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In the arena of power system operation and planning, the optimal reactive power flow (ORPF) plays a piv-
otal role, wherein the application of classical techniques poses issues in obtaining the optimal solutions
and hence is usually employed with the meta-heuristic and/or bio-inspired techniques, with a view to
converge swiftly towards an optimal solution. Usually, ORPF can have uneven, intermittent objectives
and multi-constraint functions; and such intricacies of ORPF can best be suppressed by employing a com-
bination of nature-inspired algorithms as a process of hybridization. Thus, in this paper, an approach has
been endeavoured to hybridize the Biogeography based optimization (BBO) with that of the predator-
prey optimization (PPO), so as to be rightfully termed as ‘‘adaptive biogeography based predator-prey
optimization” (ABPPO). In such a way, this paper elucidates a novel hybrid technique that includes adap-
tive mutation combined with predator-prey pattern for attaining the global optimal point. In adaptive
mutation scheme, the diversity measure of distance-to-average point is the predominant feature that
dodges the supremacy of extremely feasible solutions throughout enhancing the population diversity.
The predators explore around the elite prey in a determined way, whereas the preys search the solution
space so as to evade from the predators. This tool improves the utilization and searching abilities of the
BBO exploration procedure, thereby offers a mean of evading from the suboptimal point and imposes the
populace to attain at the global best point. The efficacy of this hybrid scheme is validated against the
standard test cases of IEEE-30 and IEEE-57 bus systems. The results show the efficiency and vitality of
the proposed method.
� 2016 Karabuk University. Publishing services by Elsevier B.V. This is an open access article under the CC

BY-NC-ND license (http://creativecommons.org/licenses/by-nc-nd/4.0/).
1. Introduction

Optimal reactive power flow (ORPF) is a very significant phe-
nomenon in the field of power system operation, modeling and
control, which is a sub-problem of optimal power flow and helps
to effectively utilize the existing reactive power sources. The main
objective of ORPF is minimization of real power loss with the aid of
the optimal adjustment of the power system control variables. The
power flow or load flow balance equations are taken as equality
constraints. Independent variables with its limit and power system
state variables with its operating limits are considered as inequal-
ity constraints. The problem control variables include the voltage
magnitude of generator, tap settings of transformer, and the
injected values of shunt capacitor. The problem dependent vari-
ables, on the other hand, include the specified magnitude of load
bus, the generator reactive powers, and the line flows. Generally,
the ORPF problem is a huge scale, heavily constrained, nonlinear,
non-convex and multimodal optimization problem [1,2]. The fur-
ther growth in energy demands, reduction of the prevailing gener-
ation and transmission resources originate a different type of
problem, named as the phenomenon of voltage instability or volt-
age collapse in power systems. The phenomenon of voltage insta-
bility, described by a monotonic voltage drop, is lower at first and
suddenly increases after some duration. It is mainly caused by vari-
ation in the operating conditions that create an increased demand
for reactive power. Various indices that provide an indirect relative
measure of proximity to voltage instability for assessing the volt-
age stability (VS) are suggested by the researchers [3,4]. The ORPF
problem can be modified to enhance VS and improve voltage pro-
file (VP) in addition to reducing the loss.
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Nomenclature

ABPPO Adaptive biogeography based predator-prey optimiza-
tion

BBO biogeography based optimization
DE differential evolution
D(t) diversity measure at generation-t
d euclide an distance between predator and prey
Emax maximum emigration rate
GA genetic algorithm
Gij and jBij real and imaginary terms of bus admittance matrix

corresponding to k-th row and j-th column
gij conductance of the transmission line connected be-

tween buses -i and j
g(x1,u1) equality constraint
HSI Habitat Suitability Index
h(x1,u1) inequality constraint
hi habitat-i
�hj population mean point of the j-thSIV
hij jthSIVof i-th habitat
hpredator(t)

a possible solution that represents a predator at
generation-t

hworst(t) the worst solution in the population at generation-t
Imax maximum immigration rate
J(x1,u1) objective function
Lj Voltage stability index at load bus-j
ns number of shunt reactive power compensators
nd number of decision variables
nh number of habitats
ng number of generators
nt number of transformers
n maximum number of species in the population
neh number of elite habitats
NET Net Execution Time
ORPF Optimal Reactive Power Flow

PSO Particle Swarm Optimization
Pmod modification probability of the habitat
Pm rate of mutation
P0
m initial mutation rate

QGi reactive power generation at bus-i
QCi reactive power injection by i-th shunt compensator
Q limit

Gi limit violated reactive power generation at i-th PV bus
SIV Suitability Index Variable
TTS tap settings of the transformer
tmax maximum number of generations
VDS deviations of the voltage
VPE voltage profile
VSY voltage stability
VSI voltage stability index
Vi voltage at i-th bus
V limit
Li limit violated voltage magnitude at i-th load bus

VGi voltage magnitude at i-th generator bus
VLi voltage magnitude at i-th load bus
w weight values
q rate of hunting
k and l rate of immigration and emigration
kV and kQ

limit violation factors (penalty)
dij voltage angle between buses-i and j
R a set of load buses, whose voltages violate either the

lower or upper limits.
Z a set of generator buses, whose QG violate either the

lower or upper limits
I a set of transmission lines
U a set of load buses
X a set of generator buses
W augmented objective function to be minimized
v length of the longest diagonal in the search space
superscript min and maxlower and upper limits respectively
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Traditional mathematical programming techniques such as
Gradient method [1,2], Newton method [5], Linear Programming
[6–9], interior point method [10] and non-linear programming
[11] have been used in order to solve the ORPF problem. A modi-
fied objective function, derived from a local voltage stability index
for ORPF problem, has been built and solved using an iterative
algorithm with a view of improving VS margin in [12]. The
multi-period ORPF with security constraints has been formulated
as a mixed-integer nonlinear programming problem and solved
using generalized benders decomposition in [13]. The ORPF with
discrete control variables has been solved using interior-point filter
line search algorithm, which assumes all variables as continuous
and rounds off the original discrete variables to the nearest dis-
crete value in [14]. An elegant LP based solution method for ORPF
has been suggested for hybrid AC-DC power systems with FACTS
devices in [15], where in the formulation of the problem involves
additional control variables representing the DC links and FACTS
devices. Unfortunately, classical methods so mentioned have sev-
ere limitations in handling non-linear and discontinuous objectives
and constraints. The gradient and Newton methods, for instance,
suffer from difficulty in handling inequality constraints. The linear
programming, on the other hand, requires the objective and con-
straint functions to be linearized during optimization, which may
lead to the loss of accuracy. Thus it is a need for evolving simple
and effective methods for obtaining the global optimal solution
for the ORPF problem. Heuristic methods such as Genetic Algo-
rithm (GA) [16–18], Evolutionary Programming (EP) [19], Particle
Swarm Optimization (PSO) [20], Differential Evolution (DE) [21–
23] and Seeker Optimization Algorithm (SOA) [24] were suggested
for validating ORPF-oriented hybrid approaches involving variable
scaling, mutation and probabilistic state transition rule used in the
ant system, with an aspect of achieving towards the optimum
operating point, which was presented in [25]. A modified teaching
learning based optimization algorithm involving quasi-opposition
based learning concept with a view to accelerate the convergence,
speed and improve solution quality for solving multi-objective
ORPF problem has been suggested in [26]. A method involving
Gravitational search algorithm and opposition-based learning with
a view of obtaining better quality solution for ORPF problem has
been notified in [27]. A hybrid multi-agent based PSO method,
which allows searching in different zones of the solution space,
for ORPF problem has been suggested with a view of avoiding local
optima traps in [28]. The novelties of AGA for validating ORPF
problem has been outlined [29]. The approach handles different
objectives and treats specified voltage of the generators, trans-
former tap settings values, and shunt compensators as variables.
It adjusts the population size during the solution process. A DE
based solution algorithm with random localization technique for
ORPF problem has been outlined with a view of improving the con-
vergence in [30]. A gravitational search technique has been sug-
gested for validating optimal reactive power flow problem with
multiple objectives of minimizing the loss and maximizing the
VS margin in [31,44]. These heuristic approaches have been found
to be extensive applications in solving complex optimization
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problems, when the traditional optimization techniques cannot be
applied. The above suggested techniques mostly converge towards
the best optimal point because they examine number of points in
the bounded area and do not need assuming that the bounded area
is differentiable or continuous. Dan Simon developed
Biogeography-Based Optimization (BBO), which is mainly focused
on population. In this technique fitness values are majorly taken
into consideration while making a solution and this information
is shared between the candidates. [32–34]. One of its applications
is on power system optimization problems and it has performed
efficiently. The predator-prey concept [36,37] has been incorpo-
rated in the BBO algorithm for obtaining better solutions and for
enhancing the exploring capability and also applied to optimize
the construction parameters of a brushless dc wheel motor [38].
However, selecting proper parameters for BBO are very important
[42–43], in other words the improper choice of BBO parameters
affects the convergence and accordingly leads to a local optimal
solution, but not a global optimal one.

The attempt in this paper is to form a hybrid strategy, named as
ABPPO, comprising the biogeography, the concept of predator-prey
optimization and an adaptive mutation scheme with an aspect to
effectively examine the solution space and inhibit the convergence
to local minima by enhancing the population diversity; and
employ the improved strategy in solving the ORPF problem with
an aspect of getting the global best solution.

2. Adaptive biogeography based predator-prey optimization

2.1. Adaptive BBO

Biogeography based optimization is a stochastic optimization
technique which is mainly based on biological distribution of spe-
cies for evaluating multimodal optimization problems [32]. In BBO,
a solution is denoted by a habitat-i consisting of solution features
named Suitability Index Variables (SIV), which are denoted by real
numbers. It is denoted for a problem with nd decision variables as

hi ¼ ½SIVi;1; SIVi;2; SIVi;3; � � � ; SIVi;nd� ð1Þ
The suitability of withstanding more number of species of a

habitat-i can be described as a fitness measure stated to Habitat
Suitability Index (HSI) as

HSIi ¼ f ðhiÞ ¼ f ðSIVi;1; SIVi;2; SIVi;3; � � � ; SIVi;ndÞ ð2Þ
High HSI denotes a better quality solution and low HIS represent

an inferior solution. The objective is to locate optimal solution in
terms of SIV that maximizes the HSI. Every habitat is categorized
by its own immigration rate k and emigration rate l. A good solu-
tion relishes a higher l and lower k and vice versa. The immigra-
tion and emigration rates are the functions of the number of
species in the habitat and can be defined for a habitat holding k-
species as

lk ¼ Emax k
n

� �
ð3Þ

kk ¼ Imax 1� k
n

� �
ð4Þ

when Emax = Imax , the immigration and emigration rates can be
interrelated as

kk þ lk ¼ Emax ð5Þ
A population of candidate solutions is denoted as a vector of

habitats. The salient qualities (features) amid the habitats are
shared via migration operation, which is probabilistically restricted
through habitat modification probability, Pmod. If a habitat hi in the
population is chosen for changes, then its k is used to probabilisti-
cally decide whether or not to change each SIV in that habitat. The
l of other results are taken into consideration for choosing the
habitats in the population will move randomly chosen SIVs to the
chosen solution hi.

The catastrophic events that extremely modify the HSI of a
habitat are denoted by mutation of SIV. The process or operation
can be enhanced, if the mutation rate is fine-tuned during the iter-
ative process. A new adaptive mutation scheme has been imple-
mented for the BBO algorithm with an aspect to effectively
enhance the global exploring capability and inhibit the conver-
gence to local minima by enhancing the population diversity. This
mutation scheme uses a distance-to-average-point diversity mea-
sure [39], controls heuristically the mutation rate evaluated from
the current search state and improves the exploration and the uti-
lization capabilities of the search process and support to land at the
global best solution. The suggested mutation rate can be estimated
from the diversity measure D(t) of the population at generation-t
as

Pmðt þ 1Þ ¼ P0
m � 1þ Dð1Þ � DðtÞ

Dð1Þ
� �

ð6Þ

where

DðtÞ ¼ 1
nh � v �

Xnh
i¼1

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiXnd
j¼1

ðhij � �hjÞ2
vuut ð7Þ

�hj ¼ 1
nh

�
Xnh
i¼1

hij ð8Þ

The proposed methodology enhances the mutation rate when
the diversity of the population reduces and vice versa and guaran-
tees higher diversity regardless of HSI values of the population.

2.2. Predator-prey model

The efficiency of the exploration can be enhanced with the the-
ory of predator-prey model [37,38] with an aspect to avoid local
optimum traps. The predator-prey optimization procedure is
encouraged by hunting habit of predators to a cluster of animals/
birds (prey). The victims (prey) find challenging to halt at their
chosen places when raced by predators and have to explore for
new places where predators are not found. This theory of predator
said the preys to explore the available area more efficiently. The
predators are modeled based on the worst solutions as

hpredatorðtÞ ¼ hworstðtÞ þ q � 1� t
tmax

� �
ð9Þ

To obtain globally best solution, the fugue of prey can be mod-
eled through maintaining distance between predator and prey as

hðt þ 1Þ ¼ hðtÞ þ q � e�jdj; if d > 0
hðt þ 1Þ ¼ hðtÞ � q � e�jdj; if d < 0

ð10Þ
2.3. ABPPO algorithm

As seen in Fig. 1, proposed approach combines adaptive BBO
and predator prey model to force the population to arrive globally
optimal position.

3. Problem formulation

The objective function of ORPF problem is:

MinimizeJðx1;u1Þ ð11Þ



Fig. 1. ABPPO algorithm.
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Subject to

gðx1;u1Þ ¼ 0 ð12Þ

hðx1;u1Þ � 0 ð13Þ
where x1is the vector of dependent variables consisting of load

bus voltage magnitudes, reactive power generation at generator
buses and real power generation at slack bus u1 is the vector of
control or independent variables comprising of generator bus volt-
age magnitudes, transformer tap settings and output of reactive
shunt compensators. The equality constraints g(x1,u1) are the sets
of non-linear power flow equations that govern the power system

PGi ¼ PDi þ Vi

Xnb
j¼10

VjðGij cos dij þ Bij sin dijÞ ð14Þ

QGi ¼ QDi þ Vi

Xnb
j¼10

VjðGij sin dij � Bij cos dijÞ ð15Þ

The inequality constraints h(x1,u1) represent the operating lim-
its on reactive power generations, transformer tap settings and
voltage magnitudes.

Qmin
Gi 6 QGi 6 Qmax

Gi ð16Þ

Qmin
Ci 6 QCi 6 Qmax

Ci ð17Þ

Tmin
i 6 Ti 6 Tmax

i ð18Þ

Vmin
Gi 6 VGi 6 Vmax

Gi ð19Þ

Vmin
Li 6 VLi 6 Vmax

Li ð20Þ
The objective function J(x1, u1) can take different forms. Six dif-

ferent cases involving real power loss, VP and VS, which are eval-
uated from the load flow solution, are taken in altering the
objectives of this paper.

Scenario-1: Real power loss

Minimize J1ðx1;u1Þ ¼ PL ð21Þ

where PL ¼
X
k2I

gij jVij2 þ jVjj2 � 2jVijjVjj cosðdi � djÞ
� �

ð22Þ

Scenario-2: Voltage profile
One of the most important security and service quality indices
is bus voltage because voltage constraints set all the bus voltages
towards their maximum limits with a view of achieving the chosen
goals and consequently reduce the reserve generation capacity for
reactive power, which is essential for ensuring stability during con-
tingencies. Moreover, the utilities are designed to perform well
only when the bus voltages are almost 1.0 per unit. The objective
function can therefore be built for improving the VP through min-
imizing the net voltage deviations of all buses with respect to nom-
inal bus voltage of 1.0 per unit as [1]:

Minimize J2ðx1;u1Þ ¼
X
j2U

jVj � 1j ð23Þ

Scenario-3: Voltage stability
The VS index (VSI), also called L-index that varies in the range

between 0 (no load of the system) and 1 (voltage collapse) for each
load bus, is popular among the researchers in assessing the VS [3].
The control against voltage collapse is based on minimizing the
sum of L-indices for a given operating condition.

Minimize J3ðx1;u1Þ ¼
X
j2U

Lj ð24Þ

where Lj ¼ 1�
X
i¼X

Fij
Vi
Vj

�����
����� ð25Þ

The values of Fij are obtained from the bus admittance matrix.
The multi-objective ORPF problem is tailored by blending sev-

eral objectives through suitable weight factors with a view of opti-
mizing the chosen objectives simultaneously [1]. The different
cases with multiple objectives considered in this article are

Scenario-4: Real power loss and VP.
Scenario-5: Real power loss and VS.
Scenario-6: Real power loss, VP and VS.
4. Proposed method

The proposed ABPPO based solution process involves represen-
tation of problem variables and formation of a fitness function.

4.1. Representation of control variables

The control variables in the proposed formulation are voltage
magnitude at generator buses, transformer tap positions and reac-
tive power of shunt compensators. Each habitat in the proposed



Table 1
ABPPO variables.

Variable Value
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method is defined to denote these control variables in vector form
as [1]:

h ¼ ½VG1;VG2; � � � ;VGng ; T1; T2; � � � ; Tnt ;QC1;QC2; � � � ;QCnc� ð26Þ

nh 30

Pmod 0.96

P0
m

0.03

Emax 1

Imax 1
neh 3
tmax 300
q 0.038
4.2. HSI function

The algorithm searches for optimal solution by maximizing a
HSI function, which is formulated from the objective function
and the penalty terms representing the limit violation of the
dependent variables such as reactive power generation at PV buses
and voltage magnitude at load buses. The HIS function is written as
[1]:

Maximize HSI ¼ 1
1þW

ð27Þ

where

W ¼ Jðx1;u1Þ þ kV
X
i2R

ðVLi � V limit
Li Þ2 þ kQ

X
i2Z

ðQGi � Q limit
Gi Þ2 ð28Þ

V limit
Li ¼

Vmin
Li if VLi < Vmin

Li

Vmax
Li if VLi > Vmax

Li

0 else

8><
>: ð29Þ
Fig. 2. Flow chart of the
Q limit
Gi ¼

Qmin
Gi if QGi < Qmin

Gi

Qmax
Gi if QGi > Qmax

Gi

0 else

8><
>: ð30Þ
4.3. Stopping criterion

The process of generating new population can be terminated
either after a fixed number of iterations or if there is no further sig-
nificant improvement in the global best solution [1].
ABPPO based ORPF.
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4.4. Solution process

An initial population of habitats is obtained by generating ran-
dom values within their respective limits to every individual in the
population. The HSI is calculated by considering of each habitat;
and the migration and mutation operations are performed for
non-elite habitats with a view of maximizing the HSI. The preys
(habitats) are moved in the solution space with a view to avoid
the hunting of predators, thereby escaping from the suboptimal
solutions. The migration rate is then adjusted through evaluating
the population diversity; and the iterative process is continued till
convergence [1]. The flow of the proposed ABPPO strategy is shown
in Fig. 2.
5. Simulation condition

The suggested ABPPO technique is implemented on IEEE-30 and
57 bus test systems, whose data have been taken from Ref. [2] and
Table 2
Results of scenario-1 for IEEE 30 bus test systems.

Control variables Base case Scanario-1

ABPPO BBO [35]

VG1 1.05 1.10000 1.10000
VG2 1.04 1.09409 1.09440
VG5 1.01 1.07463 1.07490
VG8 1.01 1.07605 1.07680
VG11 1.05 1.10000 1.09990
VG13 1.05 1.10000 1.09990
T6�9 1.078 1.02599 1.04350
T6�10 1.069 0.90117 0.90117
T4�12 1.032 0.96604 0.98244
T28�27 1.068 0.96236 0.96918
QC10 0.0 0.05000 0.05000
QC12 0.0 0.04997 0.04987
QC15 0.0 0.04999 0.04991
QC17 0.0 0.05000 0.04997
QC20 0.0 0.04616 0.04990
QC21 0.0 0.05000 0.04995
QC23 0.0 0.03588 0.03875
QC24 0.0 0.05000 0.04987
QC29 0.0 0.01975 0.02910
Power LOSS 0.05812 0.04535 0.04551
Net VD 1.1283 2.07179 –
Max VSI 0.1712 0.11525 –
Net VSI 2.0877 1.46572 –

Fig. 3. Percentage loss savings for scen
[40] respectively. Programs are designed in Matlab13 and imple-
mented on an Intel core i5 processor. NR method [41] was imple-
mented to carryout load flow analysis during the process of
optimization. The results of the ABPPO methodology are reviewed
with those of the method proposed in [17,20,21,23,35] with a
aspect to validate the efficacy. The ABPPO variables selected for
the suggested algorithm are given in Table 1.
5.1. IEEE 30 bus test system

The system consists of 6 generators at buses 1, 2, 5, 8, 11 and 13
and four tap changing transformers at lines 6–9, 6–10, 4–12 and
28–27. To acquire reactive power control the adjustable shunt
compensators (reactive power sources) are connected at buses
10, 12, 15, 17, 20, 21, 23, 24 and 29. The net power demand of
the system is 2.834 per unit on 100 MVA base. The lower and upper
voltage limits for both generator and load buses are 0.95 and 1.1
per unit respectively. The optimal solution of scenario-1 for IEEE
DE [23] CLPSO [20] PSO [20] GA [17]

1.1000 1.10000 1.10000 1.0373
1.0931 1.10000 1.10000 1.0310
1.0736 1.07950 1.08670 1.0119
1.0756 1.10000 1.10000 1.0143
1.1000 1.10000 1.10000 1.0071
1.1000 1.10000 1.10000 1.0262
1.0465 0.91540 0.95870 1.0500
0.9097 0.90000 1.05430 1.0750
0.9867 0.90000 1.00240 1.1000
0.9689 0.93970 0.97550 0.9250
0.05000 0.04927 0.04280 0
0.05000 0.05000 0.05000 0
0.05000 0.05000 0.03029 0.02857
0.05000 0.05000 0.04037 0.02857
0.04406 0.05000 0.02670 0.02857
0.05000 0.05000 0.03889 0.08571
0.02800 0.05000 0.00000 0.02857
0.05000 0.05000 0.03588 0
0.02598 0.05000 0.02842 0.05714
0.04555 0.04562 0.04628 0.04650
– – – –
– – – 0.2237
– – – –

ario-1 of IEEE 30 bus Test system.
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30 bus system is analyzed with other techniques such as BBO [35],
DE [23], PSO [20], comprehensive learning PSO (CLPSO) [20] and
GA [17] in Table 2. It is very obvious that the ABPPO algorithm is
very efficient in reduction of the loss to the lowest value of
0.04535 per unit, which leads to 21.97% loss savings with regard
to base case; and is much higher than that of BBO (21.70%), DE
(21.63%), CLPSO (21.50%), PSO (20.37%) and GA (19.99%) as men-
tioned in Figure 3. The solutions for scenarios 2–6 are organized
in Table 3. Scenario-2, ABPPO tenders a flat load VP via decreasing
the sum of voltage deviations to a minimum value of 0.09025,
while matched to that of DE [23]. However, this flat VP enhances
the loss; still it is lower than that of DE [23]. It is to be observed
Table 3
solutions of scenarios 2–6 for IEEE 30 bus test systems.

Control variables Scenario-2 Scenario-3

ABPPO DE [23] ABPPO DE

VG1 1.01805 1.0100 1.10000 1.09
VG2 1.01566 0.9918 1.08781 1.09
VG5 1.01830 1.0179 1.05005 1.09
VG8 1.00318 1.0183 1.07067 1.03
VG11 0.98370 1.0114 1.09845 1.09
VG13 1.01432 1.0282 1.09973 0.95
T6�9 0.99619 1.0265 0.98923 0.90
T6�10 0.90042 0.9038 0.91311 0.90
T4�12 0.98391 1.0114 0.96416 0.90
T28�27 0.97129 0.9635 0.96551 0.93
QC10 0.01853 0.049420 0.02691 0.00
QC12 0.04997 0.010885 0.04970 0.04
QC15 0.04998 0.049985 0.04983 0.04
QC17 0.00002 0.002393 0.04924 0.04
QC20 0.04999 0.049958 0.04284 0.04
QC21 0.04994 0.049075 0.04953 0.04
QC23 0.05000 0.049863 0.04914 0.03
QC24 0.04999 0.049663 0.04999 0.04
QC29 0.03356 0.022325 0.04595 0.03
Power loss 0.05568 0.06476 0.04685 0.07
Net VD 0.09025 0.0911 2.07169 1.41
Max VSI 0.13651 0.5734 0.05899 0.12
Net VSI 1.74604 – 1.42813 –

Fig. 4. VP of IEEE 30
that the results of DE [23] worsen the VS by enhancing the base-
case maximum VSI of 0.1712 to 0.5734 but the ABPPO reluctantly
improves the VS via decreasing the maximum VSI to 0.13651.

In Scenario-3, the ABPPO improves the VS via decreasing the net
VSI of all the load buses. The net VSI of Scenario-3 is decreased by
31.11% from the base case, and also it will affect the maximum VSI
in the system given in the same table. The maximum VSI of the
ABPPO is 0.05899, which is less than that of DE [23]. It is to be
observed that this VS improvement somewhat reduces the loss
savings to 21.90%.

When various objective function comprising loss, VP and/or VS
are presented in scenarios 4–6, this method brings a compromised
Scenario-4 Scenario-5 Scenario-6

[23] ABPPO ABPPO DE [21] ABPPO

93 1.03489 1.10000 1.0700 1.03489
67 1.02579 1.09409 1.0629 1.02480
90 1.00509 1.07463 1.0446 1.00509
46 1.00133 1.07603 1.0430 1.00133
93 0.97899 1.10000 1.0974 0.97820
17 1.01399 1.10000 1.0613 1.01287
38 0.99265 1.02799 0.9000 0.99265
29 0.90694 0.90001 0.9000 0.91184
02 0.98852 0.96643 1.0093 0.98852
60 0.97083 0.96422 1.0119 0.97215
685 0.05000 0.05000 0.0426 0.05000
716 0.04892 0.04997 0.0260 0.04998
493 0.04982 0.05000 0.0275 0.04999
510 0.01978 0.05000 0.0282 0.03803
477 0.04997 0.04970 0.0458 0.04997
608 0.04994 0.05000 0.0380 0.04994
881 0.04982 0.03800 0.0531 0.04982
285 0.04999 0.05000 0.0258 0.05000
254 0.02858 0.02392 0.0309 0.03304
073 0.05271 0.04536 0.04850 0.05268
91 0.10636 2.07788 – 0.10792
46 0.13664 0.11491 0.1310 0.13593

1.74123 1.46293 – 1.73361

bus test system.



Table 4
Solution of different methods of IEEE 57 bus test systems.

Method Real power loss (p.u) Net VD Max VSI Net VSI

Base Case – 0.2722 1.2195 0.2914 5.8388
Scanario-1 ABPPO 0.23434 2.63118 0.25641 5.17923

BBO 0.23458 2.61312 0.25694 5.18472
DE 0.23484 2.77960 0.25403 5.14127
GSA [44] 0.23461 – – –

Scanario-2 ABPPO 0.25526 0.73016 0.27952 5.71843
BBO 0.25779 0.73339 0.27897 5.71444
DE 0.25974 0.88069 0.27739 5.69639

Scenario-3 ABPPO 0.24770 2.98061 0.24103 5.12554
BBO 0.26587 2.85162 0.24273 5.18916
DE 0.25001 3.02806 0.24291 5.13114

Scenario-4 ABPPO 0.25039 1.65001 0.26582 5.39205
BBO 0.25543 1.83635 0.26941 5.43344
DE 0.25601 1.75562 0.26914 5.45222

Scenario-5 ABPPO 0.23501 2.58449 0.25568 5.18513
BBO 0.24344 2.62818 0.24669 5.19656
DE 0.25951 2.59401 0.24530 5.21670

Scenario-6 ABPPO 0.23588 2.29448 0.25744 5.23571
BBO 0.24622 2.28267 0.25075 5.26645
DE 0.24658 2.50003 0.24871 5.22148

Fig. 5. Convergence characteristic of scenario-1 of IEEE30 bus test system.
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solution. This lies amid of the appropriate results of scenario-1, 2
and 3. The load bus voltages for all the three scenarios are pre-
sented in Fig 4. It is noted from the graph that the ABPPO is very
efficient in controlling all the bus voltages within the lower and
upper limits of 0.95 and 1.1 per unit for all the cases and almost
a flat VP is obtained for scenarios-2, 4 and 6.
5.2. IEEE 57 bus system

This system comprises seven generators at buses 1, 2, 3, 6, 8, 9
and 12 and fifteen tap changing transformers. The controllable
shunt reactive power sources with a capacity of 0.1, 0.06 and
0.063 per units are connected at buses 18, 25 and 53 respectively.
The total system active and reactive power demand are 12.508 per
unit and 3.364. The system base value is 100 MVA. The lesser
bound and higher bound bus voltages are 0.95 and 1.1. The ORPF
problem is solved for all the test cases of the IEEE 57 bus system
using BBO and DE in addition to solving by the proposed ABPPO
and the performances are compared in Table 4. This table results
clearly indicate that the proposed ABPPO method offers better per-
formances in respect of the loss, VP and VS than those of BBO and
DE based approaches.

The convergence characteristic that represents the variation of
loss against the number of iterations of the proposed ABPPO algo-
rithm for case-1 of IEEE 30 is shown in Fig. 5. The figure indicates
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that this ABPPO algorithm is much efficient in converging to the
optimal point in less than 30 iterations. The convergence charac-
teristics of the ABPPO, BBO and DE based approaches for
scenario-1 of IEEE 57 test system are presented in Fig. 6. The con-
vergence characteristics clearly show that the ABPPO, BBO and DE
requires around 45, 70 and 150 iterations to reach best optimal
point. It is very clear that the ABPPO is capable of converging to
the best optimal point in less number of iterations than those of
the existing BBO and DE based approaches (Figs. 7–11).

The comparisons of real power loss gained by the proposed
ABPPO algorithm are compared with the prevailing techniques
over 100 iterations are presented in Tables 5 and 6 of scenario-1
of IEEE 30 and 57 test bus systems respectively. In addition, the
minimum, maximum average values over 100 iterations are pre-
sented in that table. It is observed that average loss gained by
the proposed algorithm is nearly close to the minimum loss. More-
over, the rate of success over 100 trials is higher than that of the
existing approaches for both the test systems. The higher success
rate and lower average real power loss significantly confirm the
effectiveness of the ABPPO algorithm with a aspect of reaching at
the optimum point or best solution.
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Table 5
Success rate and execution time comparison of scenario-1, IEEE 30 test bus system.

Different
techniques

Loss (per unit) Success
rate (%)

Execution
time (S)

Maximum Minimum Average

ABPPO 0.045362 0.045350 0.045354 97 102
BBO [35] 0.045522 0.045511 0.045515 96 110
CLPSO [20] 0.046833 0.045615 0.046397 80 138
PSO [20] 0.047986 0.046282 0.047363 43 130

Table 6
Success rate and execution time comparison of scenario-1, IEEE 57 bus system.

Different
techniques

Loss (per unit) Success
rate (%)

Execution
time (S)

Maximum Minimum Average

ABPPO 0.23625 0.23434 0.23440 97 214.54
BBO 0.23911 0.23458 0.23472 95 236.28
DE 0.24104 0.23484 0.23793 87 417.15
PSO 0.24206 0.23753 0.23984 82 409.11
GA 0.26547 0.24269 0.24826 57 796.63
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The NET of the proposed ABPPO is compared with the prevailing
algorithm for scenario-1 of IEEE 30 and 57 bus systems in Tables 5
and 6 respectively. Since all these methods use time consuming NR
load flow technique for evaluating the HSI, the overall execution
time of all the methods appear to be higher. However, it can be
observed from these tables that the proposed ABPPO is relatively
faster than the other approaches. The relatively lower execution
time of the ABPPO confirms its robustness.
6. Conclusion

The ORPF is an important study in power system operational
planning. A hybrid solution strategy for multi-objective ORPF prob-
lem comprising Bio geography and Predator-Prey Optimization is
suggested with a view to increase the population diversity, avoid
the supremacy of greatly feasible results and provide a mean of
escaping from the sub-optimal points. BBO is a nature inspired
and population-based stochastic optimization technique and a best
opponent to its better known siblings. This algorithm is mainly
based on two operators namely migration and mutation. This is
similar to other nature inspired techniques. Each solution are con-
sidered as habitats and the models of BBO are implemented for
finding the optimum solution. The predator-prey model permits
the solutions to evade from the local minima and the adaptive
mutation rate is adjusted and the population diversity is enhanced.
It is very clear from the results of ORPF that the ABPPO strategy is
much efficient and robust in landing to the global optimum point
with less computational time. It has been employed that the novel
strategy for resolving ORPF will go a long way in serving as a valu-
able tool in load dispatch centre. This algorithm involving NR tech-
nique may not work on ill-conditioned systems. The algorithm
may be suitably modified for such ill-conditioned systems besides
considering the fuel costs with non-convexities created by valve
point loading effects, prohibited operating zones, discrete repre-
sentation of transformer tap positions and environmental issues
as future work.
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