, w such that y =vy = yw.
We write o(y) =v and t(y) = w.

Then [6] gives that Q3 = ]_[yefg Ao(y) ® t(y)A and describes the map As. For y € f3 in the
notation above, the component of As(o(y) ® t(y)) in the summand Ao(fl.z) ® t(fl.z)A of Q2 is
2(o(y) ®pi —qi ®Ti).

Thus we can describe the part of the minimal projective A, A-bimodule resolution of A:

03828 1M 0%% A0
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Applying Hom(—, A) to this resolution gives us the complex
0— Hom(Q®, 4) & Hom(Q", 4) & Hom(Q2, 4) & Hom(Q3, 4)

where d; is the map induced from A; for i =1, 2, 3. Then HH?(A) = Kerds/Imd,.

Throughout, all tensor products are tensor products over K, and we write ® for ® . When con-
sidering an element of the projective A, A-bimodule Q! = @a‘arrow Ao(a) ® t(a) A it is important to
keep track of the individual summands of Q. So to avoid confusion we usually denote an element
in the summand Ao(a) ® t(a)A by A ®; A’ using the subscript ‘a’ to remind us in which summand
this element lies. Similarly, an element A ®f2 A’ lies in the summand Ao(fz) ® t(fz)A of Q2 and an

element A ®f3 A’ lies in the summand Ao(f3) ® t(f3)A of Q3. We keep this notation for the rest of
the paper.
Now we are ready to compute HH?(A) for the derived equivalence representatives of the finite
dimensional self-injective algebras of finite representation type over an algebraically closed field.
First we recall that the algebras of type (An,s/n, 1) and (Azp41, s, 2) have been considered in [3,6]
respectively.

Theorem 2.1. (See [6, Theorem 4.2].) For the Mdbius algebra M, s we have HH2(MP,S) =0 except whenp =1
ands=1.

It is well known that if p=1 and s =1 then M, is the preprojective algebra of type As. In [4],
a basis for the Hochschild cohomology groups of the preprojective algebras of type A, is given.

Proposition 2.2. (See [4, 7.2.1]) For the Md&bius algebra Mps with p =1 and s = 1 we have
dimHH?(Mp5) = 1.

In [3], the dimension of HH?/(A) is given for a self-injective Nakayama algebra for all j > 1. In
particular this gives us HH?(A) when j = 1. The self-injective Nakayama algebra A(Ay,s/n, 1) of [1]
is the algebra B;‘“ of [3]. Write n+1=ms +r where 0 <r <s. From [3], with j =1, we have the
following result.

Proposition 2.3. (See [3, Proposition 4.4].) For A = A(Ap, s/n, 1), and with the above notation we have
dimHH?(A) =m

3. Avanishing theorem

In this section we start by recalling some definitions from Section 3 of [6] and from the theory of
Grobner bases (see [5,6]). Recall that A = KQ/I where I is an admissible ideal with fixed minimal
set of generators f2.

A length-lexicographic order > on the paths of Q is an arbitrary linear order of both the vertices
and the arrows of Q, so that any vertex is smaller than any path of length at least one. For paths
p and g, both not vertices, we define p > q if the length of p is greater than the length of g. If the
lengths are equal, say p =a;---a; and q = by - -- by where the a; and b; are arrows, then we say p > q
if there is an i,0 <i <t —1, such that aj =bj for j <i but aj11 > bi;1, where we use here our (fixed)
arbitrary linear order on the arrows of Q.

Let f be an element in KQ written as a linear combination of paths ijl cjpj with cj € K\{0}
and paths p;. Following [6], we say a path p occurs in f if p = p; for some j.

Fix a length-lexicographic order on the set of paths of a quiver Q. Let f be a non-zero element
of KQ. Let tip(f) denote the largest path occurring in f. Then we define Tip(I) = {tip(f) | f € I\{0}}.
Define NonTip(I) to be the set of paths in KQ that are not in Tip(I). Note that for vertices v and w,
v NonTip(I)w is a K-basis of paths for vAw.
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Definition 3.1. (See [6, Definition 3.1].) The boundary of f2, denoted by Bdy(f?), is defined to be the
set

Bdy(f?) ={(o(f7), (7)) - (o(fin). t{fim))} = { (000, t0) | x € f2}.

Definition 3.2. (See [6, Definition 3.3].) Let G? = | J v NonTip(I)w, where the union is taken over all
(v, w) in Bdy(f?).

We consider now elements of Hom(Q 2, A).

Definition 3.3. (See [6, Definition 3.4].) For p in G2 and x € f2 with o(x) = o(p) and #(x) = t(p), define
Ppx: Q2% — A to be the A, A-bimodule homomorphism given by

() @i(sR) - {2 TS =

0 otherwise.

Let d; :Hom(Q', A) - Hom(QZ2, A) be the map induced by A,. Each element of HH%(A) may
be represented by a map in Hom(Q2, A) and so is represented by a linear combination over K of
maps ¢, x. If every ¢, x is in Imd; then Hom(Q2, A) =Imd, and hence HH?(A) = 0. Our strategy in
Theorem 3.6 is to show that HH?(A) = 0 by showing that every ¢px is in Imd,.

First we return to [6] and modify [6, Definition 3.6].

Definition 3.4. Let X be a set of paths in KQ. Define

Lo(X) = {p € X | 3 some arrow a which occurs in p and which does not occur in any element
of X\{p}}.

For p € Lyp(X), we call such an a an arrow associated to p.

Define L;(X) for i e N by

i—1
Li(X) = Lo (X\ U L;(X)>.

j=0

Definition 3.5. (See [6, Definition 3.9].) Let X be a set of paths in NonTip(I). The arrows are said to
separate X if X = Ui>0 Li(X).

Motivated by Theorem 3.10 in [6] we give a new theorem on the vanishing of HH2(A) which we
will show applies to all algebras in Asashiba’s list when s > 2. (We will consider the case s =1 later.)

Theorem 3.6. Let A = KQ/I be a finite dimensional algebra where I is an admissible ideal with minimal
generating set f2. With the notation of this section, suppose that for all (v, w) € Bdy(f?) either vAw = {0}
or there is some path p such that v NonTip(I)w = {p}. In the case where v Aw # {0} suppose further that
vf2w ={p —qi,...,p — q¢} for paths qi, ..., qr. Thus we may write G2 = {p1, ..., p;}, where for each
i=1,...,r, we have non-zero paths g1, . .., qi;; with o(pi) f2t(pi) = {pi — qi1, ..., Pi — dit; }.

LetY ={p1,...,pr,qij | 1 <i<r, 1< j <t} Suppose that Lo(Y) =Y. Let a;; be an arrow associated to
qij and assume that a;j occurs only once in the path q;;. Then every element of Hom(Q?2, A) is a coboundary,
thatis, ¢p x € Imds for all p € G? and x € f2, and thus HH?(A) = 0.

Proof. It is enough to show that each element ¢, x of Hom(Q?2, A), where p is a path in G2 and
x € f2 with o(x) = o(p) and t(x) = t(p), is a coboundary. By hypothesis G2 = {p1, ..., p;}. Note that
the paths pq,..., pr are distinct. Consider the path p; where i € {1,...,r}. Then by hypothesis there
are vertices v;, w; with v; NonTip(I)'w; = {p;} and v; f2w; = {pi — qi1, ..., Di —qit;}. Thus if x € f? and
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o(x) = o(p;) and t(x) = t(p;) then x € v; f2w;. Thus x € {p; — qi1, ..., pi — qit;}. Consider x = p; — qjj
where je{1,...,t;}.
The map ¢p, x: Q% — A is given by

T
() oi(s) - {11 1 IE=x
otherwise.

We have Y ={p1,...,pr,qij | 1 <i<r,1<j<t;} and Y = Lo(Y) so q;j € Lo(Y). Therefore there
exists some arrow a;; which occurs in ¢;; and does not occur in any element of Y\{g;j}.

Define ¥ : Q' — A by
—aij ifa= aij,

o(a) @) —
(@) ® te) {0 otherwise.

Now we want to show that Az = ¢, x. Take o(f2) ®t(f2) € Q2. We start by finding ¥ A2(o(fH) ®
t(sz)) by considering two cases.

Case. f2 =x.

Here, we have A2(0(f) ® t(f{)) = ¥A2(0(x) ® t(x)), where x = p; — q;j and qjj = p1aij2
for paths pq, 0, such that a;; does not occur in p; or p; since a;j occurs only once in gjj
by hypothesis. Let pj =01---0;, p1 = €1---€n, P2 = b1---by, where the o’s, €’s, b’s are arrows.
Then ¥ A2(0(x) ® t(x)) = ¥[(0(X) gy (02---01) + 01 g, (03-+-07) ++++ + (0102 ---01-1) O t(X)) —
(0(X) ®¢, (€2 €n)aijp2 + €1 B¢, (€3 -+ - €n)aijP2 + - + (€1€2 - - - €n—1) B¢, ij P2 + P1 Bg;; P2 + L10ij O,
(b2 -+ -bm) + p1aijb1 ®p, (b3 ---bm) + -+ - + p1aij(b1ba - - -bm—1) ®p,, tx))].

As qij, pi € Y = Lo(Y) and a;; occurs in g;;, we have that a;; does not occur in p;. So ajj is not
equal to any of the o’s, €’s or b’s. Therefore

VA2 (0(0) @ t(X)) = =¥ (01 ®q;; 02)
= -1 (1) ®ay; 0(02)) P2
= —p1y(o(aij) ®Ou;j t(aij)) p2
= P10ij P2 = qij.
Case. f? #x.

We consider separately the cases o(f?) At(fZ) =0 and o(f2) At(f}) #0.

@ If o(fHALfE) = 0 then YA (o(fD) ® D) = o(fDHYA0(fD) & tFNUFH =0 as
Y A2(0(f) @ t(fD) € A and o(fH) At(f}) =0.

(b) If o(fH) At(f2) # 0 then o(f})At(f2) = Sp{pu}. the vector space spanned by p,, for some 1<
u <r. Hence sz = pu — qu for some 1 <I<ty,.

We have Lo(Y) =Y so a;; does not occur in any element of Y\{q;;}. Suppose for contradiction that
a;j occurs in qy, so that gy = q;; as paths in KQ. Then

U(sz) = 0(qu) = 0(gij) = 0(x)
and

t(f2) = tqu) = t(gij) = t(0).
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Therefore, o( f2) At(f?) = o(x) At(x) = Sp{p;}. Hence, p, = p; by the choice of G2. Therefore, f? =
Pu — qu = Pi — qij = x. This gives a contradiction since we assumed sz # x. Hence q;; does not occur

in qul-
Now suppose for contradiction that a;; occurs in py so that p, =gq;; as paths in KQ. Then

o(f2) = o(pu) = 0(qij) = 0(x)
and
"(sz) = t(pu) = t(qjj) = tX).

Therefore, Sp{pu} = o(f})At(f2) = o(x) At(x) = Sp{p;}. Therefore, p, = p; by the choice of G2.
Hence p; = py =qjj in KQ. So p; —q;j =0 in KQ. This contradicts p; —q;; being a minimal generator
of I. Therefore, a;; does not occur in py.

Thus a;; does not occur in fZ. So Yy A2(o(f2) ® t(f2)) =0

Hence A, is the map

O(sz)@)f(sz)r—) {Qij ifszzx,

0 otherwise.

As pi —qij € f2, we know that p; = gij in A. Hence ¥ Ay = ¢p, x. Thus ¢y, x, and hence each element
of Hom(Q 2, A), is a coboundary. Hence HH2(A) =0. O

4. Application to standard algebras

We now want to apply Theorem 3.6 to our derived equivalence representatives. We start by con-
sidering the standard derived equivalence representatives, and we need minimal relations for each
such algebra in Asashiba’s list.

We start with the algebra A = A(Dy, s, 1). Note that R(Dp, s, 1) for s > 1 is not minimal.

For relations of type (i), let ﬂ[l]ﬁm [']y[l] € f? and ,B[']ﬂm ,[:] 204,[11]3- ~oe£l]ot£l] e f2. All rela-

tions of type (ii) are in f2. We now consider the relations of type (iii). So (ﬂmﬂm UJ m)y”’HJ

(/3([)”,3]”])/0”“J ymy y“'HJ) el and ﬂmﬂm i+ ¢ |, Therefore Yo ymyl'+” eI and is not
in £2. Also yli=1(gllpll _ 5l 10y _ [1 11/3[11 [0 _ =11l 10y [ ang =10 A0 ¢ 1 5o
y1”_”ymy eI and is not in f2. Slmllarly we can show that ne1ther ﬂglﬂ%l]ﬂg‘m nor ﬂlmﬂgﬂlﬂlllﬂl
are in f2.

Now consider “c-paths.” We have ﬂmﬁm ,[1’] Zar[]l]3~ amam € f2 So (ﬂ[i]ﬂm 0‘;[1']20‘:[1']3

o a['])a["q] el and ﬂ[']ﬁ['] ['+1] € I. Therefore it follows that «, Li [i]3- ag]ama[’ﬂ] el and is

not in f2 Also a]l 1](‘3[1]’3[11 Ll] 20‘1[11]3 [1] [l]) el and a{l 1]‘3[1]’3[11 cl. So Olgl l]ar[lﬂzal[l,]?'“.
moz ¢ I and not in f2.
(i1 il [i+1] [i+1]

However, the path o) o; 'a,”," - cannot be obtained from any other elements, so
allallo . ol ¢ £2 1n general, a,[’]a,E'] ~~-a,£’r1”(x,£'+” € f% for k=1{2,...,n—3}. So we have

the following proposmon

Proposition 4.1. For A = A(Dy, s, 1) withs > 1, and foralli € {0, ...,s — 1}, let

2 [i] pli] [i1,, il 2 [i plil [l] [l] [i1 [l
fivi=B B —Yo Vi fiai=8By Bl —ap 0, "5y 0y,

z]ﬂ[1+l] [H—l]

2 2 [i]
fiii=a fiai=a1v,

[1] [i+1] 2 (il [i+1]
f231 1% 2 fiai=r a2y
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[i],,[i+1] 2 [i] pli+1]
f251 fiei=vi Bo and

1%

1 i+1
f32’k,_oz,[<lJ %’J ,Elle--loet”], fork=1{2,...,n—3).

Then f? = {fl11’f121’f211’f221’f231’f241’f251’f261’f3k1}f0rl_0 s—landk=2,...,
n — 3 is a minimal set of relations.

For the rest of the algebras, we can find a minimal set of relations in a similar way. They are given
in the following propositions.

Proposition 4.2. For A = A(Dy, s, 2) with s > 2, let,
forallie{0,...,s—1},

2 [i] plil [i] 2 [i] plil _ [l] [i] [i] il
fi1i=8 B V V1 ; fi2i=8p Bi —on o0, 50y aq,

2 _ il pli+1] 2 [il [1+1]
fEri=ay By fiai=o1y

2 _ plil li+1] 2 _ .0l fi+1]
fizi=Brony s fiai=v oy,

forallie{0,...,s—2},
2 [i] [l+1] 2 [1] [H—1]
fisi=8 ) fiei=v1 Bo
[s=11 glo]. 2 [s—11,,10]
f27s1—l81 Bo figsoi=vi Yo
forief0,...,s—1},

f;k,—a,[(” ol ol fork=1{2,...,n—3).

Then f2 = {leYLi’ f]z’z_’,'a f22’1’,‘a fzz’z’,‘» f22,3,i’ f22.4’l-f01’l'=0, ..,s—=1}U {f22.5,i’ f22’6_if0ri=0, ..., $=2}U
{(f3761: f3g5 1} ULf5, fori=0,....,s—1andk=2,...,n— 3} is a minimal set of relations.

Note that Proposition 4.2 is for s > 2. For s =1 the minimal relations are different and are given
in the next proposition.

Proposition 4.3. For A = A(Dp, 1, 2), let

2 2
fi1=Bob1—vovi.  fia=PBob1 —an—20n_3--- 201,

fFi=apo,  fi,=ain,
fzz,g = f1an_2, f22,4 = Y102,
25 = B1Bo. fZ6=v1v0 and
f32,k=01k~-~a10ln—z~--ak, forke{2,...,n—3}.

Then f2 ={f? . f15. f31. f35. f35. f24. f25. f3 6. f3, fork=2,....n— 3} is aminimal set of relations.

Again for A(Dy4,s,3) we separate the cases s >2 and s =1.
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Proposition 4.4. For A = A(Dy, s, 3) with s > 2, let,

forallie{0,...,s—1}:
2 [i] plil [i] 2 [i] plil (i1, [il
fi1i=8o Bi — Vo Vl ) fi2i=8y B1 —og oy,
2 plil Jli+1] 2 [i] [H—l]
frii=Brag s fiai=a1v,

2 [i] pli+1]
fisi=v1 By

forallie{0,...,s—2}:

2 [i] pli+1] 2 Ll li+1]
fai=0a1 By s fisi=B1ve

[i] , [i+1]
f261 V1 Q%
2 [s—1],,[0] 2 S 1] [0]
f7s1=v1 Vo s figs—1= Bo
[S 1] [ 1.
f29$ 1=« ’

5

2 [s—11 5[0] (0] 2 [s—=1] ,[s—1] 5[0]
fisc1=B1 By B fias1=0ag “ay B

1 1 0 1] 5[0] [0
[rag = BB I0 p2 gl lglolg0l gy

[s—1],,[0],,[0] 2 [s—1] ,[0]  [O]
f365 1=B1 Yo "1 fi7s0=r" g ag.

2 2 2 2 2 2 ; 2 2 2 ;
Then f< = {fmyi, fl,z,i’ fz‘]yi, f2,2,i’ f2,37i,f0r1 =0,...,s—1}U {f2,4,i’ f2,5,i’ f2,6,if°” =0,...,s—2}U
{f22,7,571! fzz,s,sflv fa95-1, f32,1,571’ f32,2’$71, f32’3,$71, f32,4.sf1’ f32,5,571! f32,6,571} is a minimal set of rela-

tions.
Proposition 4.5. For A = A(Dy, 1, 3), let
fEi=BoBi—vor1.  fi,=Pop1 — o,

2 2
f2,1 = proo, f2,2=0l])/0,

f22,3=)/1,30,
f2a=vivo.  fis=P1Bo and
f36=a1a0.

Then f2 = {f1217 f122, fzz,p f2227 f22A3’ f224, f225’ fzz.e} is a minimal set of relations.
Proposition 4.6. For the standard algebra A = A(D3m,s/3, 1) withs > 1, foralli e {1, ..., s}, let
2
F2i= BB —oll o), f2 = allalt,
fa,j ol alilg [1+3],._a5i+3] forallje(2....m—1).

]

Then f2:{ffi,fzzj,ffijforj:Z,...,m—landi:l,...,s} is a minimal set of relations.
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Proposition 4.7. For A = A(Ep, s, 1) with s > 1 and for all i € {0, . =1}, let
f2, = PR _ I g2 gligligl gl G0l
fle mﬂhm, f222!_a£,]y2h+1],
Bom APl Bag=pl
f2 50 = ar[ll+31]’ f2 6= [x]ﬁ[H]]’
f32,k i= oz,Ella,E'11 ) Olz[c'ff]al[i“] forke{2,...,n—4} and

[i] 5li] plil pli+1]
fii=8; B85 8

Then f? = fl 1, l’fl 2wf21wfzzwf23vf24x’f25wfzswf3sz°rk6{2 4},fii}isaminimal

set of relations.

Finally, for the algebras of type E¢ we have 2 cases to consider.
Proposition 4.8. For A = A(Eg, s, 2) withs > 2, let,
forallie{0,...,s—1}:

) I ) -
fi :ﬂg]ﬂg]ﬂ[l] J/2[1]7/1[1]’ fii= ﬂmﬂ[’]ﬁ['] ozg]ag]a?],

2 [i+1] [l] [i+1]
f3ai= Vl 0‘3 > f221 B3,

2 (i1, [i+1] (i1, li+1]
fisi=arv, f24z 172 5

and foralli €{0,...,s —2}:

[1] [i+1] [i1_ [i+1]
f251 :3 ’ f261 /31 Ol3 s
[s—1] _[0] [s—1] [0]
f27s =07 a3, fz,s.sq: 1 B3
2 i1 L1 li+1]  [i+1] 2 [i] pli] pli+1] pli+1]
fLri=ogagiag o T, [32i=8B1 B3 "By,
2 [s— 1] [S 1] 5[0] 4[0] 2 [s—1] p[s—11 ,[0] . [O]
fias1=03 B3 By s fiasa=8y BT oz oy
Then f2 = {f12,1,iv f]zyzyiv f22,1,i’ f22,2,i’ f22.3’,'7 f22.4yi,f0ri = 0, e, S — ]} U{f22,5,i7 fzzyﬁyiyfori =0 . ,S—Z}U
(3761 FRas 1V UIf3 4 f35 0 fori=0,...,s =2} U{fF5 |, f345-1) is a minimal set of relations.

Proposition 4.9. For A = A(Eg, 1, 2), let

ffi=BBbi—vavi.  fia=PB3B2p1 — azaay,
f22,1 = Y103, f32=71Bs,
f33=a1ya, f34="P1y2,
fZs=aaz,  fio=p1ps.

2 2
f51=0ma1B3p2, f52=Baprazay.

Then f* ={(f}, fio. f31. f3: f33. f3 40 F3 5 f3 60 F31, f5,} is aminimal set of relations.
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We now apply Theorem 3.6 to the self-injective algebras of type D, and Eg7g using Proposi-
tions 4.2-4.9.
For example consider the algebra A(Dy, s, 2) for s > 2. Fix an order on the vertices and the arrows:

ol >l > ¥ i 0 0
>0‘}£2 - ... >13%” - ... >O‘1[15:2” - .4.>/3115—”
and
B > e10>en 00> - >e11>en0>en10> > €11
>€en—25—-1>-"">€ns—1>6€n-1;5-1.
Then

ti(f7 1) =tip(By A1 — v ¥i") =¥ ¥i" and

tip(f725) = tip(By 81 —enlyons - aylal) = oyl ol
for i=0,...,s— 1. For all other sz € f% with sz + flz’“, flz’z’,. we know that sz is a path in KQ
) tip(sz) = sz. In these cases o(f]?)NonTip(I)t(fJ?) = {0}. Let vi = o(f}, ) =o(f,,) and let w; =
t(f%],i) = t(ff,z’i) for i=0,...,s—1. Then (v;, w;) € Bdy(f2) and v; NonTip(I)w; = {ﬂg]ﬂy]} for all
i=0,...,s — 1. So let plil = BB for i =0,..., 5 — 1. Then v; f2w; = (BL1BLT — L1yl gl _
allall i) = 1 — gl i — qlh), where gl = 71", ol = ol ald ol with
the notation of Theorem 3.6, G = {gl'gl"! |i=0,...,5 — 1} and Y = (Bl L)l ol gl ...
ag]ag"]n i=0,...,5s—1} = Lo(Y). Choose agi] = yom and a[zi] = oz,[jlz so that agi] and a[zi] are arrows
associated to qgi] and qg] respectively, and ag.i] occurs once in qg.i] for j =1,2. Then by applying
Theorem 3.6, every element of Hom(Q 2, A) is a coboundary and so HH?(A) = 0.

Similar arguments give the following corollary.

Corollary 4.10. Suppose s > 2. Let A be one of the standard algebras A(Dy,s,1), A(Dg,s,2) for
n >4, A(D4,s,3), A(D3m,s/3,1) with m > 2,315, A(Ep,s,1) with n € {6,7,8} or A(Eg,S,2). Then
HH?(A) = 0.

Remark. Theorem 3.6 does not apply if s =1 since in this case there is some (v, w) € Bdy(f?) with
dimvAw > 1.

5. HH2(A) for the standard self-injective algebras of finite representation type

In this section we determine HHZ(A) for the standard algebras A(Dp,s, 1), A(Dp,s,2), A(Dg,s, 3),
A(D3m,s/3,1), A(Ep,s,1), A(Eg,s,2) when s =1. A sketch of the proof is given in each type. We
start with A(Dp, s, 2) since HH?(A) # 0 in this case.

Theorem 5.1. For A = A(Dy, 1,2) we have dimHH?(A) = 1.

Proof. For A = A(Dy, 1,2) we label the quiver Q (Dy, 1) as follows:
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Op—2
n—2
n-3 Bo
/7N
n—3 n—1 n 1
gt
. I}
2

a

The set f2 of minimal relations was given in Proposition 4.3. Recall that the projective Q> =
Dyes Ao(y) @U(Y)A = (Ae1 ® en—34) ® (Aeg @ en—2A) © (Aey @ en—14) @ (Ae1 ®end) © (Aez ®
e1A) P (Aep—1®e1A) @ (Ae,®eqA) EBEB%;%(Aem ®em—_2A). (We note that the projective Q3 is also
described in [8] although Happel gives no description of the maps in the A, A-projective resolution
of A.) Following [6], and with the notation introduced in Section 1, we may choose the set f3 to
consist of the following elements:

(Fi1. Fo fis Fia 3. F2 4 F2.F3. f2). withme{4,....,n— 2} where

fi1 = fion-20m-s3 = Bof3 -3 —an2f5, 5 € e1KQey_3,
fiz = f12,1an72 = ﬁ0f22,3 - Vof22,4 € e1KQen_»,
f13,3 = f%zﬂo = ﬂszzqs _an—Z"'(XZfzz_] € e1KQen_1,
f13,4 = fflyo—ffzyo = Olnfz'“Olzfzz,z—Vofzz,G € e1KQey,
3 = f22,1/31—f22,21/1 = 011f12,1 € e2KQeq,
n371 = f§5ﬂ1 - f22,3an—3 o = B f122 € en_1KQey,
fn3 = f22,4an73"‘0l1 —fieyl = V1f12,1 _V1f12,2 € epK Qer,
3 =i = z2f},p1 — e f1, € e3KQey,
fn31 = f3,2,m_1am72 = am71f32,m_2 € emKQem_2

forme{4,...,n—2}
We know that HH?(A) = Kerds/Imd,. First we will find Imd,. Let f € Hom(Q!, A) and so write
f(e1 ®g, en—1) = c1Po, flen—1 ®g, 1) =21,

f(e1 ®y, en) =C3%0, f(en ®y, €1) =cayr,

f(er Qay_y €n—2) = dp_20_>



D. Al-Kadi / Journal of Algebra 321 (2009) 1049-1078 1067

and
fe41 ®q e) =djoy forle{l,...,n—3},

where c¢1,C2,c3,¢4,dj €K forle{1,...,n—2}.
Now we find fA; =d;f. We have
fAzxe1®p2 e1) = f(e1®pyen-1)B1—f(e1@y en)y1+Pof (en-1®p €1) = 1o f (en®y, 1) =c1Pop1 —

c3Yo0Y1 + C2P0B1 — Cayoy1 = (€1 — €3 + 2 — ¢4) fo 1.
Also fAj(er ®2, €1) = f(e1 ®p, en—1)B1 + Bof(en—1 ®p, €1) — f(e1 gy, €n—2)0n_3---0t] —

On—2 f(en—2®a,_3€n—3)0n—a--- 01 —...—0n_3 - &2 f(e2®a, €1) = C10pf1+C2f0f1 —dn—20tn—2---0t1 —
<o —diop_p -y =(C1 + ¢ —dpy —--- —d1)fop1.
By direct calculation, we may show that fA, is given by

fAz(e1®p2 e1)=(c1 —c3+Ca—ca)fopr =CPopr,

fAz(eq ®2, e1)=(c1+ ¢ —dnp —---—d1)Bof1 =c"Popi
for some ¢/, ¢” € K and
FA2(o(f7) @ t(f7)) =0

for all sz # f11, f1,. So dimImd, =2,

Now we determine Kerds. Let h € Kerds, so h € Hom(Q2, A) and d3h =0. Then h: Q2 — A is
given by

hler®y e1) =cier+c2fopi,
he1®2 e1) =cse1 +cafopr,
h(o(f3;) ®p, t(f3;))=0, forje(l,....4},
h(en—1 ®f225 en—1) =Cs5€p—1,
h(en ®f226 en) = Ce€n and

h(o(f32,k) B2, t(f32’k)) =dyoy, forke{2,...,n—3}

for some cq,...,c5,dy €K for ke {2,...,n—3}.
Then

hAs(e1®p3 en—3) =h(e1 ®p e1)an—20m—3 — foh(en—1 @2 en—2)otn—3 +an2hn2®p  en3)
= (c3e1 + c4foP1)0otn—20n—3 — 0 + dp_3ctn—20n—3 = (€3 + dp—3)tn—20tn—3.

As h € Kerds we have c3 +d,_3 =0.
In a similar way, by considering hA3(o(f,3) ®f‘3 t(ff)) for all f13 e f3, f13 #* f]371 it follows that h is
given by
he1®p2 e1) =c2pobi,
he1®y2 e1) =cser + cafopbi,

h(o(f3) B, t(f3;)) =0, forjefl,.... 4}
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h(en—1 ®f225 en—1) =C3€n—1,

h(en ®f226 ep) =c3e, and
h(o(f3,) ®2, t(f3,)) =—c3o, forke{2,....n—3)

for some c3, c3,c4 € K. Hence dimKerds = 3.
Therefore dimHH?(A) = dimKerd; — dimIlmd, =3 -2=1. O

5.2. A basis for HH?(A) for A = A(Dp, 1, 2).
Let 1 be the map in Kerds given by

e1 ®f]22 e1 e1,

€n—1 ®f225 €n—1 €n—1,

o(f32’k) ®2, t(f32’k) —ay, forke{2,...,n—3},

=
=
en ®f22,e en — en,
—
else +—

0.

Clearly, n is a non-zero map. Suppose for contradiction that n € Imd;. Then by the definition
of 1, we have n(e, ®sz6 en) = ep. On the other hand, n(e, ®f226 en) = fAx(ey ®f226 ep) for some
f eHom(Q!, A). So n(e, ®f226 en) = 0. So we have a contradiction. Therefore 1 ¢ Imd,.

Thus 1 + Imd, is a non-zero element of HH?(A) and the set {n +Imd,} is a basis of HH2(A).

Theorem 5.3. For A = A(Dy, 1, 1) with n > 4, we have HH%(A) = 0.

Proof. With the quiver Q(Dp, 1) as in Theorem 5.1 and direct calculations for s =1 we choose the
set f3 to consist of the following elements:

{F1 20 fis fia F3 fAy 3. F3. f3). withme{4,....n—2} where

i1 = firon—20n_s = Pof730tn—3 — n_2f3,_3 €e1KQen_s,

fia = fii0n Bofss— vofss€e1KQen s,

fis = ff1Bo— fi.bo @ f3 1 —Vofis €e1KQen 1,

fia = fiavo = Pofis—n_2---02f7, €e1KQep,

3 = b - fzz,zl/l a1 fi, ek Qey,

f3_1 = f22,3an—3"'al _f22,57/1 = 51f12,1 _ﬂlflzyz €ep—1KQeq,

3 2 2 2

fn = f2.6,31 _f2,405n—3"'05] = ylszeenKQe],
3 2 2 2

f3 = fi,n = o2 f5 161 — a0 f1 5 € e3KQey,
3 2 2

fm = f3,m_1am—2 = am—1f3,m_2 cemKQem—2

forme{4,...,n—2}.
Then it is straightforward to show that dimImd,; = dimKerds =2 and so HHZ(A) =0. O

Theorem 5.4. For A = A(Dy, 1, 3) we have HH?(A) = 0.
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Proof. We have the quiver Q(Dy4, 1) as in Theorem 5.1 with n =4 and, following Asashiba in [1],
write ag for . By direct calculation we choose the following set f3 ={(f?, f2,. f{ 3. 3. f3, f3}
where

fir == fiave = @of3, — vofs 4 €e1K Qea,

f13_2 = f12,1/30 = ﬂ0f22,5*)’0f22,3 ee1KQes,
fi3 = fiaa0 = Bof3 —ofig€e1kQes,
3 = figon— fi.n = onfiq —a1ff, €eaKQeq,

f3 = f3sP1— fiio0 = P1fi, €e3KQey,
fi = f33P1— fiam1 = nifi, €eskQey.

We can then show that dimKerds; = dimImd, =2 and so HH%(A)=0. O

Theorem 5.5. For the standard algebra A = A(D3p, 1/3, 1) we have

ifm >3 and charK # 2,
ifm>3andcharK =2,
ifm=2and charK # 2,
ifm=2and charK = 2.

dimHH?(A) =

AN W o=

Proof. We consider first the case m > 3. Keeping the notation of 1.8 and Proposition 4.6, the set f3
may be chosen to consist of the following elements:

{f2. f2. 21 f2) withte{2,....m—2} where

1 = fiBaray = Bfiajon + o - am_1 fio — o1 f5, € e1K Qes,
2 = o = o1 f2,q €eKQeryy forte(2,....m—2},
Um-1f3020mB + -1 fL B — tm_1amB [T € em_1K Qey,

—dm fBa1 + omB fRa1 + omBar - - A1 f7 € emK Qes.

3 2
faz1 = fimoam

3 2
fm = fFaz---ampay

To find Imdy, let f € Hom(Q!, A) and so

fer®per)=cier+caf+c3p® +cap’,
f(e1 ®q, €2) =diaq +k1paq,
fe1®q e41) =diogy, forle{2,....m—1},
f(em ®ay, €1) = dmtm + kmam B,
where c1,C2,C3,C4,d;, k1, km € K for e {1,...,m}.
It is straightforward to show that f A, is given by
fAxe1®p e1) =201 — (d1 +da + - +dm — 202) % + (203 — k1 — km) B>,
fAz(em ®p2 e2) = (k1 + km)amBon,

f(ej ®f32jej+1)=0, forall je{2,...,m—1}.
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So

4 if charK # 2,

dimImd; = { .
2 if charK =2.

Now let h € Kerds, so h € Hom(Q2, A) and dzh =0. Then h: Q2 — A is given by

hie1 ®p e1) = cre1 +c2f +c3p” + cap’,
h(€m®f22€2)=c501mﬁ0l1 and
h(€j®f32jej+1):djolj, for je{2,...,m—1},

for some c1,...,c5,dj € K where j=2,...,m—1.

By considering hAs3(eq ®f]3 e3) we see that d, =0.

Then, for t € {2,...,m — 2}, we have hA3(e; ®f[3 er4+2) = (dr — diy1)araey1. Then dy — dryq =0 and
so dr =d¢yq for t=2,...,m—2. Hence d) =d3 =--- =dp—2 = dpn—1. We already have d» =0 so
di=0for j=2,....m—1.

Moreover, hA3(en, Q3 e2) =0 so this gives us no information. Thus, it may be verified that h €
Kerds is given by

h(el®f1231)=c1e1+CZ,B+C3,32+C4,33,
h(em ®yz2 €2) = csampPar  and
h(ej®f32j6j+1)=0, for je{2,...,m—1}

for some cq,...,c5 € K and so dimKerds = 5.
Therefore,

dimHH2(4) = | 2 —4=1 if charK' 22,
5—2=3 if charkK =2.
For m = 2, we again have that

4 if charK # 2,

dimImd; = { .
2 if charK =2.
However, in this case we have that dim Kerd3 = 6. Hence, for m = 2, we have

2 if charK #2,
4 if charK =2.

dimHH?(A) = {
This completes the proof. O
5.6. A basis for HH?(A) for the standard algebra A = A(D3m, 1/3, 1) form > 3.
Suppose. char K # 2.
From Theorem 5.5 we know that dimHH?(A) =1 in this case. Let h be the map given by
e1® f2e1 > e,

else — 0.

Then {h + Imd,} is a basis of HH?(A) when char K #2.



D. Al-Kadi / Journal of Algebra 321 (2009) 1049-1078 1071

Suppose. charK =2.

Here dimHH?(A) = 3 from Theorem 5.5. We start by defining non-zero maps hi, h, h3 in Kerds.
Let hy be the map given by

e1 ®f12 er — ey,

else — 0,
h;, be given by

eq ®f12 e1 — B,

else — 0,
and hs be given by

3
e1®f12€’1 = B,

else — 0.

It can be shown that these maps are not in Imd; since char K = 2. Now we will show that {h; +
Imdy, hy +Imdy, h3 + Imda} is a linearly independent set in Kerds/Imd,; = HHZ(A).

Suppose a(hy + Imdy) + b(hy + Imdy) + c(hs 4+ Imdy) = 0 + Imd, for some a,b,c € K. So ahy +
bhy + chz € Imd,. Hence ahq + bhy + ch3 = fA, for some f € Hom(Q!, A).

Then (ah; + bhy + ch3)(e; ®;2 e1) = fAx(e ®;2 e1). So aeq + bB + cp3 =dp% — kB3 for some

d,k € K. Since {eq, 8, 8%, 83} is linearly independent in A, we have a=b =0 and c=k. But 0 =
(ahq + bhy + chs)(epy ®f22 e2) = fAz(em ®f22 e2) = kamBay. So k =0 and thus ¢ = 0. Hence {h1 +

Imdy, hy 4+ Imdy, h3 + Imda} is linearly independent in HH%(A) and forms a basis of HH?(A) when
charK =2.
5.7. A basis for HH? (A) for the standard algebra A = A(D3m, 1/3, 1) form = 2.
Note first that fZ =% —aja and f7 = aza.
Suppose. char K # 2.

From Theorem 5.5 we know that dimHH?(A) = 2 in this case. Let h; be the map given by

e1 ®f12 er — ey,

else — 0,
and h, be given by

€2 ®f22 ey — ey,

else — 0.

A similar argument to that above shows that {h; + Imd>, hy + Imd,} is a basis of HH?(A) when
charK # 2.

Suppose. charK =2.



1072 D. Al-Kadi / Journal of Algebra 321 (2009) 1049-1078

Here dimHH?(A) = 4 from Theorem 5.5. Let h; be the map given by

e1 ®f12 er — e,

else +— 0,
hy be given by

e1®p2 e > B,

else — 0,
hs3 be given by

e1®p2 e > B3,

else — 0,
and hy4 be given by

ey ®f22 ey — ey,

else +— 0.

Again, a similar argument shows that {hy + Imd>, hy + Imdy, hs +1Imd;, h4 4+ Imd>} is linearly inde-
pendent in HH%(A) and forms a basis of HH?(A) when char K = 2.

Theorem 5.8. For A = A(Ep, 1,1) withn =6, 7, 8, we have HH2(A) = 0.

Proof. For A = A(E;, 1,1) we have the quiver Q(Ey, 1) which is described:
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The set f3 may be chosen to consist of the following elements:
3 3 3 3 £33 3 3 3 £3 £3
i1 fi2 fis fia fis £3. faor. faoa fao S5 fa} where

fi1 = fio0n-30m_4 = B3B2f3 30n—a — n_3f2,_4 €e1KQen_a,
fia = fiion=s = B3Paf3s—vaf3s €e1K Qe s,

fis = f12,1/33/32 B3 fZ — szzz,sﬁz €e1KQey_2,

fia = fiaBs— fiaBs Un_30n_4- Q2 f31 — V2 f5 s €e1KQen 1,
f13.5 = f12,2V2

3= 1B - fian

B3B2f3 4 — On_30tn_a---02f3, € 1K Qep,

a1ff, €e2KQey,

2= fip = ﬁzﬁlflz,l +ﬂ2f22,41/1 c€en_1KQeq,

f2, = f3s0n_a-or0q — f22,4)/1 = Bifii— B fﬁz €ep_2KQeq,

f2 = f3eBbr— f3sttna-- a1 = y1f, €enKQen,

3 = fim = o2 f3 P21 — 201 f1, € e3K Qey,

fa = ffm_10m—2 = om-1f3 o € emK Qem_a,
form=4,...,n—3.

Then it is easy to check by direct calculations that dimKerds = dimImd; =2 and so HH2(A) =0. O
Theorem 5.9. For A = A(Eg, 1,2) we have HHZ(A) = 0.

Proof. With the notation for Q(Eg, 1) as in Theorem 5.8 and with n = 6, the set f3 may be chosen
to consist of the following elements:

3 3 3 3 3 3 £3 3 3 3
{fl,p fl,Zs f1,3’f1,4yf1,57 fz’ f3’ f4yf5yf6} where

firi = i = B3Paf3 4 — a3z f3 4 € e1K Qeg,
f13,2 = f12,1.33 ﬁ3.32f22,5—)’2f22,2 €e1KQes,
fi3 = fiaBsB2—B3afishr = —3f3, €e1K Qey,

f13,4 = f12,103—fﬁza3 = aaolzfzz,s—)/zfzz,leelKQea,
f13,5 = f12,10l30lz+)/2f22,1062 = /33f32,2 c€e1KQey,

f3 = fismar—fisy1 = a1ff, —onfi, €eakQey,
;= f32,1,31—062f22,33/1 = azalfﬁ1€€31<Q€1,

fi = f36PaB1— fiam = P1fL, €esK Qey,

f2 = fi,00—BafiehaBr = —PaP1fi, €esKQey,

fé = [3.8:P1— f2i0000 = y1fi, €egKQey.

Again by direct calculations we can show that dimKerds; = dimImd; =2 and so HH2(A)=0. O

To summarise the results of Sections 4 and 5 we have the following theorem.
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Theorem 5.10. Let A be a standard self-injective algebra of finite representation type of type A(Dp,Ss, 1),
A(Dg4,s,3) withn >4, s > 1; A(Dy,s,2) (where s may satisfy 3 | s), A(D3m,s/3,1) where 3t s, with
n>4m>2,s>2;or A(En,s, 1), A(Eg,s,2) withne {6,7,8},s > 1. Then HHZ(A) =0.

Let A be A(Dy, 1,2); then dimHH?(A) = 1 and a basis for HH? (A) is given in 5.2.

Let A be A(D3m,1/3,1); then

ifm >3 and charK #2,
ifm>3and charK =2,
ifm=2and charK # 2,
ifm=2and charK =2,

dimHH?(A) =

BN W =

and a basis for HH?(A) is given in 5.6 and 5.7.

Thus with the information taken from [3,6] for the algebras of type A;, we now know the sec-
ond Hochschild cohomology group for all standard finite dimensional self-injective algebras of finite
representation type over an algebraically closed field K.

6. HH2(A) for the non-standard self-injective algebras of finite representation type

Let A = A(m), m > 2, be the non-standard algebra of 1.11 so we assume now that the characteristic
of K is 2. We may choose a minimal generating set f2 with elements as follows:

2 2 2
f1:/3 — Q1 Om, fzzamal—amﬂah

2 j=2,....m—1 ifm>3,
=ajajrq o for
fii=eie ey {j:z if m=2.
We know that HH?(A) = Kerds/ Imd,. First we will find Imd,. Let f € Hom(Q!, A) and so

fle1®pe1) =cier +c2B +c3B +caf?,
f(e1 ®q, €2) =diay + k1 Bo,
fe1®q e141) =dioy, forle{2,....,m—1},

flem Qay, €1) = dmotm + kmotm B,

where c1, 2, C3,C4,d), k1, km € K for e {1,...,m}.
We have Q2 = (Ae; ®f12 e1A) @ (Aep ®sz ey ) @ @T;;(Aej ®f32_ ejr1A) if m>3 and Q2=
-]
(Aeq ®p e1A) ® (Ae;y ®p e2 ) @ (Aey ®2, e3A) if m=2.

Now we find fAz. We have fAz(e1®p2e1) = fler®pen)B+pf(e1®per) — fe1®a e2)t2 - ot —
o1 f(e2 @, €3)03 - Uy — - — Q102 - - Um—1 f (ém Bayy €1) = (C1€1 + C28 + 382 + caB>) B + Blcrer +
B+ c3p?+cap?) —diay o — dooy 0t — - — dmaty -0 — Ky Bay - ot — km@p - o =
2018 — (dy +dy + -+ dm — 262) 8% + (2c3 — k1 — k) 2.

Also fAz(em ®f22 e2) = f(em ®ap, 1)1 + o f (€1 Oy €2) — f(em By, €1) BT — i f (61 ®p 1) 001 —
amB f(e1®a; €2) = (dmom +kmam a1 + om (d1a1 + k1 far) — (dm&m +kmom B) o1 — am(c1e1 +C28 +
3B +capPar — ampPdion +kipar) = (k1 +km — €1 — C2)otmay.

Finally, form>3 and j=2,...,m—1 or for m=2 and j =2, we have fA>(e;j ®f32_ej+1) =0.

5]

Thus f A, is given by
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fA2(e1 ®p2 €1) =201 — (di +da + - +dm — 262) % + (2c3 — k1 —km) .
fAz(em ® 2 €2) = (ki +km — €1 — c2)amarn,
f(ej®f32_ej+1):O, forall je{2,....m—1}ifm>3o0or j=2ifm=2.
-]
So, since char K = 2, we have dimImd; = 3.
Next we determine Kerds;. We need to consider separately the cases m > 3 and m = 2. Suppose

first that m > 3.
For m > 3, we choose the set f3 to consist of the following elements:

{f2. 2. fF2_1. f2} withte{2,...,m -2} where

1 = fiBaaz = Bfiaray + a1 o1 fia + (Bar — 1) 3, € e1K Qes,

ff = f32,[oct+1 = octf_,,z’t+1 ceKQerp forte{2,...,m—2},

for = B @m—omp) = am1f302 am + dm_10m f{B — dm_10mBf] € em_1K Qey,
2 = fiaz---amay = —amfEBar +ampB fiar +omai - am_1f; € emK Qes.

Let h € Kerds. Then h: Q%2 — A is given by

h(e1® 2 e1) =cie1 + 2B + 3B + cap’,
h(em®f22 ey) =Ccsamey  and
h(€j®f32jej+]):dj06j, for je{2,...,m—1},

for some cq,...,c5,dj € K where j=2,...,m—1.
Then hAs(e; ®p3 e3) = h(e ®p2 e)foray — Bh(e; ®p2 ey — o -~ om—1h(em ®p2 e2)or —

(Bar — anhiez ®pz e3) = (cre1 + 2 + 3% + cap®)parca — plcrer + 2f + 37 + capPorcta —
C501 +  + Om—1Qm1 0y — da faqay + daavoy = da (o — Bapa). As h € Kerds we have dy =0.

For t € {2,...,m — 2}, we have hAs(e; ®fr3 er+2) = h(e; ®f32,r er+1)r+1 — cch(eryq ®f32.r+1 €ry2) =
d[atatﬂ — dt+]a[a[+] = (dt — dt+1 )atottﬂ. Then d[ — d[+] =0 and so d[ = d[+] fort=2,...,m—2.
Hence dp =d3 =--- =dy_2 =d_1. We already have d =0sodj=0for j=2,...,m—1.

Now

hAs(em—1 @3 e1) =h(em-1®p2  em)(@m —tmp) — tm-1h(em ® 2 €2)02 - - &t
— Om-10mh(e1 ®p2 e1)B + am—_10mph(er ® 2 e1)
=dm-10m-10m — An—1¢m—10mP — C5Qm_10mA102 - - - Uy
— am_1am(c1er + 2B + c3p® + caP’) B + am_1amPB(crer + 2B + c3p* + caB’)

=dm_1(0m_10m — dm—_10mP) =0,

as dyp—1 =0 from above.
Finally, hAs(em ®3 €2) = h(em ®p2 e2)ay - - Ao + amh(er ®p2 e1)Bar — ampBh(e; ®p2 e1)ar —
Omet1 - Am—1h(em ® 2 €2) = C50mo1atz -~ otmaty + aim(Cre1 + 2 + €37 + caf®)par — ampP(crer +

2B + 382 4 caf)ay — C5Qmaty - - - Oy 0m@ = —C104n By + CrotmBa; = 0, and so this gives no in-
formation on the constants occurring in h.
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Thus h is given by

h(e1® 2 e1) =cie1 + 2 + 382+’
h(em ®f22 ey) =csapa;  and
h(ej®f32_ej+1):0, for je{2,...,m—1}
s J
for some cq,...,c5 € K and so dimKerd3 = 5.

Therefore, for m > 3 we have dimHH?(A) =5 —3=2.
This gives the following theorem.

Theorem 6.1. For A = A(m) and m > 3 we have dim HH?(A) = 2.
6.2. A basis for HH2(A) for A = A(m) and m > 3.

We have charK =2, m >3, and dimHH?(A) = 2. We start by defining non-zero maps hy, h in
Kerds.
Let hy be the map given by

e1 ®f12 e; — eq,

else — 0,
and hy be given by

e1®p e > B,

else — 0.

It can be shown as before that these maps are not in Imd;. Now we will show that {h; +
Imd,, hy + Imd,} is a linearly independent set in HHZ(A).

Suppose a(hy 4+ Imd,) + b(hy +Imd;) =0+ Imd, for some a,b € K. So ah1 + bh, € Imd,. Hence
ahy + bhy = f A, for some f € Hom(Q1!, A). Then (ahj + bhy)(eq ®f12 e1) = fAa(eq ®f12 e1). So ae1 +

bp =dB%+kp3 for some d, k € K. Since {eq, 8, 82, 3} is linearly independent in A, we have a=b =0.
Hence {h1 + Imdy, hy + Imd,} is linearly independent in HHZ(A) and forms a basis of HH? A).
6.3. HH2(A) in the case A = A(m) and m = 2.

In the case m =2 we showed above that dimImd; = 3. But now we have dimKerds; = 6. Thus
dimHH?(A) = 3. It can be verified that {h; + Imdy, hy + Imd, h3 + Imd>} is a basis of HH?(A),
where h; is the map given by

e1 ®f]z e; — eq,

else — 0,
hy is given by

e ®f]2 e1 — B,

else — 0,
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and hs is given by

ey ®f22 ey = ey,
e2®pe1 > ax+ a2,

else — 0.
We summarise all these results in the following theorem.

Theorem 6.4. For A = A(m) where char K =2, m > 2 we have

2 ifm=>3,

. 2 _
dimHH*(A) = {3 ifm=2.

Moreover, if m > 3 then {hy + Imdy, hy + Imd,} is a basis for HH? (A) where h is the map given by

e1 ®f]z er — e,

else — 0,
and hy is given by

e1®p2eq > B,

else — 0.
Ifm =2 then {hy + Imd,, hy + Imdy, h3 + Imd,} is a basis for HH%(A) where hy is the map given by

e1 ®f12 e; — ey,

else — 0,
h; is given by

e1®p e > B,

else — 0,
and hs is given by

e ®f22 ey — e,
e2®per = o +wp,

else — 0.

This completes the discussion of HH?(A) for the non-standard self-injective algebras of finite rep-
resentation type over an algebraically closed field.

To conclude we now summarise HH?(A) for all finite dimensional self-injective algebras of finite
representation type over an algebraically closed field.

Theorem 6.5. Let A be a finite dimensional self-injective algebra of finite representation type over an al-
gebraically closed field K. If A is the standard algebra of type A(Azpi1,Ss,2) with s,p > 2, A(Dy,s, 1),
A(Dg,s,3) with n > 4, s > 1, A(Dy,S,2), A(D3m,s/3,1) withn >4, m>2,s>2 or A(Eps,1),
A(Eg, s,2) withn € {6,7,8},s > 1; then HH?(A) = 0.
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If A'is of type A(Ap, s/n, 1) then dimHH2(A) = m wheren+1=ms+rand 0<r <s.
For A(As, 1,2); then dimHH2(A) = 1.

Let A be A(Dy, 1,2); then dimHH?(A) = 1.

Let A be the standard algebra A(D3m, 1/3,1); then

ifm >3 and charK #2,
ifm>3and charK =2,
ifm=2and charK #2,
ifm=2and charK = 2.

dimHH?(A) =

BN W =

Let A be the non-standard algebra A(m) where char K = 2, m > 2. Then dimHH?(A) =2 if m > 3 and
dimHH?(A) =3 ifm=2.
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