

Available online at www.sciencedirect.com

Discrete Mathematics 289 (2004) 169-173

DISCRETE MATHEMATICS

www.elsevier.com/locate/disc

Note

Stable set meeting every longest path

F. Havet

CNRS & Projet Mascotte, INRIA Sophia-Antipolis, 2004 route des Lucioles BP 93, 06902 Sophia-Antipolis Cedex, France

Received 8 December 2003; received in revised form 23 June 2004; accepted 20 July 2004 Available online 11 November 2004

Abstract

Laborde, Payan and Xuong conjectured that every digraph has a stable set meeting every longest path. We prove that this conjecture holds for digraphs with stability number at most 2. © 2004 Elsevier B.V. All rights reserved.

Keywords: Stable set; Longest path; Hamiltonian path

1. Introduction

1.1. Preliminary definitions

A directed graph D is a pair (V(D), E(D)) of disjoint sets (of vertices and arcs) together with two maps tail: $A(D) \rightarrow V(D)$ and head: $A(D) \rightarrow V(D)$ assigning to every arc e a tail, tail(e) and a head, head(e). The tail and the head of an arc are its ends. An arc with tail u and head v is denoted by uv; we say that u dominates v and write $u \rightarrow v$. We also say that u and v are adjacent. The order of a digraph is its number of vertices.

The *union* and *intersection* of the digraphs D_1 and D_2 are digraphs $D_1 \cup D_2 = (V(D_1) \cup V(D_2), A(D_1) \cup A(D_2))$ and $D_1 \cap D_2 = (V(D_1) \cap V(D_2), A(D_1) \cap A(D_2))$, respectively. A *path* is a non-empty digraph *P* of the form

 $V(P) = \{v_0, v_1, \dots, v_k\}, \quad E(P) = \{v_0v_1, v_1v_2, \dots, v_{k-1}v_k\},\$

E-mail address: fhavet@sophia.inria.fr (F. Havet).

⁰⁰¹²⁻³⁶⁵X/\$ - see front matter © 2004 Elsevier B.V. All rights reserved. doi:10.1016/j.disc.2004.07.013

where the v_i are all distinct. The vertices v_0 and v_k are, respectively, called the *origin* and *terminus* of *P*.

We often refer to a path by the natural sequence of its vertices, writing $P = v_0v_1 \dots v_k$. If $P = v_0v_1 \dots v_k$ is a path then $C = (V(P), A(P) \cup \{v_kv_0\})$ is a *circuit*. It is often denoted by $v_0v_1 \dots v_kv_0$. The *predecessor* (resp. *successor*) of a vertex x in a circuit C is the vertex y such that $yx \in A(C)$, (resp. $xy \in A(C)$).

The *length* of a path or a circuit *C* is its number of arcs, denoted by l(C). The length of a longest path in a digraph *D* is denoted by $\lambda(D)$.

A path or a cycle in *D* is *Hamiltonian* in *D* if it contains all the vertices of *D*. Let $P = v_0 v_1 \dots v_k$. For $0 \le i \le j \le k$, we write

$$Pv_i := v_0 \dots v_i,$$

$$v_i P := v_i \dots v_k,$$

$$v_i Pv_j := v_i \dots v_j$$

for the appropriate sub-paths of *P*. We use similar intuitive notation for subpaths of circuits and also for the concatenation of paths; for example the union $Pv \cup vQw \cup wR$ is denoted by PvQwR.

A digraph is *strongly connected* or *strong* if for every two vertices u and v there is a path with origin u and terminus v. A maximal strong sub-digraph of a digraph D is called a *component* of D. A component I of D is *initial* if there is no arc with tail in $V(D) \setminus V(I)$ and head in I.

Let *D* be a digraph. A *stable set* in *D* is a set *S* of vertices pairwise non-adjacent. The *stability number* of *D*, denoted $\alpha(D)$, is the maximum size of a stable set in *D*. A *colouring* of *D* is a partition of its vertex-set into stable sets. The *chromatic number* of *D*, denoted $\chi(D)$, is the minimum number of stable sets in a colouring.

We say that a stable set *S* meets a path *P* if $S \cap V(P) \neq \emptyset$.

1.2. Conjectures

Gallai–Roy Theorem [4,7] relates the chromatic number to the order of a longest path. It states that $\chi(D) \leq \lambda(D)$, i.e. *the chromatic number is at most as large as the order of a longest path.* A natural extension of this theorem is the following conjecture:

Conjecture 1 (*Laborde et al.* [5]). Every digraph has a stable set meeting every longest path.

In order to prove Conjecture 1, Laborde et al. suggested the following conjecture, adding an extra condition of the desired stable set.

Conjecture 2 (*Laborde et al.* [5]). Every digraph has a stable set *S* such that *S* meets every longest path, and every vertex of *S* is the origin of a longest path.

Laborde et al. [5] proved this conjecture for symmetric digraph. They also formulated the following conjecture implying it:

170

Conjecture 3 (*Laborde et al.* [5]). For every digraph *D*, there exists a vertex *x* such that *x* is the origin of a longest path and every longest path with origin in $N^{-}(x)$ contains *x*.

A vertex described in Conjecture 3 will be called *suitable*.

If the digraph has a Hamiltonian path then Conjecture 3 holds. Indeed every origin of a longest path satisfies the conditions of Conjecture 3. Since every digraph with stability number 1 has a Hamiltonian path according to Redei's Theorem [6], it follows that Conjecture 3 holds and thus so do Conjectures 2 and 1.

The aim of this paper is to prove Conjecture 3 for digraphs with stability number 2.

Theorem 4. Every digraph with stability number 2 has a suitable vertex.

If the digraph is strong, the result holds according to the following result:

Theorem 5 (*Chen and Manalastas* [3]). Every strong digraph with stability number 2 has a Hamiltonian path.

In order to prove Theorem 4 in full generality, we prove the following strengthening of Theorem 5.

Theorem 6. Every strong digraph with stability number 2 has a stable set $\{a, b\}$ such that both a and b are terminus of Hamiltonian paths.

2. The proofs

In this section, we prove Theorem 6 and deduce Theorem 4 from it.

The proof of Theorem 6 rely on a structural theorem, due to Chen and Manalastas [3], implying directly Theorem 5 (see also [1] for a short proof).

Theorem 7 (*Chen and Manalastas* [3]). Let *D* be a strong digraph with stability number 2. If *D* has no Hamiltonian circuit, then *D* contains circuits C_1 , C_2 such that $C_1 \cup C_2$ includes all the vertices of *D* and $C_1 \cap C_2$ is either empty or a path (possibly of length 0).

Proof of Theorem 6. Let D be a strong digraph. If D has a Hamiltonian circuit, then every stable set of cardinality 2 gives the result. Hence we may assume that D is not strong. By Theorem 7, we are in one of the two following cases:

(a) *D* contains circuits C_1 , C_2 such that $C_1 \cup C_2$ includes all the vertices of *D* and $C_1 \cap C_2$ is a path. We may also assume that C_1 and C_2 are such that the length of $C_1 \cap C_2$ is maximum. Let *x* be the origin of $C_1 \cap C_2$ and *y* its terminus. For i = 1, 2, let x_i be the predecessor of *x* in C_i and y_i the successor of *y* in C_i . Because the length of $C_1 \cap C_2$ is maximum, $\{x_1, x_2\}$ is a stable set; otherwise, without loss of generality, $x_1 \rightarrow x_2$ and $C'_1 = xC_1x_1x_2x$ and C_2 yield a contradiction. The vertex x_1 is the terminus of the Hamiltonian path $y_2C_2yC_1x_1$ and x_2 is the terminus of the Hamiltonian path $y_1C_1yC_2x_2$.

(b) *D* contains circuits C_1 , C_2 such that $C_1 \cup C_2$ includes all the vertices of *D* and $C_1 \cap C_2$ is empty.

Suppose that there are four distinct vertices $a_1, b_1 \in V(C_1)$ and $a_2, b_2 \in V(C_2)$ such that $a_1 \rightarrow b_2$ and $a_2 \rightarrow b_1$. Moreover, take four such vertices such that $l(a_1C_1b_1) + l(a_2C_2b_2)$ is minimum. For i = 1, 2, let c_i be the predecessor of b_i in C_i . If $c_1 = a_1$, then we are in case (a) with $b_1C_1a_1b_2C_2a_2b_1$ and C_2 . So we may assume that $c_1 \neq a_1$ and $c_2 \neq a_2$ (by symmetry). Since $l(a_1C_1b_1) + l(a_2C_2b_2)$ is minimum $\{c_1, c_2\}$ is a stable set.

For i = 1, 2, let d_i be the successor of a_i in C_i . Then $d_2C_2a_2b_1C_1c_1$ and $d_1C_1a_1b_2C_2c_2$ are Hamiltonian paths.

Suppose that there do not exist four distinct vertices $a_1, b_1 \in V(C_1)$ and $a_2, b_2 \in V(C_2)$ such that $a_1 \rightarrow b_2$ and $a_2 \rightarrow b_1$. Since *I* is strong, there are two possible subcases:

- (i) There exists three distinct vertices $a_1, b_1 \in V(C_1)$ and $a_2 \in V(C_2)$ such that $a_1 \rightarrow a_2$ and $a_2 \rightarrow b_1$.
- (ii) There exist two vertices $a_1 \in V(C_1)$ and $a_2 \in V(C_2)$ such that $a_1 \rightarrow a_2, a_2 \rightarrow a_1$ and there is no other arc with an end in $V(C_1)$ and the other in $V(C_2)$.

Suppose we are in subcase (i). Moreover, assume that a_1 and b_1 are such that $l(a_1C_1b_1)$ is minimum. Let c_1 be the predecessor of b_1 in C_1 . If $a_1 = c_1$, then we are in the case (a) with $b_1C_1a_1a_2b_1$ and C_2 . So we may assume that $a_1 \neq c_1$. Then $\{c_1, a_2\}$ is stable by minimality of $l(a_1C_1b_1)$. And for any vertex $b_2 \in C_2$, the set $\{c_1, b_2\}$ is stable, otherwise we get four vertices as in the preceding paragraph, giving a contradiction. In particular, $\{c_1, e_2\}$ with e_2 the predecessor of a_2 in C_2 , is a stable set. For i = 1, 2, let d_i be the successor of a_i in C_i . Then $d_2C_2a_2b_1C_1c_1$ and $d_1C_1a_1a_2C_2e_2$ are Hamiltonian paths

Suppose now we are in subcase (ii). For i = 1, 2, let c_i be the predecessor of a_i in C_i and d_i be the successor of a_i in C_i . Then $\{c_1, c_2\}$ is a stable set and $d_2C_2a_2a_1C_1c_1$ and $d_1C_1a_1a_2C_2c_2$ are Hamiltonian paths. \Box

In order to prove Theorem 4, we need preliminary results. The first one is the well-known Theorem of Camion.

Theorem 8 (*Camion* [2]). Every strong digraph with stability number 1 has a Hamiltonian circuit.

The following proposition follows immediately from the definitions of component and initial component. The proof is left to the reader:

Proposition 9. Let D be a digraph, F one of its component and P a path in D.

(i) F ∩ P is a path;
(ii) if F is initial and x ∈ V(F ∩ P), then Px is in F. In particular, its origin is in F.

Lemma 10. Let D be a digraph and I one of its initial components. If I has a Hamiltonian circuit, then every longest path meeting I contains all the vertices of I. In particular, every vertex in V(I) which is the origin of a longest path of D is suitable.

Proof. Let *C* be a Hamiltonian circuit of *I*. Let *P* be a path meeting *I* that does not contain all the vertices of *I*. Let *x* be the last vertex on *P* which is in *I*. Then $V(Px) \subset V(I)$. Let x^+ be the successor of *x* in *C*. Then x^+CxP is a path longer than *P*. \Box

172

Lemma 11. Let *D* be a digraph. If *I* is the unique initial component and *P* is a path of length $\lambda(D - I) + |I|$, then *P* is the longest path and $V(P) \cap V(I) = V(I)$. In particular, the origin of *P* is suitable.

Proof. Let *P* be the longest path. Let *y* be the first vertex on *P* that is not in *I* and *x* its predecessor. By Proposition 9, $yP \cap I$ is empty and *Px* is in *I* so has length at most |I| - 1 so *yP* has length at least $\lambda(D - I)$. Hence *yP* has length $\lambda(D - I)$ so *Px* contains every vertex of *I*, in particular the origin of *P*. \Box

Proof of Theorem 4. We prove this result by induction on the number of vertices of *D*, the result being obviously true if *D* has two vertices.

If D is strong, then by Theorem 5, D has a Hamiltonian path with origin s and s is suitable. We may, therefore, assume that D is not strong. Let I be an initial component of D.

Suppose first that *I* is Hamiltonian. If there is a vertex *v* of *I* that is the origin of a longest path then Lemma 10 gives the result. If there is no origin of a longest path in *I* then by Proposition 9, no longest path intersects *I*. So the longest paths of *D* are the longest paths of D - I. By induction hypothesis, there is a suitable vertex *v* in D - I, which is also a suitable vertex in *D*.

Hence we may assume that D has a unique initial component I without Hamiltonian circuit. By Theorem 8, $\alpha(I) = 2$. Hence, by Theorem 6, there is a stable set $\{a, b\}$ such that a and b are terminus of Hamiltonian paths, P_a and P_b respectively. Let s be the origin of a longest path Q in D - I. Then without loss of generality $a \rightarrow s$ and the path P_aQ has length $\lambda(D - I) + |I|$. Hence, by Lemma 11 the origin of P_a is suitable. \Box

References

- [1] J.A. Bondy, A short proof of the Chen-Manalastas theorem, Discrete Math. 146 (1-3) (1995) 289-292.
- [2] P. Camion, Chemins et circuits hamiltoniens des graphes complets, C. R. Acad. Sci. Paris 249 (1959) 2151– 2152.
- [3] C.C. Chen, P. Manalastas Jr., Every finite strongly connected digraph of stability 2 has a Hamiltonian path, Discrete Math. 44 (3) (1983) 243–250.
- [4] T. Gallai, On directed paths and circuits, in: Theory of Graphs Proc. Colloq., Titany, 1966, Academic Press, New York, 1968, pp. 115–118.
- [5] J.-M. Laborde, C. Payan, N.H. Xuong, Independent sets and longest directed paths in digraphs, in: Graphs and other Combinatorial Topics Prague, 1982, Teubner, Leipzig, 1983, pp. 173–177.
- [6] L. Rédei, Ein kombinatorischer Satz, Acta Litt. Szeged 7 (1934) 39-43.
- [7] B. Roy, Nombre chromatique et plus longs chemins d'un graphe, Rev. Française Informat, Recherche Opérationelle 1 (5) (1967) 129–132.