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Given a statistical model for data which take values in Rd and have elliptically 
distributed errors, and afline equivariant estimators fi and ,?? of a mean vector in 
Rd@ R” and a d x d scatter matrix, expressions are given for the covariances of the 
estimators in terms of their expectations and some unknown constants that depend 
on the model and the estimator. Higher order cumulants are also developed. These 
results place considerable constraints on the possible cumulants of $ and .??, as well 
as those of estimators of higher order behavior such as multivariate skewness and 
kurtosis. These expressions are obtained using tensor methods. d 1990 Academic 

Press, Inc. 

1. INTRODUCTION 

The purpose of this paper is to derive properties of estimators for statisti- 
cal models with elliptical errors that depend only on the equivariance of the 
estimators. We find that the structure of the cumulants of such estimators 
is highly constrained and that many terms are necessarily zero and others 
are necessarily identical. Similar results are known for specific models and 
estimators, but our results have several advantages over previous work. 
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First, the results are quite general. We require of the estimator only that 
it is an equivariant function from the sample space to the space in which 
the statistic is defined. This includes linear estimators, maximum likelihood 
estimators, M-estimators, as well as the minimum covariance determinant 
estimator [22], the minimum volume ellipsoid estimator [21, 231 and 
related S-estimators [4], and Donoho’s projection estimator [6, 71. The 
model is required to have i.i.d. elliptical errors, but is otherwise general. We 
address the examples of multivariate location and scatter and multivariate 
regression, but the results apply equally to other linear and nonlinear 
models. 

Second, the method developed here applies to any equivariant function. 
This means that one can develop information about estimators of the third 
and fourth cumulants of a distribution as well as information about the 
mean and variance. This should often ease the problem of higher order 
multivariate calculations. Also one may easily derive results about higher 
order cumulants of estimators of the mean and covariance matrix. 

Third, in many cases, the results in this paper ease the problem of com- 
paring estimators to each other or to asymptotic behavior. Some of the 
covariances in the theorems depend only on a few constants which are the 
same for spherical errors as for elliptical errors. For example, estimators of 
multivariate location and scatter have covariances that depend only on 
three constants. The higher order behavior is determined up to only a few 
more. This means that a small number of simulations under spherical 
errors can determine the constants and thus the behavior of the estimators 
in a particular case. 

In the next section, we develop the tensor algebra machinery required to 
derive the key result that characterizes orthogonal invariant tensors. 
Section 3 presents the basic theorems that apply generally to equivariant 
estimators of models with elliptical errors. Section 4 presents applications 
of the basic result to several important specific cases such as multivariate 
location and scatter and multivariate regression. Section 5 summarizes the 
results. 

2. TENSORS AND TENSOR SPACES 

2.1. Basic Definitions 

If V and W are vector spaces over R, then their tensor product V@ W 
is a vector space over R generated as a vector space by elements u 0 w  
(u E I’, w  E W) subject to the bilinearity of the mapping (u, w) H u 0 w. This 
can obviously be extended to a definition of the tensor product of any finite 
number of vector spaces which we represent as V@ W@ ... . In this paper, 
all vector spaces have finite dimension, although this is not required for the 
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tensor product to exist (a more precise account of tensor products may 
be found in [20], for example). A typical element of this space is 
x7=“=, viQ wiQ “*. If the constituent spaces have bases {ei], (fj], etc., 
then the tensor product has basis (ci Of, @ . . . }. This means that a typical 
element is 

c pe,gj@ . . . = t’i..,, (2.1) 
i. J’. 

where the right-hand side is the common index notation convention of 
representing a tensor by writing a typical element (see [15), for example). 
This convention means that a symbol like tUk is ambiguously an entry in 
the tensor array and the entire array-the compactness of the notation is 
often worth the ambiguity. 

To these three notations, the first drawn from the algebraic literature on 
tensor spaces and the last from the mathematical physics literature, we add 
sometimes a fourth-matrix notation-which is common in the statistical 
literature. If Vr R’ and WrRd, then V@ W can be identified with the 
space of c x d matrices by 00 w  ++ VW=, where v and w  are identified with 
column vectors. The basis ei@f, of the tensor space is then identified with 
the basis eq for the space of matrices consisting of matrices all of whose 
elements are 0 except the (i,j) element, which is 1. A typical matrix A 
whose entries are (ui’> can be written as a tensor as C 8ei@,fj or just a? 
The ordinary action of a c x d matrix as a linear transformation Rd H R’ 
is represented in the tensor space by extending the definition (ei@fi) .fk s 
eifJTfk = eibjk, where S,, is Kronecker’s 6, which is 1 if j= k and 0 
otherwise. This notation, however, fails for tensor products of more than 
two spaces. Thus matrix notation, which will suffice when the degree of the 
data is 1 or 2, is insufficient for more complex arrays. 

If A is a linear transformation VH V *, B is a linear transformation 
WH W*, etc., then A 0 B@ ... is a transformation V@ WQ . . . H 
v*Q w*Q ... by (AOBO ~~~)(~@w~~~)=Av@Bw@ -0.. Of 
particular interest is when all of the constituent spaces are d-dimensional, 
so that the same linear transformation can act on all the spaces. In this 
case, if A: V++ V and if v@w@ ... E V@ V@ . . . . then define 

(UQWQ ...)A=AvQAwQ . . . . (2.2) 

In index notation, if SO... is the result of the action of A on F, then clearly 

#... = (,;,, tw..)A=i;,, t’i’,-Qii.ajj, . . . . (2.3) 
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For tensors of degree 1 (vectors), this definition corresponds to the 
ordinary product of a matrix and a vector. For a tensor T = tv of degree 2, 
the matrix equivalent of (2.3) is ATAT. For tensors of higher degree, there 
is no equivalent matrix expression. 

We will also need to extend this definition to spaces which consist of the 
p-fold tensor product V of Rd with another space W. In this case, if 
u = u @ w  with u E V and w  E W, and if A is a linear transformation on Rd, 
then we define uA = uA 0 w. This definition can obviously be ambiguous 
but the correct interpretation should usually be clear. 

2.2. Stochastic Tensors 

Let T be a random variable taking values in a tensor product space 
VQ WQ ..‘. Then the expectation of T is an element also of the tensor 
product space formed of the element-by-element expectations of the tensor 
array. If 3 is another stochastic tensor with values in V* @ W* 0 . . . , then 
the covariance Cov( T, s) is an element of 

(VQ WC3 . ..)Q(v*Q w*o +..)z V@ V*@ W@ W*@ ... (2.4) 

defined by 

Cov( T, S) = E( To 3) - E(T) Q E(S). (2.5) 

If the two random variables take values in Rd, then their covariance is 
a tensor of degree 2, i.e., a matrix. However, if T and 3 are themselves 
tensors of degree 2 or higher, then the covariance is a tensor with no 
ready interpretation as a matrix. 

Some simple examples may clarify this point. Suppose y,, y,, . . . . y, are 
random vectors in Rd. Then each is a stochastic tensor of degree 1 and the 
collection can be considered a stochastic tensor of degree 2 which takes 
values in Rd@R” (i.e., consider the data as a d x n matrix). The sample 
mean fi=n-‘C~=,Yi is also a stochastic tensor of degree 1 taking values 
in Rd, so the covariance matrix of fi is a tensor of degree 2 taking values 
in Rd @ Rd. The sample covariance matrix 2 = K’ C?= i ( yi - @)(y, - ji)’ 
zn - ’ C;= i ( yi - ji) @ (y, - 8) is also a tensor of degree 2. The covariances 
of the elements of 2 form a tensor of degree 4 taking values in Rd@Rd@ 
Rd@Rd. Often this covariance tensor of 2 is represented only laboriously 
by forming a vector of the nonredundant entries of 2. If the yj vectors are 
not independent and identically distributed (i.i.d.), then one may need the 
covariance of the entire sample, which is a tensor of degree 4 in 
(Rd@R”)@(Rd@R”)~(Rd@Rd)@(R”@R”) and thus can be repre- 
sented as the sum of tensor products of d x d and n x n matrices, if desired. 
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Other cumulants of stochastic tensors can be calculated in the same way. 
If Fin Vi, then the rth moment is 

(2.6) 

and the rth cumulant can be calculated using the formulae in [13 or 151. 

2.3. Orthogonal Invariant Tensors 

A d x d matrix A = aV is orthogonal of ATA = Id, where I, denotes the 
d x d identity matrix; equivalently, Et=, aiiaik = Sjk. Suppose T= tV”’ is a 
tensor in the p-fold tensor product of R4 Then T is orthogonal invariant if 
TA = T, for all orthogonal transformations A. In index notation, this 
becomes 

p... = c ti’i”-‘aii,aji. , . . . (2.7) 
i’j’... 

Theorem 2.1 below characterizes orthogonal invariant tensors. One of 
the basis elements of the set of orthogonal invariant tensors of the tensor 
product of degree p = 2q consists of the tensor z0 which has coefficient 1 for 
the basis elements ei6 ei @ ej 0 ej 0 . . . of the tensor product space and 
coefficient 0 for all other basis elements. Other generators of the space of 
orthogonal invariant tensors are those tensors satisfying a permutation of 
this condition, A few definitions are needed to make this precise. 

Any basis element eij, = ei 0 ej @ . . of the p-fold tensor product of Rd 
induces a partition z(e,... ) of the set of integers { 1,2, . . . . p} by placing 
those integers into the same class whose corresponding indices are the 
same. For example, n(e,iz2) = (12)(34) and rc(e,214) = (13)(2)(4). If w  is a 
partition, we say that a basis element e,. is of type o, if n(e, _, ) = w  and 
is of subtype w if z(eU. ._ ) > o in the lattice of partitions of 1, 2, . . . . p. For 
example, e112222 is of type (and subtype) (12)(3456) and is of subtype 
(12)(34)(56). If w  is a partition, define the tensors t, = C I(lr(eU.., ) = 
o) eV... and Y = C Z(n(eq., ) > o) eg.. , where I( ) is the indicator function 
of the condition inside. We say o is a doubleton partition if all classes 
consist of exactly two elements. Denote the set of all doubleton partitions 
of the integers 1, 2, . . . . p by gP and let gPb= {013w*~9~ with w>u*}. 

THEOREM 2.1. The orthogonal invariant elements of the p-fold tensor 
product of Rd consist only of 0 if p is odd. If p = 2q, then the space of 
orthogonal invariant tensors has basis { ~~ ) w E ~?9~ ). 

Proof: First, it is clear that the orthogonal invariant tensors form a 
subspace of the tensor product. Also each of the claimed basis elements is 
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indeed orthogonal invariant. In order to avoid notational complexities, we 
will show this for the canonical doubleton partition (12)(34). . . without 
loss of generality. We have 

= c a,,iaj’iakska(sk ’ .  ’ ei’j’ .  (2.8) 

The sum over i yields hi.,*, the sum over k yields 8k.I’, etc., so that the tinal 
sum is exactly P. This can, of course, be done for any partition by taking 
the summations by pairs. Note that this result remains true even if the 
dimension d is less than q, although partitions with more than d classes can 
obviously not occur. 

To show that this exhausts the orthogonal invariant elements, consider 
first the orthogonal transformation defined by 

ejk- -ei 

el - ej, j# i. 
(2.9) 

This shows that the index i must appear in an even number of places in 
every basis element with a nonzero coefficient, and this must be true for 
every index i. First, this means that no nonzero orthogonal invariant 
elements exist of an odd degree tensor product. Second, the tensor must be 
a linear combination of basis elements of subtype o for w  E gP. Since any 
permutation of the basis elements of Rd is an orthogonal transformation, 
the coefficient of two basis elements of the same type must be the same. 

Now suppose T is an orthogonal invariant tensor so that T= C cwtw, 
where the sum is over all w  E BP. The theorem asserts that there exists coef- 
ficients d, such that T = C dwzo, where the sum is over all o E gP. Since 
T* = 2 c,P’ is orthogonal invariant, so is T- T*. We will therefore 
assume that c, =0 for all WEBB and show that this implies that T=O. If 
not, then choose o,, such that cUO # 0 with the maximal number of classes 
in the partition. This means that c, = 0 for all o<oo. Also, there exists a 
class in w. of 21> 2 elements, since the coefficients of all doubleton parti- 
tions were zero by hypothesis-without loss of generality, we may take this 
to be the first class in the partition. 

Now consider the orthogonal transformation A defined on Rd by 

A(el)=e~I$+e2i$ 

A(ed=e,l,h-es/$ (2.10) 

A(ej) = ej, j> 2. 
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Consider also the element of type w0 which has the basis element e, in 
the first class, e3 in the second class, e4 in the third class, and so forth. This 
element has coefficient cm0 in T and coefficient 2-‘(2c,J in TA, since it can 
arise only from itself and from the similar element with e2 in the first 
class-all other elements which have this as a component of the image have 
zero coefficients by the maximality of oO. Since T is assumed to be 
orthogonal invariant, these two must be equal, which requires c,,, = 0, 
contrary to the choice of oO. 

0 

The above argument fails if d<q, since no doubleton partitions exist. 
The result is still true in this case, although the argument requires an addi- 
tional step. If T is an orthogonal invariant element in this case, T is a linear 
combination of elements of type o, where o E BP. The minimal basis 
elements of T have d classes. If it could be shown that, by subtraction of 
a suitable element that is a linear combination of the P’, for WE sPb, we 
could assume that all elements with d classes had zero coefficients; then the 
induction would proceed without difficulty. Thus it is necessary to show 
that, for any T= C c,to, there exist coefficients d, such that T-C dwP 
has zero coefficients for all elements with d classes. Also, by considering the 
lattice embedding and the nature of the induction argument, we need only 
consider the case when d= 2. The existence of such a set of coefficients 
follows from the linear independence of partitions and a simple count of 
the number of doubleton partitions versus the number of partitions with 
two classes. 1 

Remark. If V is the p-fold tensor product of Rd and U= V@ W and if 
u is an orthogonal invariant element of U with respect to Rd, then 
u = C Ti@ ei, where each Ti is itself orthogonal invariant. If U has 
d-degree 2 and W= R”Q R”, then U = I@ C, for some n x n matrix C. 
Similar expressions can be worked out for mixed orthogonal invariant 
tensors of other d-degrees. 

Remark. As noted in McCullagh’s book [15], this result is known for 
dimensions up to 4 [25]; also see [ 11-j. Also note that, if one requires only 
invariance to the special orthogonal group, in which the determinant is 
+ 1, the set of invariant tensors increases. The result for dimension 4 is 
given in [15]. 

3. CUMLJLANT TENSORS FOR EQUIVARIANT ESTIMATORS 

In this section we derive a general result on afine equivariant estimators 
for statistical models with elliptically distributed errors. The class of models 
considered includes multivariate regression as well as multivariate location 
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and scatter. The covariance tensors in some cases are determined up to 
only three unknown constants. We also consider higher order cumulants of 
fi and 2 as well as the cumulants of afline equivariant estimators of multi- 
variate skewness and kurtosis. 

A distribution on R” is spherically symmetric if its density f-we only 
consider absolutely continuous distributions-depends on its argument J 
only through the distance of y from the origin; i.e., if there exists a function 
h: R H R such that f ( y) = h( y’y ). Taking all nonsingular afine transforma- 
tions of this distribution, we arrive at the d-dimensional elliptical family 
associated with h. If we fix h and the dimension d, then the family consists 
of distributions Ell,,(v], 52), with density 

(3.1) 

where q E Rd and Q is a d x d positive definite symmetric matrix. Provided 
they exist, the mean of a random variable distributed as I!?//,,,(?, Sz) is q, 
and the covariance matrix is a multiple of 52, which depends on h. These 
distributions are generalizations of the multivariate normal distribution 
in which h(z) = (2~))“” exp( -~*/2) and have been much studied 
[l-5, 12, 17-24, 26281). 

Consider random vectors yj E Rd. Given a sample y = ,vsi E Rd 0 R” of n 
values of yi, let V be a subspace of Rd@3 R” and suppose that y = q + E, 
where q E V, E E Rd 0 R” and Ed - i.i.d. Elld JO, 52). We will suppose V to 
be either fixed or randomly determined ‘independent of E. This setup 
includes many problems of multivariate analysis (where V is often Rd 
embedded diagonally in Rd@ R” by u H Ci,,Y user@fi) as well as multi- 
variate regression (where I/ = C, e, 0 v, with I/ a p-dimensional subspace 
of R”) and seemingly unrelated regression (where V= C, e, 0 v$, with r, 
a p,-dimensional subspace of R”). 

Suppose we have functions ji: Rd@ R” ++ V c Rd@ R” and .I?: Rd@ R” H 
PSD(d) c Rd x Rd, where PSD(d) is the space of (symmetric) positive semi- 
definite d x d matrices. Suppose the functions are afine equivariant in the 
sense that, if A is a linear transformation on Rd and u E V, then 

/qy+u)=fi(y)+u 

ji(y”)=fi(yy E VA 

2(y+u)=f(y) 

if(y”)=~(yy. 

(3.2) 

Now consider z=rZ”*(y-q), where 52-“*Q-‘/*=Q-‘, which is also 
a stochastic tensor in Rd@RR”. Clearly, zi- i.i.d. Ell,.,(O, I). Also, if A is an 
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orthogonal transformation, then Azi has the same distribution as zi so zA 
has the same distribution as z and 

= HP, @)I. (3.3) 

Since the distribution of each p,(z) is invariant under orthogonal transfor- 
mations, its expectation is an orthogonal invariant tensor of degree 1 and, 
consequently, must be zero, so 6 provides an unbiased estimate of v. Also 

E(Qz)y = E@(P)) 
= mz)), (3.4) 

so E(Qz)) = co& for some scalar cO, since it is an orthogonal invariant 
tensor of degree 2. Consequently, 

E@(y)) = (CcJ)o”2 = c,a. (3.5) 

Now the covariances of c(z) and f(z) can also be determined by the same 
methods. We have 

E(~i(z)O~~ci,(z))A=E(li,(zA)O~~(zA)) 

=-%wQ~ji,(zN 

E(~i(z)Q~(z))A=E(fi,(zA)Q&A)) 

= Jwim3m 

E@(z) Q f(z))” = E(#QZ‘q Q C(z”)) 

 ̂ 0. 

= E(C(z) Q Z(z)). (3.6) 

Thus, the covariance tensors are orthogonal invariant of degrees 2,3, 
and 4, respectively and, transforming back to y-variates, we obtain the 
following theorem: 

THEOREM 3.1. Suppose y, E E RdQ R” and q E V c Rd@ R” are stochastic 
tensors with y = q + E. Suppose that q is either fixed or random and independ- 
ent of E and suppose that ~~ - i.i.d. Ell,,(O, l2). Let 6: Rd@ R” H V c 
RdQ R” and 2: RdQ R” H PSD(d) c Rd@ Rd be arbitrary affine equivariant 
functions. Put 52 @’ = l2 @ Q and let ClB2* and QB2++ be the tensors obtained 
from Qe2 by the following index permutations; (Q@2’)ijkl= (Q@2)ikj, and 
(Q@2**)ijk,= (s2@‘)ick. Then, whenever the expectations (which are with 
respect to E, conditional on q) exist, 
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-%w) = YI (3.7) 

m’(Y)) = c,Q (3.8) 

COWYL fi(Y)) = QQ c, (3.9) 

COV(F(Y), QY)) = 0 (3.10) 

Cov(2( y), f(y)) = C*(Py + c,(P + Py 

= c,LP* + c&Y-=* + a@***), (3.11) 

where wO= (12)(34), w, = (13)(24), w2 = (14)(23), and C, is a positive semi- 
definite n x n matrix such that 520 C, E VQ V. 

Theorem 3.1 asserts considerably more than what can be derived purely 
from the symmetry of 2 and of the covariance tensor. There are six distinct 
types of elements of the covariance tensor of ,?? with itself, but only two 
undetermined constants in expression (3.11). Each of the four coefficients 
has a specific interpretation in terms of the original problem. First, cO is the 
multiplicative bias in the estimation of the covariance matrix; for example, 
in normal maximum likelihood, cO = (n - 1)/n. Second, cy is the factor by 
which one multiplies the shape matrix of the elliptical distribution to 
obtain the covariance matrix for the mean estimators of observations i and 
j; for example, in normal maximum likelihood, this is l/n. Third, the 
covariance of 6’ii and dk, is c,cr,~,,+ c3(aikoj,+ (~~~0~~). Note, however, that 
all of the constants depend on the sample size n, the dimension d, the 
estimators ji and ,,I?, and the function h of the elliptical distribution. 

Under additional assumptions, the coefficients matrix C, can be further 
specified; in the next section we will show that C, reduces to a single con- 
stant in many cases, where V has a special structure. Here our next result 
deals with this matrix when V = C, e,Y @I p, as is the case in multivariate 
location and multivariate regression, and under the assumption of normal 
errors. 

THEOREM 3.2. Consider the situation of Theorem 3.1. 

(i) Assume that V = C, e, Q v, where p is a p-dimensional subspace 
of R” and that the errors zi are i.i.d. multivariate normal with covariance 
matrix Sz. Let fi: RdQ R” H V be an arbitrary afJie equivariant onto func- 
tion such that fi( y) has finite covariance tensor Q@I C,. Then there exists a 
p xp matrix c, which is positive semidefinite of rank min(p, n - p) and an 
orthogonal matrix U such that 

UC, UT = ( 
I+ Cl opxcn-p, 

0 (n-p)xp > qn-P)XO-P) . 
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(ii) If ii: Rd Q R” H V c Rd @ R” is linear and affine equivariant, then 
V = C, e, @ v, where r is a p-dimensional subspace of R”. Furthermore, 
there exists a linear mapping fi: R” H r so that p(y) = Cf= , e, Q ,ti( yS). 

(iii) Suppose that the E, are iid multivariate normal with covariance 
matrix Q. If c, is a p x p matrix which is positive semidefinite of 
rank min(p, n - p), and r is an arbitrary p-dimensional subspace of R”, then 
there exists a linear affine equivariant function fi: Rd @ R” I-+ V = C, e, Q P 
such that Q@ C, is its covariance tensor, where C1 has the form given in (i). 

Proof Clearly, it is sufftcient to show this for D = I because of atline 
equivariance. Let P be the orthogonal projection of R” onto p and P the 
induced projection of Rd@ R” onto V. Because p is affme equivariant we 
may write 

P(y) = r] + PE + F((Z- P) E). 

Now PE and (Z-P) E are uncorrelated (since E has identity covariance) and 
hence independent (since E is normally distributed). Thus PE and 
fi((I- P) E) are uncorrelated. Suppose a basis of R” is chosen in which the 
first p elements are a basis of V, with U being the orthogonal transforma- 
tion to the new basis. Clearly, PE (considered as an element of Rd@RP) 
has identity covariance, and the covariance tensor of /i((Z- P) E) must have 
the form (in the new basis) 

( 
c opxtn-pj 

o,,- PjXP ov-iw-PI ) 

so that the covariance F(y) is as given. The rank condition arises from 
dimensionality considerations. 

let 
For (ii), suppose that a linear estimator is defined by fisi = ‘&, j Pr ytj and 

a: be a linear transformation on Rd. Then the estimate of the trans- 
formed value of y is 

whereas the transformed value of the estimate is 

C 4 1 py Yuj. 
I %J 

Since y and a are arbitrary, we must have that P’ = 0 unless s = t and that 
PSs = P, for some P. This means that the sth component of fi must be deter- 
mined only from the sth component of y and using the same projection for 
each s. 
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To prove (iii), let L: R” H F be the projection with matrix representation 

( 
I, B 

O(n-p,xp o,n-P)xlfl-P) > 

in the new basis in which the first p elements form a basis of V. Clearly, 
B can be chosen so that BBT matches any desired matrix c, which is 
positive semidelinite of rank min(p, n - p). Define P by P = UTLU and 
define @ by /i,(y) = pys. Then this is a linear, afline equivariant estimator 
with the required covariance matrix. 1 

This theorem shows, under normal errors and the assumption about the 
structure of the subspace V that for each affine equivariant estimator ji 
there exists a linear estimator with the same second-order structure. It will 
be interesting to examine a case where this result fails. This is provided by 
the discussion of seemingly unrelated regression (SUR) in the next section. 
Briefly, SUR has I/ = C e, @ V,, for possibly different subspaces V,. For a 
given set of regressors, there exists no linear estimator (not depending 
on y) with the correct second-order structure. 

Cumulants of higher order can easily be derived by the same method. 
We will illustrate this by developing the third and fourth cumulant tensors. 
Of the third cumulants, only Cum@, F, 2) and Cum(C, f’,,J?) are nonzero, 
by considering the degree of the tensors involved. The third moment of 
$, fi, and z? is an orthogonal invariant tensor of degree four, and so must 
satisfy a similar equation to (3.11) with two other undetermined constants. 
Since the other terms in the expression for the third cumulant also are 
sums of similar terms, the third cumulant itself is of this form. The third 
cumulant tensor of L? is of degree six, and thus is a sum of 15 terms, one 
for each of the doubleton partitions of six items. However, many of these 
must have the same coefficient by the symmetry of the cumulant operator 
and the symmetry of the 2. What remains are three terms, with therefore 
only three undetermined constants. One term consists of tb for the canoni- 
cal doubleton partition (12)(34)(56). The second consists of all P, where 
o has one class in common with 0,; for example, o = (12)(35)(46). 
Otherwise put, these are the doubleton partitions whose partition lattice 
join with o0 is not the identity partition 1 = (123456). The third term 
consists of all P, where o has no class in common with w,; for example, 
o = (13)(24)(56). These are doubleton partitions whose partition lattice 
join with o0 is the identity partition (123456). This result, along with the 
similar result for the fourth cumulant tensors are given in the following 
theorem. We write K,,, for K(,&( y), c(y), b(y)), and similarly abbreviate 
the other cumulants. 
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THEOREM 3.3. Under the assumptions of Theorem 3.1, the third 
cumulants of @ and 2 are given by the following: 

(3.12) 

K zzz = cJP3 + c-j w “zo<, (tw)Q”2+ c8 1 (f”)R”2, 
OVWiJ=l 

where o. = (12)(34) or (12)(34)(56)(78), respectively, w, = (13)(24), 
o2 = (14)(23), and the Ci are n x n matrices; 52@‘, QB2*, and SZB2** are 
defined in Theorem 3.1 and Sz @3 = 52 Q Sz Q Q. The terms (tW)R”2 are tensors 
whose entries are permutations of the entries of !G?@‘. The partition lattice 
join of o and w. is denoted w  v wo. 

The fourth cumulant tensors are given by the following, where v(o) denotes 
the number of classes of a partition w: 

K rrW=1202QDgf(5262*+Q@2**)QDI0 

K Ir!-G =o 

fc,, c (*w)R’~2+C,8 1 (tyQ”*, (3.13) 
v(wvwf3)=2 WVOo=l 

where co1 = (12)(3456), o2 = (1234)(56), and co3 = (1256)(34) and D9, 
D,, E R”@ R”QR”QR”, and the Ci are n x n matrices; LIB’, SJB2*, llW2**, 
and 52@” are as above, and LIB4 = LJ Q Sz Q LJ Q S2. 

This formulation has several uses in investigating aftine equivariant 
estimators. First, the conditions for the result to apply are easy to check. 
Then, many cumulant tensors require the calculation of only a few 
constants. Finally, these constants can be calculated for the spherical case 
52 = I without loss of generality. Thus only a few integrations or a simple 
simulation can fix these constants. Once the constants have been 
calculated, comparison of different estimators becomes relatively routine. 
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For example, given simulated data for k = 1,2, . . . . N, we can estimate c2 
and c3 by considering the averages 

(3.14) 

which estimate c2, c~, and c2 + 2c,, respectively. Linear combinations 
u2S2 + v,S, + w2S2, and u3S2 + u3S3 + w3 S,, estimate c2 and c3 if 

u,+w,= 1 

v,+2w,=o 

u,+w,=o 
(3.15) 

Optimal weighting would depend on knowing the covariance tensor of the 
averages used, but equal weighting of each item is a reasonable alternative, 
which would lead to the estimates 

1 
d-l 4 

c2=-s2- 
2 

d+l 
-s3+- 
d+ 1 d+l s23 

Ls +-s +-s 
d-l 4 

C3=-d+3 ’ d+3 3 d+3 23’ 

(3.16) 

For large dimension d, use of S2 and S, to estimate c2 and c3 would be 
essentially equivalent. 

4. APPLICATIONS 

In this section we discuss several specific applications of the main result. 
First we consider the problem of multivariate location and scatter. Maxi- 
mum likelihood for elliptical families provides a class of affine equivariant 
location estimators that are straightforward to described. Huber’s 
M-estimators [9, 10, 141 provide a generalization, in which the location 
estimating equations and the scale estimating equations need not come as 
partial derivatives of the same likelihood. Then we discuss multivariate 
regression and a generalization, seemingly unrelated regression (SUR). 
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Although the general result described in the previous section is new, the 
application to the ftrst two moments of estimators of multivariate location 
and shape have been previously described by many authors, in various 
forms in [S, 9, 16, 19, 24,26-281. Applications to robust estimation of 
location and shape are treated in [9, 26,27, 281. Note that none of these 
previous results has been extended to higher order cumulants of estimators 
of location and shape and that none has been extended to more general 
multivariate estimators such as multivariate regression. 

4.1. Affine Equivariant Estimators of Multivariate Location and Scatter 

In this case, the subspace V is the diagonal embedding of Rd in Rd@ R” 
and we may consider the function 6 to be into Rd. Thus we have the 
following structure: 

COROLLARY 4.1. Suppose yi, &i E Rd, i = 1, . . . . n, and ye E Rd are stochastic 
tensors with yi = g + E,. Suppose that q is either fixed or random and inde- 
pendent of E and suppose that ci h i.i.d. Elid,,(O, 0). Let @: Rd@ R” H Rd and 
.f: Rd@ R” H PSD(d) c Rd@ Rd be arbitrary affine equivariant functions. 
Then, ,whenever the expectations (which are with respect to E) exist, 

HAY)) = FI 

E@'(Y)) = ~$2 

COWY), b(Y)) = c,Q 

COWS f’(Y))=0 

Cov(2q y), f(y)) = cpcP2 + c&-P2’ + iP2**,, 

where Q”‘, QB2*, and .QB2’* are described in Theorem 3.1. 

(4.1) 

As mentioned above, this result has been derived many times. The exten- 
sion to third and fourth cumulants given in the next theorem is new. It 
demonstrates a virtue of the tensor approach to this problem, which is that 
extensions are no more difficult than the second-order analysis. 

COROLLARY 4.2. Under the assumptions of Corollary 4.1 the third 
cumuiants of C; and 2 are given by 

(4.2) 
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whew coo = (12)(34)(56) and Qo3 is defined in Theorem 3.3; the ci’s are 
constants. The fourth cumulant tensors are given by 

+ c,, 1 (P)Q”*+c18 1 (Py, (4.3) 
v(m ” <vu)= 2 “, ” “,Q = 1 

where w. = (12)(34)(56)(78), co, = (12)(3456), co2 = (1234)(56), w3 = 
(1256)(34), and Q @4 is defined in Theorem 3.3; the ci’s are constants. 

The methods in this paper can also be used to study equivariant 
functions other than mean and scatter matrix estimators. One important 
example of this involves estimates of multivariate third and fourth 
moments or cumulants. 

THEOREM 4.1. Under the assumptions of Corollary 4.1, let k, : R“ @ R” H 
Rd @ Rd 0 Rd and I?4 : Rd @ R” H Rd @ Rd @ RdQ Rd be arbitrary equivariant 
functions. Then 

Jw,(Y)) = 0 

E(Iz*( y)) = cl&@.’ + c,()(P2’ + cl@‘“‘*) 

COV(B,(~V),~3(y))=C2~52~3+C*2 C (T”)Q”2+C23 C (tw)R’!2 

rnhW’#O WhW’=O 

COVK(Y), R,(Y)) = 0 

COV(~4(~V), R,(y)) = cz4QB4 + C25 c (tCU YJ 
Y(<O A co”) =4 

where w’ = ( 123)(456), and 0” = (1234)(5678); the c;‘s are constants again, 
and where o A co’ is the lattice meet. 
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One class of examples for this problem is given by the M-estimates of 
multivariate location and scatter. These estimators are given by the solu- 
tion of two sets of estimating equations (see [9, 10, 14, 26281). The 
estimating equations for location are similar to maximum likelihood for an 
elliptical family (see Section 4.2 below), but the estimating equations for 
scatter are usually chosen to provide greater robustness against outliers 
than would be obtained by using the ones from the elliptical case. Other 
estimators that fit the assumptions include the multivariate generalizations 
of the median and trimmed mean [6, 7 3, the minimum volume ellipsoid 
estimator [21,23], related S-estimators [4], and the minimum covariance 
determinant estimator [22]. 

4.2. Maximum Likelihood for Elliptical Families 

Suppose each d-dimensional observation is elliptically distributed; that is 
yjw ElZ,,(r], Q). Then the log likelihood for the entire sample y is given by 

L(rl,n;Y)=~ln(lnl)+Ch((Yi-?)‘Sd-’(Yi-9)) (4.7) 
I 

and the maximum likelihood estimators (MLE) t and b satisfy 

o=Lq=2~gia-‘(yi-rj) (4.8) 

O=J&= -~81-Cgin-1(yi-li)(Yi-li)Tri-l, (4.9) 
I 

where gi = g( ( yi - $)T &‘( yi - vi)) with g(x) = d ln(h(x))/dx = h’(x)/h(x). 
We denote the full parameter by 9 = (Q 9) E Rdx PSD(d). It is easy to 
check that the expected information tensor E( LO @ 15~) = E(L, @ L,) x 
E(L, Q L,) x E(L, Q L,) x E(L, @ Ln) consists of four orthogonal 
invariant tensors of degrees 2, 3, 3, and 4, respectively. Thus the structure 
of the information matrix is given by Theorem 3.1. The coefficients in 
this case have been given by Mitchell [17] in terms of the function h( -). 
After inversion, this gives the asymptotic values of the coefficients in 
Theorem 3.1-the finite sample values would need to be determined by 
simulation. Even in the normal case, the fact that d us is not unbiased for 
Sz means that the coefficients would differ by terms of order l/q. However, 
if the MLE of Q were redefined by multiplying by n/(n - l), then exact 
equality holds here. 

4.3. Multivariate Regression 

Suppose for each 1 ,< i < n, one has a set xvi, 1 < r < p, of carriers that 

68313512.6 
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are either fixed or random independent of E. If the carriers are random, 
then the covariances given below are understood to be conditional on the 
achieved values of the carriers. Let x = C xrie, 0 ei E RP@ R”. Suppose that 
the model is y = fix + E, where /I E Rd@ RP. Then the subspace V= 
C e, 0 PC R” is generated by the p n-vectors x,. Assuming that E, ‘V i.i.d. 
Ell,,(O, 52) and that one has equivariant estimators fi and 2, then .ii 
estimates /Ix, and (possibly nonunique) values for p^ can be derived by 
solving the linear equations involved. Thus fl = fixT(xxT)- ’ (a generalized 
inverse is used if xxT is singular). The covariance matrix of fl satisfies 
Cov(fi) = Cov(flx) = xT Cov@) x, so that 

Cov(~x)=m(x.xT)-‘xC,XT(XxT)-~. (4.10) 

If the estimator is defined so that c0 = 1, then clearly the substitution of J? 
for Q in this expression provides an unbiased estimate of the covariance 
matrix (assuming that C, is known). 

In regression, the undetermined constants in the covariance matrix of $ 
have been reduced from an 12 x n matrix to a p x p matrix. Although this 
still may seem like a great number of constants, it must be understood that 
the class of estimators to which the result applies is very large. For 
example, if one has n different equivariant regression procedures, then one 
may use a different one to produce the prediction for each data point. It 
should not be expected that, in such a case, the covariance matrix should 
always be a multiple of (xxT))‘. In any case, Theorem 3.2 shows that there 
exists a linear equivariant estimator to match each choice of Cov(fi). 

This result is known for many classes of estimators. The advantage of the 
present formulation is both the generality and the ability to extend the 
results to a higher order. If one were concerned, for example, with the con- 
vergence of 2 to multivariate normality, the third-order cumulant tensor 
would be relevant-this is given up to three constants in Corollary 4.2, and 
these may be determined by simulation or approximated by asymptotic 
analysis. 

This analysis can also be expanded to cover the case of seemingly 
unrelated regression [30]. The setup here is identical to that of multi- 
variate regression, except that the carriers used to predict each of the d 
components of yi are possibly different, so that the subspaces of R” into 
which the d components of y are projected are different. The maximum 
likelihood estimator is clearly affine equivariant but no estimator for this 
problem satisfies the conditions of Theorem 3.2. Hence, there is no linear 
approximation to any such estimator that does not depend on y. In the 
usual formulation, let Y be an nd x 1 vector which consists of the d 
response vectors stacked vertically (and similarly for the d residual 
n-vectors Y,~ and the dp,-vectors /I,). Let X be a block diagonal matrix 
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whose sth block is A’,, the matrix of carriers for the sth regression. Then 
the MLE satisfies 

fl= (XTkY) - l XTfY 

P= (COI)-’ (4.11) 

6,, = d+,. 

This estimator can be shown to be alline equivariant, but the estimator is 
only linear conditional on T, whose value depends on y. It is also of inter- 
est that Zellner’s [30] one-step approximation is not affine equivariant, 
since it depends on the coordinatization used to start the iterations. 

5. CONCLUSIONS 

In this paper, we have derived results that considerably restrict possible 
values for the cumulant tensors of equivariant estimators for statistical 
models with elliptical errors. In many cases there are only a few undeter- 
mined constants, the remaining structure being entirely determined by 
affine equivariance and elliptical errors. The method is particularly effective 
for considering equivariant estimators of scatter as well as third and fourth 
cumulant tensors, since the number of undetermined constants is often 
quite small. For example, the covariance tensor of .J? is determined up to 
two unknown constants. Multivariate location and multivariate regression 
are other applications for which the results should be useful In future 
work, we intend to extend the results to other models; for example, multi- 
variate time series models may fail to satisfy the assumptions, since the 
expected value of an observation will usually depend on the errors from 
previous observations. 
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