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1. Introduction

Injective modules are the building blocks in the theory of Noetherian rings. Matlis showed that any
indecomposable injective module over a commutative Noetherian ring is isomorphic to the injective
hull E(R/P ) of some prime ideal P of R . He also showed that any injective hull of a simple module is
Artinian (see [15] and [16, Proposition 3]). In connection with the Jacobson Conjecture for Noetherian
rings Jategaonkar showed in [11] (see also [6,22]) that the injective hulls of simple modules are locally
Artinian provided the ring R is fully bounded Noetherian (FBN). This led him to answer the Jacobson
Conjecture in the affirmative for FBN rings. Recall that a module is called locally Artinian if every
finitely generated submodule of it is Artinian. After Jategaonkar’s result the question arose whether
the condition

Injective hulls of simple right A-modules are locally Artinian (�)

was sufficient to prove an affirmative answer of the Jacobson Conjecture which quickly turned out
to be not the case. However property (�) remained a subtle condition for Noetherian rings whose
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meaning is not yet fully understood. Property (�) says that all finitely generated essential extensions
of simple right A-modules are Artinian. And in case A is right Noetherian property (�) is equivalent
to the condition that the class of semi-Artinian right A-modules, i.e. modules M that are the union of
their socle series, is closed under essential extensions.

For algebras related to U (sl2) the condition has been examined in [7,4,5,20]. One of the first
examples of a Noetherian domain that does not satisfy (�) had been found by Ian Musson in [19]
concluding that whenever g is a finite dimensional solvable non-nilpotent Lie algebra, then U (g) does
not satisfy property (�). It is then natural to ask for which finite dimensional complex nilpotent Lie
algebras g its enveloping algebra satisfies (�). We will answer this question completely and will show
that those Lie algebras are close to abelian Lie algebras. Slightly more general we can prove our Main
Theorem for Lie superalgebras:

Theorem 1.1. The following statements are equivalent for a finite dimensional nilpotent complex Lie superal-
gebra g = g0 ⊕ g1:

(a) Finitely generated essential extensions of simple U (g)-modules are Artinian.
(b) Finitely generated essential extensions of simple U (g0)-modules are Artinian.
(c) ind(g0)� dim(g0) − 2, where ind(g0) denotes the index of g0 .
(d) Up to a central abelian direct factor g0 is isomorphic

(i) to a nilpotent Lie algebra with abelian ideal of codimension 1;
(ii) to the 5-dimensional Lie algebra h5 with basis {e1, e2, e3, e4, e5} and nonzero brackets given by

[e1, e2] = e3, [e1, e3] = e4, [e2, e3] = e5;

(iii) to the 6-dimensional Lie algebra h6 with basis {e1, e2, e3, e4, e5, e6} and nonzero brackets given by

[e1, e3] = e4, [e2, e3] = e5, [e1, e2] = e6.

Together with Musson’s solvable counter example we have a characterization of finite dimensional
complex solvable Lie algebras g whose enveloping algebra U (g) satisfies condition (�).

Corollary 1.2. Let g be a finite dimensional solvable complex Lie algebra. U (g) satisfies (�) if and only if g is
isomorphic up to an abelian direct factor to a Lie algebra with an abelian ideal of codimension 1 or to h5 or to
h6 .

The proof of the main theorem is organized in four steps. In the first step we show that Noethe-
rian rings whose primitive ideals contain nonzero ideals with a normalizing sequence of generators
satisfy (�), if all of its primitive factors satisfy property (�). In a second step we verify that ideals of
the enveloping algebra U (g) of a finite dimensional nilpotent Lie superalgebra g have a supercentral-
izing sequence of generators, which together with the first step shifts our problem to the study of
primitive factors of U (g). In the third step we combine the description of primitive factors of U (g)

given by A. Bell and I. Musson as tensor products of the form Cliffq(C) ⊗ A p(C) with a result of
T. Stafford that says that the only Weyl algebra A p(C) satisfying (�) is the first Weyl algebra. A result
by E. Herscovich shows that the order p of possible Weyl algebras appearing in the primitive factors
of U (g) is determined by the index ind(g0) of the underlying even part g0 of g, which in our case
imposes ind(g0) � dimg0 − 2. The last step lists all finite dimensional nilpotent Lie algebras g with
ind(g) � dim(g) − 2.

The only reason our main result is stated for algebras over the complex numbers is that Stafford’s
result is stated and proved over C. However his proof is most likely valid over an arbitrary alge-
braically closed field of characteristic zero (see [12, Proposition 8.8]), so that our result would be also
true in a slightly more general context.
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2. Noetherian rings with enough normal elements

The purpose of this section is to examine the influence that normal elements have on property (�).
Recall that a module M is a subdirect product of a family of modules {Fλ}Λ if there exists an embed-
ding ı : M → ∏

λ∈Λ Fλ into a product of the modules Fλ such that for each projection πμ : ∏ Fλ → Fμ

the composition πμı is surjective. Compare the next result with [10, Theorem 1.1].

Lemma 2.1. A ring R has property (�) if and only if every left R-module is a subdirect product of locally
Artinian modules.

Proof. A standard fact in module theory [24, 14.9] says that every module is a subdirect product of
factor modules that are essential extensions of a simple module.1 Since property (�) is equivalent to
subdirectly irreducible modules to be locally Artinian, the lemma follows. �

A ring extension R ⊆ S is said to be a finite normalizing extension if there exists a finite set
{a1, . . .ak} of elements of S such that S = ∑k

i=1 ai R and ai R = Rai , ∀i = 1, . . . ,k. The following is
an adaption of Hirano’s result [10, 1.8]:

Proposition 2.2. Let S be a finite normalizing extension of a ring R. If R satisfies (�) then so does S.

Proof. Let M be a nonzero left S-module. By Lemma 2.1 there exists a family {Nλ} of R-submodules
of M such that M/Nλ is locally Artinian for all λ and

⋂
λ Nλ = 0. For any R-submodule N of M

denote the largest S-submodule of M contained in N by b(N) (called the bound of N in [18]). In fact,
b(N) = ⋂k

i=1 a−1
i N , where

a−1
i N = {m ∈ M | aim ∈ N}.

Since b(Nλ) ⊆ Nλ , we certainly have
⋂

λ b(Nλ) = 0. By [18, 10.1.6], there is a lattice embedding of
R-modules L(M/b(Nλ)) −→ L(M/Nλ) which implies also that b(Nλ) is locally Artinian. Hence M is
a subdirect product of locally Artinian S-modules. �

As a consequence we have the following.

Corollary 2.3. Let C be a finite dimensional algebra and A be any algebra. If A satisfies (�) then C ⊗ A satisfies
(�) too.

Proof. Let {x1, . . . , xn} be a basis of C . Then we have C ⊗ A = ∑n
i=1(xi ⊗ 1)A where each xi ⊗ 1 is

a normal element and so C ⊗ A is a finite normalizing extension of A and hence it satisfies (�) by
Proposition 2.2. �

A sequence x1, . . . , xn of elements of a ring R is called a normalizing (resp. centralizing) sequence
if for each j = 0, . . . ,n − 1 the image of x j+1 in R/

∑ j
i=1 xi R is a normal (resp. central) element.

McConnell showed in [17] that every ideal in the enveloping algebra of a finite dimensional nilpotent
Lie algebra has a centralizing sequence of generators. In the next section we will show a super version
of his result.

Lemma 2.4. Let A be a Noetherian algebra, E be a simple A-module and E � M be an essential extension of
left A-modules. Let Q ⊆ AnnA(E) be an ideal of A that has a normalizing sequence of generators. Then M is
Artinian if and only if M ′ = AnnM(Q ) is Artinian.

1 Those modules occur in the literature under various names like subdirectly irreducible, cocyclic, colocal or monolithic.
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Proof. We proceed by induction on the number of elements of the generating set of Q . Suppose Q =
〈x1〉 with x1 being a normal element. Define a map f : M −→ M by f (m) = x1m. This map is Z(A)-
linear and preserves A-submodules of M because if U � M is an A-submodule of M , then A · f (U ) =
Ax1U = x1 AU = x1U = f (U ) and so f (U ) if an A-submodule of M . Since Q is generated by a normal
element it satisfies the Artin–Rees property (see [18, 4.1.10]) and so there exists a natural number
n > 0 such that Q n M = xn

1M = 0. In other words Ker( f n) = M . Hence we have a finite filtration

0 ⊆ Ker( f ) = AnnM(Q ) ⊆ Ker
(

f 2) ⊆ · · · ⊆ Ker
(

f n−1) ⊆ Ker
(

f n) = M

whose subfactors are A/Q -modules and f induces a submodule preserving chain of embeddings

M/Ker
(

f n−1) ↪→ Ker
(

f n−1)/Ker
(

f n−2) ↪→ ·· · ↪→ Ker
(

f 2)/Ker( f ) ↪→ Ker( f ).

Hence M is Artinian if and only if M ′ = Ker( f ) = AnnM(Q ) is Artinian. Now let n > 0 and suppose
that the assertion holds for all Noetherian algebras and finitely generated essential extensions E ⊆ M
of simple left A-modules E such that AnnA(E) contains an ideal Q which has a normalizing sequence
of generators with less than n elements. Let E ⊆ M be a finitely generated essential extension of a
simple A-module such that Q ⊆ AnnA(E) has a normalizing sequence of generators {x1, . . . , xn} of n
elements. Consider the submodule M ′ = AnnM(x1). Since x1 is a normal element, we can apply the
same procedure to conclude that M is Artinian if and only if M ′ is Artinian. Let A′ = A/Ax1 and
Q ′ = Q /Ax1. Then Q ′ ⊆ AnnA′ (E) is generated by the set {x2, . . . , xn} of normalizing elements, where
xi is the image of xi in A′ for i = 2, . . . ,n. Now, E � M ′ is an essential extension of A′-modules such
that Q ′E = 0. Since Q ′ is generated by a normalizing sequence of n − 1 elements, by the induction
hypotheses we conclude that M is Artinian if and only if AnnM′ (Q ′) = AnnM(Q ) is Artinian as A′-
modules and hence also as A-modules. �
Lemma 2.5. Suppose that A is a Noetherian algebra such that every primitive ideal P of A contains an ideal
Q ⊆ P which has a normalizing sequence of generators and A/Q satisfies (�). Then A satisfies (�).

Proof. Let E be a simple A-module, P = AnnA(E) and let E � M be a finitely generated essential
extension of E . Let M ′ = AnnM(Q ), where Q ⊆ P is an ideal that has a normalizing sequence of
generators and with A/Q satisfying (�). Then E � M ′ is a finitely generated essential extension of
A/Q -modules and so M ′ is Artinian because A/Q satisfies (�). Since by Lemma 2.4 M ′ is Artinian if
and only if M is Artinian, it follows that M is Artinian and A satisfies (�). �

A vector superspace V over a field k is a Z2-graded k-vector space V = V 0 ⊕ V 1. The elements
in V 0 ∪ V 1 \ {0} are called homogeneous and the degree of a homogeneous element is defined as
|v| = α if and only if v ∈ Vα . The nonzero elements in V 0 (resp. in V 1) are called even (resp. odd).
A superalgebra is a (not necessarily associative) Z2-graded k-algebra A = A0 ⊕ A1. In particular A is
a vector superspace whose multiplication satisfies Aα Aβ ⊆ Aα+β for all α,β ∈ {0,1}. Let A be an
associative superalgebra. By a graded ideal I of A we mean an ideal I = I0 ⊕ I1 that is graded with
respect to the Z2-grading of A. A graded primitive ideal P of A is the annihilator of a graded simple
A-module, while a graded maximal ideal is a proper graded ideal that is a maximal element in the
lattice of proper graded ideal. Given any ideal P of A it is easy to see that Q = P ∩ σ(P ) is a graded
ideal where σ denotes the automorphism :

σ : A → A a0 + a1 �→ a0 − a1 ∀a0 ∈ A0, a1 ∈ A1.

Theorem 2.6. Let A be a Noetherian associative superalgebra such that every primitive ideal is maximal and
every graded maximal ideal is generated by a normalizing sequence of generators. Then the following state-
ments are equivalent:

(a) A satisfies the property (�).
(b) Every primitive factor of A satisfies the property (�).
(c) Every graded primitive factor of A satisfies the property (�).
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Proof. The part (a) ⇒ (b) is clear since the property (�) is inherited by factor rings.
(b) ⇒ (c) suppose Q is a graded primitive ideal of A. By [2, 1.2] there exists a maximal ideal P of

A such that Q = P ∩σ(P ). If Q is graded, then Q = P and A/Q satisfies property (�) by hypothesis.
Otherwise σ(P ) + P = A holds, which implies that A/Q � A/P × A/σ (P ). Since A/P satisfies (�),
also A/σ (P ) does and then also the direct product of both.

(c) ⇒ (a) suppose that every graded primitive factor of A satisfies (�). Let E be a simple A-
module, P = AnnA(E), and let E � M be an essential extension of E . P is maximal by assumption.
The ideal Q = P ∩ σ(P ) is graded maximal by [2, 1.2] and has a normalizing sequence of gener-
ators by assumption. A/Q satisfies (�) by the hypothesis and by Lemma 2.5 we conclude that A
satisfies (�). �
3. Ideals in enveloping algebras of nilpotent Lie superalgebras

McConnell showed in [17] that every ideal of the enveloping algebra of a finite dimensional nilpo-
tent Lie algebra has a centralizing sequence of generators. We intend to prove an analogous result
for superalgebras. Let A be an associative superalgebra. The supercommutator of two homogeneous
elements a,b of A is the element

�a,b� := ab − (−1)|a||b|ba

and is extended bilinearly to a form �−,−� : A⊗2 → A. The supercenter of A is the set Z(A)s =
{a ∈ A | ∀b ∈ A: �a,b� = 0} and its elements are called supercentral. Supercentral elements are clearly
normal. A superderivation of a superalgebra A is a graded linear map f : A −→ A of degree | f | such
that

f (ab) = f (a)b + (−1)|a|| f |af (b)

for all homogeneous a,b ∈ A. The supercommutator �x,−� for a homogeneous element x ∈ A is an
example of a superderivation.

Proposition 3.1. Let A be a superalgebra and f be a superderivation of A. For every n ∈ N and homogeneous
elements a,b of A, there exist integers c0, . . . , cn such that f n(ab) = ∑n

i=0 ci f i(a) f n−i(b).

Proof. Let a and b be homogeneous elements of A. We use induction on n. The case n = 1 follows
from the definition of a superderivation with c0 = (−1)|a|| f | and c1 = 1. Suppose that the assertion
holds for n � 1. We compute f n+1(ab):

f n+1(ab) = f

(
n∑

i=0

ci f i(a) f n−i(b)

)
=

n∑
i=0

ci
(

f i+1(a) f n−i(b) + (−1)| f i(a)|| f | f i(a) f n−i+1(b)
)

=
n+1∑
i=1

ci−1 f i(a) f n+1−i(b) +
n∑

i=0

(−1)| f i(a)|| f |ci f i(a) f n−i+1(b)

= (−1)|a|| f |c0af n+1(b) +
n∑

i=1

((
ci−1 + (−1)| f i(a)|| f |ci

)
f i(a) f n+1−i(b)

) + cn f n+1(a)b

=
n+1∑
i=0

c′
i f i(a) f n+1−i(b)

where c′
0 = (−1)|a|| f |c0, c′

n+1 = cn and c′
i = ci−1 + (−1)| f i(a)|| f |ci for all i = 1, . . . ,n. �
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A Lie superalgebra is a superalgebra g = g0 ⊕ g1 over a field k with a bilinear form [ , ] called the
Lie superbracket of g satisfying the following conditions:

(i) super skewsymmetry: [x, y] = −(−1)|x||y|[y, x],
(ii) super Jacobi identity: (−1)|z||x|[x, [y, z]] + (−1)|x||y|[y, [z, x]] + (−1)|y||z|[z, [x, y]] = 0

for all homogeneous elements x, y, z of g.
Let g = g0 ⊕ g1 be a Lie superalgebra and choose a basis {x1, . . . , xn} of g0 and a basis {y1, . . . , ym}

of g1. The PBW theorem for Lie superalgebras (see [1]) says that the monomials xα1
1 · · · xαn

n yβ1
1 · · · yβm

m
with αi, β j ∈ N0 and βi � 1 form a basis of the enveloping algebra A = U (g). For i ∈ {0,1} let

Ai = span
{

xα1
1 · · · xαn

n yβ1
1 · · · yβm

m

∣∣ β1 + · · · + βm = i (mod 2)
}
.

Then A = A0 ⊕ A1 is an associative superalgebra such that the degree of a homogeneous element of g
equals its degree in A. For any x ∈ g, the adjoint action of x on A is defined by

adx : A → A adx(a) = �x,a� ∀a ∈ A.

By definition of the enveloping algebra we have for all x, y ∈ g:

adx(y) = �x, y� = [x, y].

The following lemma follows from a direct computation which we carry out for the convenience
of the reader.

Lemma 3.2. For any x, y ∈ g one has

adx ◦ ady − (−1)|x||y|ady ◦ adx = ad[x,y]. (1)

Proof. Let a be a homogeneous element of A, x, y ∈ g.

�
x, � y,a� � − (−1)|x||y|�

y, �x,a� �

= x
(

ya − (−1)|y||a|ay
) − (−1)|x|(|y|+|a|)(ya − (−1)|y||a|ay

)
x

− (−1)|x||y|{y
(
xa − (−1)|x||a|ax

) − (−1)|y|(|x|+|a|)(xa − (−1)|x||a|ax
)

y
}

= xya + (−1)|x||y|+|x||a|+|y||a|ayx − (−1)|x||y| yxa − (−1)|a||y|+|x||a|axy

= [x, y]a + (−1)|a|(|x|+|y|)a[x, y] = �[x, y],a
�
. �

Recall that a map f : A −→ A is called locally nilpotent if for every a ∈ A there exists a number
n(a) � 0 such that f n(a)(a) = 0. Also recall that for a nilpotent Lie algebra g, the least positive integer
r such that gr = 0 is called the nilpotency degree of g, where g1 = g and gi+1 = [g,gi] for all i > 1.

Proposition 3.3. Let g be a finite dimensional nilpotent Lie superalgebra. Then adx is a locally nilpotent su-
perderivation of A = U (g), for every homogeneous element x ∈ g.
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Proof. Let r be the nilpotency degree of g, i.e. gr = 0. Then for any a ∈ g we have adr
x(a) = 0.

Let m � 0. Suppose that for every monomial a ∈ A of length m there exists n(a) � 0 such that
adn(a)

x (a) = 0. Let y ∈ g. Then there exist integers c0, c1, . . . , cn(a)+r such that

adn(a)+r
x (ay) =

n(a)+r∑
i=0

ciadi
x(a)adn(a)+r−i

x (y) = 0.

By induction adx is locally nilpotent on all basis elements of A. �
Given an l-tuple of superderivations ∂ = (∂1, . . . , ∂l) of a superalgebra A we say that a subset X

of A is ∂-stable if ∂i(X) ⊆ X for all 1 � i � l. Note that if all superderivations ∂i are inner, i.e. ∂i =
�xi,−� for some homogeneous xi ∈ A, then any ideal I is ∂-stable. Given a homogeneous supercentral
element a ∈ A, the ideal I = Aa is graded and A/Aa is again a superalgebra. We say that a sequence
{x1, . . . , xn} of homogeneous elements of a superalgebra A is a supercentralizing sequence if for each
j = 0, . . . ,n − 1 the image of x j+1 in A/

∑ j
i=1 xi A is a supercentral element.

Theorem 3.4. Let A be a superalgebra with locally nilpotent superderivations ∂1, . . . , ∂l such that⋂l
i=1 ker∂i ⊆ Z(A)s and for all i � j there exist λi, j ∈C with

∂i ◦ ∂ j − λi, j∂ j ◦ ∂i ∈
i−1∑
s=1

C∂s. (2)

Then any nonzero ∂-stable ideal I of A contains a nonzero supercentral element. In particular if I is graded and
Noetherian, then it contains a supercentralizing sequence of generators consisting of homogeneous elements.

Proof. For each 1 � t � l set Kt = ⋂t
i=1 ker∂i . We will first show that Ki are ∂-stable subalgebras

of A. Let 1 � t, j � l and a ∈ Kt . If j � t , then ∂ j(a) = 0 ∈ Kt by definition. Hence suppose j > t . By
hypothesis for any 1 � i � t < j we have

∂i
(
∂ j(a)

) = λi, j∂ j
(
∂i(a)

) +
i−1∑
s=1

μi, j,s∂s(a) = 0

for some λi, j,μi, j,s ∈ C. Thus ∂ j(a) ∈ Kt .
To show that I contains a nonzero element of the supercentre of A note that since ∂1 is locally

nilpotent, for any 0 �= a ∈ I there exists n1 � 0 such that 0 �= a′ = ∂
n1
1 (a) ∈ ker∂1 = K1. Since I is

∂1-stable, a′ ∈ I ∩ K1. Suppose 1 � t � l and 0 �= at ∈ I ∩ Kt , then since ∂t+1 is locally nilpotent, there
exists nt+1 � 0 such that 0 �= a′ = ∂

nt+1
t+1 (a) ∈ ker∂t+1. Since I and Kt are ∂-stable, we have a′ ∈ I ∩ Kt+1.

Hence for t = l, we get 0 �= I ∩ Kl ⊆ I ∩ Z(A)s .
Assume that I is graded and Noetherian and let 0 �= a = a0 + a1 ∈ I ∩ Z(A)s . Since I and Z(A)s are

graded, both parts a0 and a1 belong to I ∩ Z(A)s , one of them being nonzero. Thus we might choose
a to be homogeneous. Let J1 = Aa be the graded ideal generated by a, then all superderivations ∂i

lift to superderivations of A/ J1 satisfying the same relation (2) as before. Moreover I/ J1 is a graded
Noetherian ∂-stable ideal of A/ J1. Applying the procedure of obtaining a supercentral element to I/ J1
in A/ J1 yields a supercentral homogeneous element a′ + J1 ∈ I/ J1 ∩ Z(A/ J1)s . Set J2 = Aa + Aa′ .
Continuing in this way leads to an ascending chain of ideals J1 ⊆ J2 ⊆ · · · ⊆ I that eventually has to
stop, i.e. I = Jm for some m. By construction, the generators used to build up J1, J2, . . . , Jm form a
supercentralizing sequence of generators for I . �
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In order to apply the last proposition to the enveloping algebra of a finite dimensional nilpotent
Lie superalgebra g, we have to choose an appropriate basis of homogeneous elements. Without loss
of generality we might assume that g has a refined central series

g = g(n) ⊃ g(n − 1) ⊃ g(n − 2) ⊃ · · · ⊃ g(1) ⊃ g(0) = {0},
with [g,g(i)] ⊆ g(i − 1) and dim(g(i)/g(i − 1)) = 1 for all 1 � i � n. Let x1, x2, . . . , xn be a basis of g

such that each element xi + g(i − 1) is nonzero (and hence forms a basis) in g(i)/g(i − 1). Actually
each xi is homogeneous, since if xi = xi 0 + xi 1 with xi j homogeneous, then as xi 0 and xi 1 cannot be
linearly independent as g(i)/g(i − 1) is 1-dimensional, one of them belongs to g(i − 1).

Corollary 3.5. Any graded ideal of the enveloping algebra of a finite dimensional nilpotent Lie superalgebra
has a supercentralizing sequence of generators consisting of homogeneous elements.

Proof. Let g and A = U (g) be as above, as well as the chosen basis x1, . . . , xn of g of homogeneous
elements. Set ∂i = adxi . By Proposition 3.3 all superderivations ∂i are locally nilpotent. Let i < j, then
[xi, x j] ∈ g(i − 1) show that there are scalars μi, j,s ∈C such that

[xi, x j] =
i−1∑
s=1

μi, j,sxs.

Note that ad[xi ,x j ] = ∑i−1
s=1 μi, j,sadxs . Therefore, using Lemma 3.2, we have

∂i ◦ ∂ j = (−1)|xi ||x j |∂ j ◦ ∂i +
i−1∑
s=1

μi, j,s∂s.

Hence the assumptions of Theorem 3.4 are fulfilled and our claim follows (since A is Noetherian). �
This last result with Theorem 2.6 gives the following:

Corollary 3.6. Let g be a finite dimensional nilpotent Lie superalgebra. Then U = U (g) satisfies property (�) if
and only if every primitive factor of U does if and only if every graded primitive factor of U does.

Proof. By Corollary 3.5 any graded ideal is generated by supercentral hence normal elements. More-
over every primitive ideal of U (g) is maximal by [14, Corollary 1.6]. Hence the result follows from
Theorem 2.6. �
4. Primitive factors of nilpotent Lie superalgebras

It is a standard fact that primitive factors of enveloping algebras of finite dimensional nilpotent
Lie algebras are Weyl algebras. Recall that the nth Weyl algebra over C is the algebra An(C) where
A0(C) = C and for n > 1 it is the algebra generated by 2n elements x1, . . . , xn, y1, . . . , yn subject to
the relations xi y j − y j xi = δi j and xi x j − x j xi = 0 = yi y j − y j yi , for all 1 � i, j � n.

A. Bell and I. Musson showed in [2] that the graded primitive factors of enveloping algebras of
finite dimensional nilpotent Lie superalgebras are of the form Cliffq(C) ⊗ A p(C) where Cliffq(C) is a
Clifford algebra. We know from [13] that

Cliff0(C) = C, Cliff1(C) = C×C, Cliff2(C) = M2(C)

and Cliffn+2(C) = Cliffn(C) ⊗ M2(C) for all n > 2. The next lemma shows that property (�) is stable
under tensoring with a Clifford algebra:
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Lemma 4.1. A C-algebra A satisfies (�) if and only if Cliffq(C) ⊗ A satisfies (�) for all (for one) q.

Proof. By Corollary 2.3, Cliffq(C) ⊗ A satisfies (�) if A does. On the other hand suppose that there
exists q > 0 such that Cliffq(C) ⊗ A satisfies (�). If q = 2m is even, then Cliffq(C) ⊗ A = M2m (A)

which is Morita equivalent to A. Since (�) is a Morita-invariant property as the equivalence between
module categories yields lattice isomorphisms of the lattice of submodules of modules, we get that A
satisfies (�). If q = 2m + 1 is odd, then Cliffq(C)⊗ A = M2m (A)× M2m (A). Since A is Morita equivalent
to the factor M2m (A) it also satisfies (�). �

The question is hence which Weyl algebras do satisfy (�). Being a semiprime Noetherian ring of
Krull dimension 1, the first Weyl algebra A1(C) satisfies the property (�) [4]. However, for n � 2, the
Weyl algebra An = An(C) does not satisfy the property (�). In [23] J.T. Stafford constructs a simple
An(C)-module which has an essential extension of Krull dimension n − 1:

Theorem 4.2. (See T. Stafford [23, Theorem 1.1, Corollary 1.4].) For 2 � i � n pick λi ∈ C that are linearly
independent over Q. Then the element

α = x1 + y1

(
n∑
2

λi xi yi

)
+

n∑
2

(xi + yi)

generates a maximal right ideal of An = An(C). In particular An/x1αAn is an essential extension of the simple
An-module An/αAn by the module An/x1 An, which has Krull dimension n − 1.

Since Artinian modules are exactly the ones with Krull dimension zero, this implies that An(C)

satisfies the property (�) if and only if n = 1. Stafford’s result is a key ingredient in the proof of our
main theorem. The order of Weyl algebras appearing in the primitive factors of enveloping algebras
U (g) of finite dimensional nilpotent Lie superalgebras g has been determined by E. Herscovich in [9]
and is related to the index of the underlying even part of g.

Let f ∈ g∗ be a linear functional on a Lie algebra g and set

g f = {
x ∈ g

∣∣ f
([x, y]) = 0, ∀y ∈ g

}
be the orthogonal subspace of g with respect to the bilinear form f ([−,−]). The number

ind(g) := inf
f ∈g∗ dimg f

is called the index of g.

Theorem 4.3. (See E. Herscovich [9], A. Bell and I. Musson [2].) Let g be a finite dimensional nilpotent complex
Lie superalgebra.

(1) For f ∈ g∗
0 there exists a graded primitive ideal I( f ) of U (g) such that

U (g)/I( f ) � Cliffq(C) ⊗ Ap(C),

where 2p = dim(g0/g
f
0 )� dim(g0) − ind(g0) and q � 0.

(2) For every graded primitive ideal P of U (g) there exists f ∈ g∗
0 such that P = I( f ).

Combining Stafford’s and Herscovich’s results with Corollary 3.6 leads now easily to the following:
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Proposition 4.4. Let g = g0 ⊕ g1 be a finite dimensional nilpotent complex Lie superalgebra. Then U (g) satis-
fies (�) if and only if ind(g0) � dim(g0) − 2.

Proof. (⇒) By Theorem 4.3 each graded primitive factor of U (g) is of the form Cliffq(C) ⊗ A p(C)

where 2p = dim(g0/g
f
0 ) = dim(g0) − dimg

f
0 . Since the property (�) is inherited by factor rings this

implies together with Theorem 4.2 and Lemma 4.1 that p � 1, that is dimg
f
0 � dim(g0) − 2, i.e.

ind(g0)� dim(g0) − 2.
(⇐) If ind(g0) � dim(g0) − 2 then the graded primitive factors of U (g) are either of the form

Cliffq(C) or Cliffq(C) ⊗ A1(C). Thus the graded primitive factors of U (g) satisfy the property (�) by
Lemma 4.1. This implies together with Corollary 3.6 that U (g) satisfies (�). �
5. Nilpotent Lie algebras with almost maximal index

In this last section we will classify all finite dimensional complex Lie algebras g with index greater
or equal to dimg− 2. It is clear that if ind(g) = dimg, then g is abelian. We say that a Lie algebra g

has almost maximal index if ind(g) = dim(g) − 2.
As a first step we show that a direct product g1 × g2 of two Lie algebras g1 and g2 has almost

maximal index if and only if one of them is abelian and the other one has almost maximal index.
Recall that the Lie bracket of the direct product g = g1 × g2 is defined as

[
(x1, y1), (x2, y2)

] := ([x1, x2], [y1, y2]
)

for all x1, x2 ∈ g1, y1, y2 ∈ g2. For the product algebra, we have the following formula:

Lemma 5.1. For Lie algebras g1,g2 the following formula holds:

ind(g1 × g2) = ind(g1) + ind(g2).

In particular g1 × g2 has almost maximal index if and only if one of the factors has almost maximal index and
the other factor is Abelian.

Proof. Set g = g1 × g2. Since g∗ = g∗
1 × g∗

2, for all f ∈ g∗ , we have dimg f = dimg
f1
1 + dimg

f2
2 , with

f i = f εi ∈ g∗
i and inclusions εi : gi → g. Thus ind(g) = ind(g1)+ ind(g2). Note that in general ind(gi) =

dim(gi) − 2ni for some ni � 0 and let g = g1 × g2. Hence

ind(g) = ind(g1) + ind(g2) = dim(g1) − 2n1 + dim(g2) − 2n2 = dim(g) − 2(n1 + n2) = dim(g) − 2

if and only if n1 + n2 = 1 which shows our claim. �
The lemma together with Proposition 4.4 implies:

Proposition 5.2. Let g be a finite dimensional complex nilpotent Lie algebra. Then U (g)[x1, . . . , xn] has the
property (�) if and only if U (g) has the property (�).

Proof. Suppose that U (g) has the property (�). We have

U (g)[x1, . . . , xn] = U (g) ⊗C[x1, . . . , xn] = U (g) ⊗ U (a) = U (g⊕ a)

for an n-dimensional Abelian Lie algebra a. Since U (g) satisfies (�), g has index at least dim(g)−2. By
Lemma 5.1, we have ind(g⊕ a) � dim(g) + n − 2 = dim(g⊕ a) − 2. Since g⊕ a is nilpotent, it follows
by Proposition 4.4 that U (g⊕a) satisfies (�). Thus U (g)[x1, . . . , xn] also satisfies (�). Conversely, if the
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polynomial algebra U (g)[x1, . . . , xn] has the property (�), then U (g) also has it since it is inherited by
factor rings. �

Note that in general it seems unknown whether property (�) is inherited by forming polynomial
rings. Lemma 5.1 also shows that we can ignore abelian direct factors for the characterization of Lie
algebras with almost maximal index. The following proposition will classify those Lie algebras.

Proposition 5.3. A finite dimensional nilpotent Lie algebra g has almost maximal index if and only if g has an
abelian ideal of codimension 1 or if g is isomorphic (up to an abelian direct factor) to h5 or h6 .

Proof. Let g be a finite dimensional nilpotent Lie algebra of dimension n and index n −2 and suppose
that g does not have an abelian ideal of codimension one. Then there exists a linear function f ∈ g∗
such that dim(g f ) = n − 2. By [8, 1.11.7], g f is an abelian Lie subalgebra of g. By [3, 5.1] there exists
an abelian ideal a of g of codimension 2. Let {e1, . . . , en} be a basis of g such that {e3, . . . , en} is a
basis of a.

Since a is abelian, the matrix of brackets [ei, e j] has the form

M = ([ei, e j]
) =

(
A B

−Bt 0

)

where A is 2 × 2 skew-symmetric matrix and B is a 2 × (n − 2) matrix with entries in a, and 0 is the
(n − 2) × (n − 2) zero matrix. Since g is nilpotent, [e1, e2] ∈ a. Moreover B cannot be the zero matrix
since otherwise g had an abelian ideal of codimension one. Let

Mij =
( [e1, ei] [e1, e j]

[e2, ei] [e2, e j]
)

=
(

a b
c d

)

be any 2 × 2 minor of B where i �= j for i, j � 3.
Our aim is to show that the only nonzero minors Mij of B are those that have precisely one

nonzero column whose entries are linearly independent. Suppose that B contains a minor Mij with
a,d �= 0 and c = 0 or c /∈ span(a,d). Define a linear function f on the vector space span(a,d, c) such
that f (a) = 1, f (d) �= 0 and f (c) = 0. f can be trivially extended to a linear function f ∈ g∗ . Then
{e1, e2, ei} are linearly independent over g f , which implied that the index of g is less than n − 2
which contradicts our hypothesis. The independence of those three elements can be easily checked,
since if x = αe1 +βe2 +γ ei ∈ g f , then 0 = f ([x, ei]) = α f (a)+β f (c) = α implying α = 0. Analogously
0 = f ([x, e j]) = β f (d) implies β = 0 and 0 = f ([x, e1]) = γ f (a) shows γ = 0. Thus B cannot contain
a minor of the given form.

In particular if B contains any nonzero column whose entries are linearly dependent, say [e2, ei] =
λ[e1, ei] for some i � 3 and λ �= 0, then after the base change replacing e2 with e′

2 = e2 − λe1, we
obtain [e′

2, ei] = 0 and [e1, ei] �= 0. If there existed any other column j such that [e′
2, e j] is nonzero,

we had a minor Mij of an impossible shape. Hence [e′
2, e j] = 0 for all j � 3. However this means

that a ⊕ Ce′
2 is an abelian ideal of codimension one which by contradicts our hypothesis. Thus we

showed that the entries of any nonzero column of B are linearly independent. Moreover if two such
nonzero columns existed, say at position i and j, then c ∈ span(a,d), for a = [e1, ei], c = [e2, ei] and
d = [e2, e j]), otherwise Mij had an impossible shape. Since a and c are linearly independent d ∈
span(a, c) and there exist α,β ∈ C such that d = αa + βc. After the base change replacing e j with
e′

j = e j − βei , we obtain [e2, e′
j] = d − βc = αa. Thus the minor Mij has an impossible form, since

c and a are linearly independent. We conclude that B has precisely one nonzero column. Without
loss of generality we may assume that [e1, e3] �= 0 and that we rearrange the basis of a such that
[e1, e3] = e4, [e2, e3] = e5 and [e1, ei] = 0 and [e2, ei] = 0 for all i � 4.

Since [e1, e2] ∈ a, there exist α,β,γ ∈ C such that [e1, e2] = αe3 + βe4 + γ e5 + y ∈ a for y ∈
〈e6, . . . , en〉. We now consider the following two cases:

We now consider the following two cases:
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Case 1. Suppose that y �= 0. Then {e3, e4, e5, [e1, e2]} is a linearly independent subset of a and
we can complete it to a basis {e3, e4, e5, e′

6, . . . , e′
n} of a where e′

6 = [e1, e2]. The nonzero brackets
of g are [e1, e3] = e4, [e2, e3] = e5, [e1, e2] = e′

6. Hence g is the direct product g = h6 × a′ , where
a′ = 〈e′

7, . . . , e′
n〉 is the (n − 6)-dimensional abelian Lie algebra.

Case 2. If y = 0, then first note that α �= 0 because if [e1, e2] = βe4 + γ e5, then the base change
replacing e1 with e′

1 = e1 + γ e3 and e2 with e′
2 = e2 − βe3 yields

[
e′

1, e′
2

] = [e1, e2] − β[e1, e3] + γ [e3, e2] = βe4 + γ e5 − βe4 − γ e5 = 0.

So g has an abelian ideal of codimension one, which contradicts our hypothesis. So α must be nonzero
and we carry out the following base change replacing e3 with e′

3 = αe3 + βe4 + γ e5 as well as
replacing e4 with e′

4 = αe4 and e5 with e′
5 = αe5. Hence

[e1, e2] = e′
3,

[
e1, e′

3

] = e′
4,

[
e2, e′

3

] = e′
5.

Thus g is the direct product g = h5 × a′ , where a′ = 〈e6, . . . , en〉 is the (n − 5)-dimensional abelian Lie
algebra. �
Proof of the Main Theorem 1.1. (a) ⇔ (c) and (b) ⇔ (c) follow from Proposition 4.4. (c) ⇔ (d) follows
from Proposition 5.3. �
6. Examples

Finite dimensional nilpotent Lie algebras g with an abelian ideal of codimension 1 are in bijection
with finite dimensional vector spaces V and nilpotent endomorphisms f : V → V . For such data
one defines g = Ce ⊕ V and [e, x] = f (x) for all x ∈ V . An example of this construction is given by
the n-dimensional standard filiform Lie algebra, which is the Lie algebra on the vector space Ln =
span{e1, . . . , en} such that the only nonzero brackets are given by [e1, ei] = ei+1 for all 2 � i < n.
Hence Ln provides an example of a non-abelian nilpotent Lie algebra g such that U (g) has property
(�). The 3-dimensional Heisenberg Lie algebra occurs as L3.

Given an even dimensional complex vector space V = C2n and an anti-symmetric bilinear form
ω : V × V → C, one defines the 2n + 1-dimensional Heisenberg Lie algebra associated to (V ,ω) as
H2n+1 = V ⊕Ch with h being central and [x, y] = ω(x, y)h for all x, y ∈ V . Note that ind(H2n+1) = 1.
Thus U (H2n+1) satisfies (�) if and only if n = 1, i.e. for H3 =L3.

In [21] a finite dimensional Lie superalgebra g is called a Heisenberg Lie superalgebra if it has
a 1-dimensional homogeneous center Ch = Z(g) such that [g,g] ⊆ Z(g) and such that the associ-
ated homogeneous skew-supersymmetric bilinear form ω : g × g → C given by [x, y] = ω(x, y)h for
all x, y ∈ g is non-degenerated when extended to g/Z(g). On the other hand one can construct a
Heisenberg Lie superalgebra on any finite-dimensional supersymplectic vector superspace V with a
homogeneous supersymplectic form ω.

By [21, p. 73] if ω is even, i.e. ω(g0,g1) = 0, then g0 is a Heisenberg Lie algebra and if ω is odd,
i.e. ω(gi,gi) = 0 for i ∈ {0,1}, then g0 is Abelian. Hence U (g) satisfies (�) if and only if ω is odd or
dimg0 � 3.
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