Note

Stable set meeting every longest path

F. Havet
CNRS \& Projet Mascotte, INRIA Sophia-Antipolis, 2004 route des Lucioles BP 93, 06902 Sophia-Antipolis Cedex, France

Received 8 December 2003; received in revised form 23 June 2004; accepted 20 July 2004
Available online 11 November 2004

Abstract

Laborde, Payan and Xuong conjectured that every digraph has a stable set meeting every longest path. We prove that this conjecture holds for digraphs with stability number at most 2 . © 2004 Elsevier B.V. All rights reserved.

Keywords: Stable set; Longest path; Hamiltonian path

1. Introduction

1.1. Preliminary definitions

A directed graph D is a pair $(V(D), E(D))$ of disjoint sets (of vertices and arcs) together with two maps tail: $A(D) \rightarrow V(D)$ and head: $A(D) \rightarrow V(D)$ assigning to every arc e a tail, $\operatorname{tail}(e)$ and a head, head (e). The tail and the head of an arc are its ends. An arc with tail u and head v is denoted by $u v$; we say that u dominates v and write $u \rightarrow v$. We also say that u and v are adjacent. The order of a digraph is its number of vertices.

The union and intersection of the digraphs D_{1} and D_{2} are digraphs $D_{1} \cup D_{2}=\left(V\left(D_{1}\right) \cup\right.$ $\left.V\left(D_{2}\right), A\left(D_{1}\right) \cup A\left(D_{2}\right)\right)$ and $D_{1} \cap D_{2}=\left(V\left(D_{1}\right) \cap V\left(D_{2}\right), A\left(D_{1}\right) \cap A\left(D_{2}\right)\right)$, respectively.

A path is a non-empty digraph P of the form

$$
V(P)=\left\{v_{0}, v_{1}, \ldots, v_{k}\right\}, \quad E(P)=\left\{v_{0} v_{1}, v_{1} v_{2}, \ldots, v_{k-1} v_{k}\right\}
$$

[^0]where the v_{i} are all distinct. The vertices v_{0} and v_{k} are, respectively, called the origin and terminus of P.

We often refer to a path by the natural sequence of its vertices, writing $P=v_{0} v_{1} \ldots v_{k}$.
If $P=v_{0} v_{1} \ldots v_{k}$ is a path then $C=\left(V(P), A(P) \cup\left\{v_{k} v_{0}\right\}\right)$ is a circuit. It is often denoted by $v_{0} v_{1} \ldots v_{k} v_{0}$. The predecessor (resp. successor) of a vertex x in a circuit C is the vertex y such that $y x \in A(C)$, (resp. $x y \in A(C)$).

The length of a path or a circuit C is its number of arcs, denoted by $l(C)$. The length of a longest path in a digraph D is denoted by $\lambda(D)$.
A path or a cycle in D is Hamiltonian in D if it contains all the vertices of D.
Let $P=v_{0} v_{1} \ldots v_{k}$. For $0 \leqslant i \leqslant j \leqslant k$, we write

$$
\begin{aligned}
& P v_{i}:=v_{0} \ldots v_{i}, \\
& v_{i} P:=v_{i} \ldots v_{k}, \\
& v_{i} P v_{j}:=v_{i} \ldots v_{j}
\end{aligned}
$$

for the appropriate sub-paths of P. We use similar intuitive notation for subpaths of circuits and also for the concatenation of paths; for example the union $P v \cup v Q w \cup w R$ is denoted by $P \nu Q w R$.

A digraph is strongly connected or strong if for every two vertices u and v there is a path with origin u and terminus v. A maximal strong sub-digraph of a digraph D is called a component of D. A component I of D is initial if there is no arc with tail in $V(D) \backslash V(I)$ and head in I.

Let D be a digraph. A stable set in D is a set S of vertices pairwise non-adjacent. The stability number of D, denoted $\alpha(D)$, is the maximum size of a stable set in D. A colouring of D is a partition of its vertex-set into stable sets. The chromatic number of D, denoted $\chi(D)$, is the minimum number of stable sets in a colouring.

We say that a stable set S meets a path P if $S \cap V(P) \neq \emptyset$.

1.2. Conjectures

Gallai-Roy Theorem $[4,7]$ relates the chromatic number to the order of a longest path. It states that $\chi(D) \leqslant \lambda(D)$, i.e. the chromatic number is at most as large as the order of a longest path. A natural extension of this theorem is the following conjecture:

Conjecture 1 (Laborde et al. [5]). Every digraph has a stable set meeting every longest path.

In order to prove Conjecture 1, Laborde et al. suggested the following conjecture, adding an extra condition of the desired stable set.

Conjecture 2 (Laborde et al. [5]). Every digraph has a stable set S such that S meets every longest path, and every vertex of S is the origin of a longest path.

Laborde et al. [5] proved this conjecture for symmetric digraph. They also formulated the following conjecture implying it:

Conjecture 3 (Laborde et al. [5]). For every digraph D, there exists a vertex x such that x is the origin of a longest path and every longest path with origin in $N^{-}(x)$ contains x.

A vertex described in Conjecture 3 will be called suitable.
If the digraph has a Hamiltonian path then Conjecture 3 holds. Indeed every origin of a longest path satisfies the conditions of Conjecture 3 . Since every digraph with stability number 1 has a Hamiltonian path according to Redei's Theorem [6], it follows that Conjecture 3 holds and thus so do Conjectures 2 and 1.
The aim of this paper is to prove Conjecture 3 for digraphs with stability number 2 .
Theorem 4. Every digraph with stability number 2 has a suitable vertex.
If the digraph is strong, the result holds according to the following result:
Theorem 5 (Chen and Manalastas [3]). Every strong digraph with stability number 2 has a Hamiltonian path.

In order to prove Theorem 4 in full generality, we prove the following strengthening of Theorem 5.

Theorem 6. Every strong digraph with stability number 2 has a stable set $\{a, b\}$ such that both a and b are terminus of Hamiltonian paths.

2. The proofs

In this section, we prove Theorem 6 and deduce Theorem 4 from it.
The proof of Theorem 6 rely on a structural theorem, due to Chen and Manalastas [3], implying directly Theorem 5 (see also [1] for a short proof).

Theorem 7 (Chen and Manalastas [3]). Let D be a strong digraph with stability number 2 . If D has no Hamiltonian circuit, then D contains circuits C_{1}, C_{2} such that $C_{1} \cup C_{2}$ includes all the vertices of D and $C_{1} \cap C_{2}$ is either empty or a path (possibly of length 0).

Proof of Theorem 6. Let D be a strong digraph. If D has a Hamiltonian circuit, then every stable set of cardinality 2 gives the result. Hence we may assume that D is not strong. By Theorem 7, we are in one of the two following cases:
(a) D contains circuits C_{1}, C_{2} such that $C_{1} \cup C_{2}$ includes all the vertices of D and $C_{1} \cap C_{2}$ is a path. We may also assume that C_{1} and C_{2} are such that the length of $C_{1} \cap C_{2}$ is maximum. Let x be the origin of $C_{1} \cap C_{2}$ and y its terminus. For $i=1$, 2, let x_{i} be the predecessor of x in C_{i} and y_{i} the successor of y in C_{i}. Because the length of $C_{1} \cap C_{2}$ is maximum, $\left\{x_{1}, x_{2}\right\}$ is a stable set; otherwise, without loss of generality, $x_{1} \rightarrow x_{2}$ and $C_{1}^{\prime}=x C_{1} x_{1} x_{2} x$ and C_{2} yield a contradiction. The vertex x_{1} is the terminus of the Hamiltonian path $y_{2} C_{2} y C_{1} x_{1}$ and x_{2} is the terminus of the Hamiltonian path $y_{1} C_{1} y C_{2} x_{2}$.
(b) D contains circuits C_{1}, C_{2} such that $C_{1} \cup C_{2}$ includes all the vertices of D and $C_{1} \cap C_{2}$ is empty.

Suppose that there are four distinct vertices $a_{1}, b_{1} \in V\left(C_{1}\right)$ and $a_{2}, b_{2} \in V\left(C_{2}\right)$ such that $a_{1} \rightarrow b_{2}$ and $a_{2} \rightarrow b_{1}$. Moreover, take four such vertices such that $l\left(a_{1} C_{1} b_{1}\right)+l\left(a_{2} C_{2} b_{2}\right)$ is minimum. For $i=1,2$, let c_{i} be the predecessor of b_{i} in C_{i}. If $c_{1}=a_{1}$, then we are in case (a) with $b_{1} C_{1} a_{1} b_{2} C_{2} a_{2} b_{1}$ and C_{2}. So we may assume that $c_{1} \neq a_{1}$ and $c_{2} \neq a_{2}$ (by symmetry). Since $l\left(a_{1} C_{1} b_{1}\right)+l\left(a_{2} C_{2} b_{2}\right)$ is minimum $\left\{c_{1}, c_{2}\right\}$ is a stable set.

For $i=1,2$, let d_{i} be the successor of a_{i} in C_{i}. Then $d_{2} C_{2} a_{2} b_{1} C_{1} c_{1}$ and $d_{1} C_{1} a_{1} b_{2} C_{2} c_{2}$ are Hamiltonian paths.

Suppose that there do not exist four distinct vertices $a_{1}, b_{1} \in V\left(C_{1}\right)$ and $a_{2}, b_{2} \in V\left(C_{2}\right)$ such that $a_{1} \rightarrow b_{2}$ and $a_{2} \rightarrow b_{1}$. Since I is strong, there are two possible subcases:
(i) There exists three distinct vertices $a_{1}, b_{1} \in V\left(C_{1}\right)$ and $a_{2} \in V\left(C_{2}\right)$ such that $a_{1} \rightarrow a_{2}$ and $a_{2} \rightarrow b_{1}$.
(ii) There exist two vertices $a_{1} \in V\left(C_{1}\right)$ and $a_{2} \in V\left(C_{2}\right)$ such that $a_{1} \rightarrow a_{2}, a_{2} \rightarrow a_{1}$ and there is no other arc with an end in $V\left(C_{1}\right)$ and the other in $V\left(C_{2}\right)$.
Suppose we are in subcase (i). Moreover, assume that a_{1} and b_{1} are such that $l\left(a_{1} C_{1} b_{1}\right)$ is minimum. Let c_{1} be the predecessor of b_{1} in C_{1}. If $a_{1}=c_{1}$, then we are in the case (a) with $b_{1} C_{1} a_{1} a_{2} b_{1}$ and C_{2}. So we may assume that $a_{1} \neq c_{1}$. Then $\left\{c_{1}, a_{2}\right\}$ is stable by minimality of $l\left(a_{1} C_{1} b_{1}\right)$. And for any vertex $b_{2} \in C_{2}$, the set $\left\{c_{1}, b_{2}\right\}$ is stable, otherwise we get four vertices as in the preceding paragraph, giving a contradiction. In particular, $\left\{c_{1}, e_{2}\right\}$ with e_{2} the predecessor of a_{2} in C_{2}, is a stable set. For $i=1,2$, let d_{i} be the successor of a_{i} in C_{i}. Then $d_{2} C_{2} a_{2} b_{1} C_{1} c_{1}$ and $d_{1} C_{1} a_{1} a_{2} C_{2} e_{2}$ are Hamiltonian paths

Suppose now we are in subcase (ii). For $i=1,2$, let c_{i} be the predecessor of a_{i} in C_{i} and d_{i} be the successor of a_{i} in C_{i}. Then $\left\{c_{1}, c_{2}\right\}$ is a stable set and $d_{2} C_{2} a_{2} a_{1} C_{1} c_{1}$ and $d_{1} C_{1} a_{1} a_{2} C_{2} c_{2}$ are Hamiltonian paths.

In order to prove Theorem 4, we need preliminary results. The first one is the well-known Theorem of Camion.

Theorem 8 (Camion [2]). Every strong digraph with stability number 1 has a Hamiltonian circuit.

The following proposition follows immediately from the definitions of component and initial component. The proof is left to the reader:

Proposition 9. Let D be a digraph, F one of its component and P a path in D.
(i) $F \cap P$ is a path;
(ii) if F is initial and $x \in V(F \cap P)$, then $P x$ is in F. In particular, its origin is in F.

Lemma 10. Let D be a digraph and I one of its initial components. If I has a Hamiltonian circuit, then every longest path meeting I contains all the vertices of I. In particular, every vertex in $V(I)$ which is the origin of a longest path of D is suitable.

Proof. Let C be a Hamiltonian circuit of I. Let P be a path meeting I that does not contain all the vertices of I. Let x be the last vertex on P which is in I. Then $V(P x) \subset V(I)$. Let x^{+}be the successor of x in C. Then $x^{+} C x P$ is a path longer than P.

Lemma 11. Let D be a digraph. If I is the unique initial component and P is a path of length $\lambda(D-I)+|I|$, then P is the longest path and $V(P) \cap V(I)=V(I)$. In particular, the origin of P is suitable.

Proof. Let P be the longest path. Let y be the first vertex on P that is not in I and x its predecessor. By Proposition $9, y P \cap I$ is empty and $P x$ is in I so has length at most $|I|-1$ so $y P$ has length at least $\lambda(D-I)$. Hence $y P$ has length $\lambda(D-I)$ so $P x$ contains every vertex of I, in particular the origin of P.

Proof of Theorem 4. We prove this result by induction on the number of vertices of D, the result being obviously true if D has two vertices.

If D is strong, then by Theorem $5, D$ has a Hamiltonian path with origin s and s is suitable. We may, therefore, assume that D is not strong. Let I be an initial component of D.

Suppose first that I is Hamiltonian. If there is a vertex v of I that is the origin of a longest path then Lemma 10 gives the result. If there is no origin of a longest path in I then by Proposition 9, no longest path intersects I. So the longest paths of D are the longest paths of $D-I$. By induction hypothesis, there is a suitable vertex v in $D-I$, which is also a suitable vertex in D.

Hence we may assume that D has a unique initial component I without Hamiltonian circuit. By Theorem $8, \alpha(I)=2$. Hence, by Theorem 6, there is a stable set $\{a, b\}$ such that a and b are terminus of Hamiltonian paths, P_{a} and P_{b} respectively. Let s be the origin of a longest path Q in $D-I$. Then without loss of generality $a \rightarrow s$ and the path $P_{a} Q$ has length $\lambda(D-I)+|I|$. Hence, by Lemma 11 the origin of P_{a} is suitable.

References

[1] J.A. Bondy, A short proof of the Chen-Manalastas theorem, Discrete Math. 146 (1-3) (1995) 289-292.
[2] P. Camion, Chemins et circuits hamiltoniens des graphes complets, C. R. Acad. Sci. Paris 249 (1959) 21512152.
[3] C.C. Chen, P. Manalastas Jr., Every finite strongly connected digraph of stability 2 has a Hamiltonian path, Discrete Math. 44 (3) (1983) 243-250.
[4] T. Gallai, On directed paths and circuits, in: Theory of Graphs Proc. Colloq., Titany, 1966, Academic Press, New York, 1968, pp. 115-118.
[5] J.-M. Laborde, C. Payan, N.H. Xuong, Independent sets and longest directed paths in digraphs, in: Graphs and other Combinatorial Topics Prague, 1982, Teubner, Leipzig, 1983, pp. 173-177.
[6] L. Rédei, Ein kombinatorischer Satz, Acta Litt. Szeged 7 (1934) 39-43.
[7] B. Roy, Nombre chromatique et plus longs chemins d'un graphe, Rev. Française Informat, Recherche Opérationelle 1 (5) (1967) 129-132.

[^0]: E-mail address: fhavet@sophia.inria.fr (F. Havet).

 0012-365X/\$ - see front matter © 2004 Elsevier B.V. All rights reserved.
 doi:10.1016/j.disc.2004.07.013

