
Linear Algebra and its Applications 377 (2004) 11–30
www.elsevier.com/locate/laa

Interlace polynomials �

Martin Aigner ∗, Hein van der Holst
II Mathematisches Institut, Freie Universität Berlin, Arnimallee 3, D-14195 Berlin, Germany

Received 21 June 2002; accepted 26 June 2003

Submitted by R.A. Brualdi

Abstract

In a recent paper Arratia, Bollobás and Sorkin discuss a graph polynomial defined re-
cursively, which they call the interlace polynomial q(G, x). They present several interesting
results with applications to the Alexander polynomial and state the conjecture that |q(G,−1)|
is always a power of 2. In this paper we use a matrix approach to study q(G, x). We derive
evaluations of q(G, x) for various x, which are difficult to obtain (if at all) by the defining
recursion. Among other results we prove the conjecture for x = −1. A related interlace poly-
nomial Q(G, x) is introduced. Finally, we show how these polynomials arise as the Martin
polynomials of a certain isotropic system as introduced by Bouchet.
© 2003 Elsevier Inc. All rights reserved.
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1. Introduction

In a recent paper Arratia, Bollobás and Sorkin discussed a graph polynomial
which they called the interlace polynomial q(G). To define q(G) we need the switch-
ing operation along an edge uv ∈ E(G). Let A, B, C ⊆ V (G) \ {u, v} be the sets of
vertices adjacent to u but not to v, to v but not to u, and to both u and v, respectively
(see Fig. 1). Then G(uv) is the graph obtained from G by exchanging edges and non-
edges between any two different sets from A, B, C, keeping the rest of the graph
unchanged (including the edges within A, B and C). Fig. 2 shows an example.
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Fig. 1. Switching operation.

Fig. 2. Example of switching.

The interlace polynomial q(G) of a simple graph G is now defined recursively as
follows:

(i) q(En, x) = xn where En is the edgeless graph on n vertices.
(ii) q(G, x) = q(G \ u, x) + q(G(uv) \ v, x) for uv ∈ E(G).

(1)

Arratia, Bollobás and Sorkin show in [1] that q(G, x) is well-defined, that is, it is
independent of the sequence of edge-removals. They give several interesting results
on q(G, x) with applications to the Alexander polynomial, and state the conjecture
that |q(G, −1)| is always a power of 2.

Example. (i) q(Kn, x) = 2n−1x, (ii) q(K1,n, x) = 2x + x2 + · · · + xn, and more
generally, q(Km,n, x) = (1 + x + · · · + xm−1)(1 + x + · · · + xn−1) + xm + xn − 1.

We derive in Section 2 a formula for q(G, x) in terms of the adjacency matrix of
G, thereby reproving the independence of the order of removal of edges. Then we
look at the evaluation of q(G, x) at x = 1 and x = −1, proving the conjecture for
q(G, −1), and discuss some further results for trees. In Section 3 we show that the
interlace polynomial q(G) of a bipartite graph equals the symmetric Tutte polyno-
mial of a certain binary matroid associated with G. In Section 4 we discuss another
interlace polynomial Q(G, x). Section 5 shows how a linear algebra approach can be
used to provide further interesting evaluations which are difficult to obtain (if at all)
by the basic recursion. Finally, in Section 6 we show that q(G, x) and Q(G, x) arise
as the Martin polynomials m(S, x) and M(S, x) of a certain isotropic system S
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(as introduced by Bouchet [2]). Thus the results of [1] and in the present paper can
be found within the theory outlined by Bouchet in several papers [2–4]. It appears,
however, worthwhile to look at these polynomials via the recursive definition (1) and
via the approach in Section 5, since many of the proofs become simpler and more
transparent.

2. The interlace polynomial q(G, x)

Let G = (V , E) be a simple graph on V = {1, . . . , n}, A the adjacency matrix of
G, and In the identity matrix. Henceforth all matrices will be considered as matrices
over GF(2). Let L be the (n × 2n)-matrix

L = ( A
1...n

| In

1̄...n̄

),

where we label the rows by 1, . . . , n and the columns by 1, . . . , n; 1̄, . . . , n̄. We say
that a column-set S is admissible if |S ∩ {i, ī}| = 1 for all i, thus |S| = n. Let LS

be the (n × n)-submatrix of L with column-set S. We denote by rk M the rank of a
matrix M .

Theorem 1. We have

q(G, x) =
∑
S

(x − 1)co(LS), (2)

where the sum extends over all admissible column-sets S, and co(LS) is the corank
of LS .

Proof. For G = En we have L = (On|In) and so co(LS) = |S ∩ {1, . . . , n}|. Hence∑
S(x − 1)co(LS) = ∑n

k=0

(
n
k

)
(x − 1)k = xn. Suppose w.l.o.g. (n − 1)n ∈ E(G),

then we have to verify the recursion (1) for the right-hand side of (2).
Case (i). n̄ ∈ S. Let S′ = S \ n̄, then the matrix LS looks as shown in Fig. 3.
Clearly, rk(LS) = rk(LS′) + 1, where LS′ is the submatrix with the nth row

removed. Thus co(LS′) = co(LS) and we obtain by induction:∑
S:n̄∈S

(x − 1)co(LS) =
∑
S′

(x − 1)co(LS′ ) = q(G \ n, x).

Fig. 3. Matrix L.
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Case (ii). n ∈ S. We write L as

L =




B c1 c2 I 0 0

cT
1 0 1 0T 1 0

cT
2 1 0 0T 0 1




n − 1 n n − 1 n̄

and multiply L from the left by the matrix C

C =

I c2 c1

0 1 0
0 0 1


 .

Since C is non-singular, all coranks are preserved, and we obtain

CL =




B + c1c
T
2 + c2c

T
1 0 0 I c2 c1

cT
1 0 1 0 1 0

cT
2 1 0 0 0 1


 .

n − 1 n n − 1 n̄

It is easily seen that B + c1c
T
2 + c2c

T
1 is precisely the adjacency matrix of G(n−1,n)

on V \ {n − 1, n}. Interchanging columns n − 1 ←→ n − 1, n ←→ n̄ and rows
n − 1 ←→ n yields


B + c1c

T
2 + c2c

T
1 c2 c1 I 0 0

cT
2 0 1 0 1 0

cT
1 1 0 0 0 1


 .

n − 1 n̄ n − 1 n

Hence by the same argument as in case (i) we find∑
S:n∈S

(x − 1)co(LS) = q(G(n−1,n) \ (n − 1), x),

and the proof is complete. �

Formula (2) can be rewritten in a more convenient way. We clearly have co(AT ) =
co(LS) where T = S ∩ {1, . . . , n}, and AT is the corresponding T × T -submatrix of
A. Since AT is a principal submatrix of A we conclude:

Corollary 1. We have

q(G, x) =
∑

T ⊆{1,...,n}
(x − 1)co(AT ), (3)
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where AT is the adjacency matrix of the subgraph induced by T , and where we define
co(∅) = 0.

The Corollary permits some interesting evaluations of q(G, x). Let us first look
at x = 1. By (3)

q(G, 1) = #{T ⊆ {1, . . . , n} : rk(AT ) = |T |}
or equivalently

q(G, 1) = #{T : det AT = 1}. (4)

Let H be any graph and B its adjacency matrix. It is well-known that det B = 0 if
H has an odd number of vertices (always over GF(2)). On the other hand, if |V (H)|
is even, then the Pfaffian Pf(B) counts the number of perfect matchings in H , and
we have (see e.g. [6]):

det B = (Pf(B))2.

Hence we obtain the following corollary:

Corollary 2. We have

q(G, 1) = # induced subgraphs of G with an odd number of perfect

matchings (including the empty set).

Since a forest has at most one perfect matching, this yields in particular:

Corollary 3. For a forest G, q(G, 1) counts the number of matchings in G (includ-
ing the empty matching).

Example. (i) q(Kn, x) = 2n−1x, q(Kn, 1) = 2n−1, and it is precisely the 2n−1 (com-
plete) subgraphs K2h on an even number of vertices that have an odd number 1 · 3 ·
5 · · · (2h − 1) of perfect matchings.

(ii) q(Km,n, 1) = mn + 1. Since Kh,h has h! perfect matchings, we see that only
the mn individual edges have an odd number of perfect matchings (plus ∅).

We come next to the evaluation at x = −1. Another proof will be given in
Section 5.

Theorem 2. We have

q(G, −1) = (−1)n(−2)co(A+In), (5)

where A is the adjacency matrix of G and In is the identity matrix.

Proof. Set M = A + In. For the edgeless graph G = En we have M = In, thus
co(M) = 0 in agreement with xn|x=−1 = (−1)n.
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Suppose (n − 1)n ∈ E(G). By recursion (1)

q(G, −1) = q(G \ n, −1) + q
(
G(n−1,n) \ (n − 1), −1

)
.

Using the same notation as in the proof of Theorem 1 with C = B + In−2, we
have to consider the matrices

M =

C c1 c2

cT
1 1 1

cT
2 1 1


 , M ′ =

(
C c1

cT
1 1

)
,

M ′′ =
(

C + c1c
T
2 + c2c

T
1 c2

cT
2 1

)
.

It is easily checked that for these matrices exactly one of the following cases
holds:

(i) co(M) = co(M ′) + 1 = co(M ′′) + 1,

(ii) co(M) = co(M ′) = co(M ′′) − 1,

(iii) co(M) = co(M ′′) = co(M ′) − 1.

Now by induction q(G \ n, −1) = (−1)n−1(−2)co(M ′),

q
(
G(n−1,n) \ (n − 1), −1

) = (−1)n−1(−2)co(M ′′).

Hence in case (i) we obtain

q(G, −1) = 2(−1)n−1(−2)co(M)−1 = (−1)n(−2)co(M)

and in cases (ii) or (iii)

q(G, −1) = (−1)n−1[(−2)co(M) + (−2)co(M)+1] = (−1)n(−2)co(M),

as claimed. �

Let us make a few general remarks about the interlace polynomial.

1. Since G(uv)(uv) = G, it follows from (1) that

q(G(uv), x) = q(G, x) for all edges uv. (6)

Let us say that two graphs G and H are equivalent, G ≈ H , if one can be
obtained from the other by a sequence of edge-switchings. Let [G] = {H : H ≈
G} be the switch-class of G. Thus q(H, x) = q(G, x) for all H ∈ [G].

2. If G is not connected, then q(G, x) = ∏t
i=1 q(Gi, x) where Gi are the compo-

nents of G. Furthermore, all coefficients qi of q(G, x) are non-negative integers,
and t = # components is the smallest index h with qh > 0. Again this is clear
from (1).

3. Next we look at the degree of q(G, x). Denote by α(G) the independence number
of G.
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Proposition 1. We have

deg q(G, x) = max
H∈[G] α(H). (7)

Proof. Suppose H ∈ [G] and U is a maximum independent set, |U | = α(H). Since
the adjacency matrix AU is the all-zero matrix, we have co(AU) = α(H), and hence
deg q(H, x) � α(H), for all H ∈ [G]. Now choose H ∈ [G] with α(H) � α(K) for
all K ∈ [G]. If n = |V (H)| = 1 or 2, then (7) is true. We proceed by induction on
n. We have to show α(H) � deg q(G, x) = deg q(H, x), where we may assume H

to be connected. Choose an edge uv ∈ E(H), then

q(H, x) = q(H \ u, x) + q(H(uv) \ v, x).

By induction, deg q(H \ u, x) = α(K \ u) with K ≈ H , and hence by the maxi-
mality of α(H)

deg q(H \ u, x) = α(K \ u) � α(K) � α(H).

Similarly, we find deg q(H(uv) \v, x) � α(H), and thus deg q(H, x) � α(H). �

Proposition 2. If G is a forest, then deg q(G, x) = α(G).

Proof. We may assume that G is a tree. Let u be a leaf of G and v its neighbor.
Then G(uv) = G and thus

q(G, x) = q(G \ u, x) + q(G \ v, x).

Fig. 4 explains the proof. We have α(G \ u), α(G \ v) � α(G). Any maximum inde-
pendent set U of G contains either u or v. If v ∈ U , then α(G \ u) = α(G) and hence
by induction deg q(G \ u, x) = α(G). If, on the other hand, u ∈ U , then α(G \ v) =
α(G), and we find deg q(G \ v, x) = α(G). �

Note that we have also proved on the way that for forests G the highest coefficient
qα equals the number of maximum independent sets.

4. Let q(G, x) = q1x + q2x
2 + · · · + qdxd . In general, it appears to be difficult to

say something substantial about the coefficients, except that qt > 0, qt+1 > 0, . . . ,

qd > 0 where t = # components. But for trees we can say more. Looking at
Fig. 4 we find with a little work

Fig. 4. Switching in trees.
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q1 = 2 (n � 2),

q2 = 2i − 1, where i is the number of non-leaves (n � 3),

q3 = i2 − 2d ′
2 − 4d ′′

2 , where d ′
2 is the number of

vertices of degree 2 which are adjacent to some leaf, and

d ′′
2 the number of the remaining vertices of degree 2 (n � 4).

5. If H is an induced subgraph of G, then Theorem 1 immediately implies that
q(H, x) � q(G, x) meaning that for corresponding coefficients qi(H) � qi(G)

holds.

As an example, suppose that G is connected and non-bipartite. Then G contains
an induced odd cycle Ck of length k � 3. Since any odd cycle can be tranformed by
a series of edge-switchings into a graph containing triangles (see Fig. 5), it follows
that q1 � 4 since q(K3, x) = 4x.

Now (1) implies by induction that for any connected graph with at least two ver-
tices, the linear coefficient q1 is always even. Hence q1 = 2 implies that G is con-
nected and bipartite.

6. Another interesting question concerns invariants of a switching class [G]. Apart
form |V (G)| and q(G, x) we have seen that the number of components is one
such invariant. A more interesting invariant is bipartiteness. More precisely, if G

is connected and bipartite with color classes containing r resp. s vertices, then
any graph H ∈ [G] has the same property, since all switching operations occur
between the color classes.

This settles also the natural question: “Are two trees with the same interlace poly-
nomial equivalent?” in the negative. Fig. 6 shows the smallest example.

Both trees have interlace polynomial 2x + 7x2 + 8x3 + 6x4 + 2x5. But they can-
not be equivalent since the bipartition of the first tree is (4, 4), while it is (5, 3) for
the second tree.

Fig. 5. Odd cycles.
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Fig. 6. The smallest non-equivalent trees.

3. Bipartite graphs and the Tutte polynomial

The last remark in the previous section suggests that bipartite graphs play a special
role, and this is indeed the case. Suppose the bipartite graph G has color-classes R =
{1, . . . , r}, S = {r + 1, . . . , r + s}. We consider the so-called shortened adjacency
matrix

A = (aij ) =



r + 1 · · · r + s

1 1
... 1
r 0


,

where aij = 1 or 0 depending on whether i is adjacent to j or not. We associate to
A the binary matroid M generated by the rows of the r × (r + s)-matrix N

N = ( Ir
1...r

| A
r+1...r+s

).

Theorem 3. If G is bipartite on R = {1, . . . , r}, S = {r + 1, . . . , r + s}, then

q(G, x) = TM(x, x), (8)

where TM is the Tutte polynomial of M.

Proof. Let e1, e2, . . . , er+s be the elements of M corresponding to the columns
of N . If G has no edges, then N = (I |O). Every ei is a loop or coloop, whence
TM(x, x) = xr+s . Now suppose 1, (r + 1) ∈ E(G), then we have to verify recursion
(1) for TM(x, x). We write N in the form

N =
( 1 . . . r r + 1 . . . r + s

1 0T | 1 bT
1

0 Ir−1 | b2 B

)
.

Clearly, e1 is not a loop of M, and it is also not a coloop since the first column is
the sum of column r + 1 and an appropriate subset of the columns 2, . . . , r . For the
Tutte polynomial we have the recursion

TM(x, x) = TM/e1(x, x) + TM\e1(x, x),

and we now verify q(G\1, x) = TM/e1(x, x), q(G(1,r+1) \ (r +1), x) = TM\e1(x, x),
which will prove our result.
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The contraction M/e1 is generated by the matrix

N ′ = (Ir−1|b2B),

whence q(G \ 1, x) = TM/e1(x, x) by induction.
To treat the deletion M \ e1, we multiply N on the left by the non-singular matrix(

1 0T

b2 Ir−1

)
. This gives

N ′′ =
(

1 0T 1 bT
1

b2 Ir−1 0 B + b2b
T
1

)
,

and it is immediately verified that B + b2b
T
1 corresponds to G(1,r+1) on {2, . . . , r;

r + 2, . . . , r + s}. M is again generated by the matrix N ′′. Now M \ e1 is generated
by the matrix(

1 0T bT
1

0 Ir−1 B + b2b
T
1

)

(after moving column r + 1 to the front), and we obtain by induction q(G(1,r+1) \
(r + 1), x) = TM\e1(x, x). �

The results of Section 2 can be reproved quite easily for bipartite graphs using
Theorem 3. On the other hand, Section 2 can be used to provide insights into the
Tutte polynomial TM(x, x). As an example consider the evaluation at x = −1. The

matrix M of Section 2 is M =
(

I A

AT I

)
. Hence ( a

b
) is in the nullspace of M if

and only if a = Ab, b = ATa. On the other hand, considering the matrix N we find
aTN = (aT, aTA = bT), and a = Ab is equivalent to N(a

b
) = 0. Thus ( a

b
) is in the

nullspace of M if and only if (aT, bT) is in the bicycle space C ∩ C⊥ of M, where
C is the row space (cycle space) of M and C⊥ the cocycle space. This gives the
theorem of Read–Rosenstiehl [11]: TM(−1, −1) = (−1)n(−2)dim(C∩C⊥).

4. The interlace polynomial Q(G, x)

Let us first recall the switch operation at a vertex u. The graph G ∗ u is obtained
from G by interchanging edges ←→ non-edges in the neighborhood of u. We triv-
ially have G ∗ u ∗ u = G. If u and v are not adjacent, then G ∗ u ∗ v = G ∗ v ∗ u.
Furthermore, it is well-known that for adjacent vertices u, v (see [6])

G ∗ u ∗ v ∗ u = G ∗ v ∗ u ∗ v, (9)

where the operations are always read from left to right. If H is a graph, then Huv is
the graph obtained by swapping the labels u ←→ v. It is now easily checked that

G ∗ u ∗ v ∗ u = (
G(uv)

)
uv

, uv ∈ E(G). (10)
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Recursion (1) becomes therefore

q(G, x) = q(G \ u, x) + q(G ∗ u ∗ v ∗ u \ u, x).

Now we define the polynomial Q(G, x) by a 3-term recursion:

(i) Q(En, x) = xn,

(ii) Q(G, x) = Q(G \ u, x) + Q(G ∗ u \ u, x) + Q(G ∗ u ∗ v ∗ u \ u, x), (11)

if uv ∈ E(G), or equivalently

Q(G, x) = Q(G \ u, x) + Q(G ∗ u \ u, x) + Q(G(uv) \ v, x).

Example. Q(K2, x) = 3x, Q(K3, x) = 6x + x2, Q(K4, x) = 12x + 2x2 + x3.
We want to show that Q(G, x) is independent of the order of removal of edges. Let
A be the adjacency matrix of G and consider the (n × 3n)-matrix L

L = (A|In|A + In),

where the columns are indexed by 1, . . . , n; 1̄, . . . , n̄; ¯̄1, . . . , ¯̄n. A column-set S is

admissible if |S ∩ {i, ī, ¯̄i}| = 1 for all i, thus |S| = n. Let us denote by LS the n × n-
submatrix of L with column-set S. The following proof proceeds along the same
lines as that of Theorem 1 and is omitted.

Theorem 4. We have

Q(G, x) =
∑
S

(x − 2)co(LS),

where S extends over all admissible column-sets.

Corollary 4. We have

(i) Q(G ∗ u, x) = Q(G, x) for all u ∈ V (G),
(ii) Q(G(uv), x) = Q(G, x) for all uv ∈ E(G).

Proof. If u is an isolated vertex, then G ∗ u = G, and there is nothing to show.
Otherwise, let uv ∈ E(G). By (9) and (11)

Q(G, x) = Q(G \ u, x) + Q(G ∗ u \ u, x) + Q(G ∗ v ∗ u ∗ v \ u, x).

On the other hand,

Q(G ∗ u, x) = Q(G ∗ u \ u, x) + Q(G \ u, x)

+ Q(G ∗ u ∗ u ∗ v ∗ u \ u, x).

Since by induction

Q(G ∗ v ∗ u \ u, x) = Q((G ∗ v ∗ u \ u) ∗ v, x),
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Fig. 7. Illustration of Corollary 5.

and clearly G ∗ v ∗ u ∗ v \ u = (G ∗ v ∗ u \ u) ∗ v, claim (i) follows. The proof of
(ii) is similar. �

Let us look at the evaluation of Q(G, x) at x = 2. By Theorem 4

Q(G, 2) = #{S : det LS = 1}.
The result of Corollary 1 now carries over with the following modification. Let

H = G[T ] be the induced subgraph on T . With H we consider all subgraphs with
possible loops attached to the vertices, and call all these subgraphs induced. So if
|T | = k, there are altogether 2k (general) induced subgraphs on T . A (general) per-
fect matching of H is now a perfect matching where we also allow loops to be part of
the matching. The following result is now again proved by considering the Pfaffian.

Corollary 5. We have

Q(G, 2) = # (general) induced subgraphs with an odd number of

(general) perfect matchings.

Example. Q(K4, x) = 12x +2x2 +x3, thus Q(K4, 2) = 40. The induced subgraphs
with an odd number of perfect matchings are shown in Fig. 7.

Another interesting evaluation which can be shown using (11) and the switch
operation occurs at x = 4. It will be proved in the next section. An Eulerian graph
is one in which all degrees are even.

Theorem 5. We have

Q(G, 4) = 2n · (# induced Eulerian subgraphs).

In particular, if G is a forest, then the induced Eulerian subgraphs are just the
independent sets.

Corollary 6. If G is a forest, then

Q(G, 4) = 2n · (# independent sets).
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Example. Let Pn be the path on n vertices. Solving recursion (11) we find

Q(P2m, x) =
m−1∑
k=0

2m + 4k + 1

m + k
22k

(
m + k

2k + 1

)
xm−k,

Q(P2m+1, x) =
m∑

k=0

m + 2k

m + k
22k

(
m + k

2k

)
xm+1−k.

It is easily seen that the number of independent sets in Pn is precisely the Fibon-
acci number Fn+2. Hence Corollary 6 gives the formulae

F2m =
m−2∑
k=0

2m + 4k − 1

m + k − 1

(
m + k − 1

2k + 1

)

(m � 2).

F2m+1 =
m−1∑
k=0

2m + 4k − 2

m + k − 1

(
m + k − 1

2k

)

5. A linear algebra look at the interlace polynomials

Let us consider the interlace polynomial q(G, x) in the form (3) of Corollary 1.
Set V = {1, 2, . . . , n}, then

q(G, x) =
∑
T ⊆V

(x − 1)co AT .

We will see how easy matrix manipulations (as always over GF(2)) yield some
further interesting evaluations of q(G, x). We begin with some simple observations.

1. Let B be a symmetric matrix, then ImB = (KerB)⊥, KerB = (ImB)⊥.
If y ∈ KerB, z = Bw ∈ ImB, then zTy = wTBy = 0, and hence ImB ⊆ (KerB)⊥.
But since the subspaces ImB and (KerB)⊥ have the same dimension, they are, in
fact, equal.
For y ∈ GF(2)n, denote by ‖y‖ the support of y, that is ‖y‖ = {i ∈ V : yi = 1}.

2. If A is the adjacency matrix of any graph G, then yTAy = 0 for all y.
Let R = ‖y‖, then yTAy = ∑

i,j∈R aij = 2 · (# edges in G[R]), hence yTAy =
0.

3. It follows from (2) that yT(A + I )y = yTy, and thus yTy = 0 if y ∈ Ker(A + I ).
4. We have 1 ∈ Im(A + I ) where 1 is the all-ones vector.

By (3), 1 is orthogonal to all y ∈ Ker(A + I ), and hence 1 ∈ Im(A + I ) by 1).

Lemma 1. We have co AT ≡ |T | (mod 2) for any T ⊆ V.
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Proof. If |T | = 0, then co A∅ = 0, and for |T | = 1 we have co AT = 1. Now we
proceed by induction on |T |. Consider N = AT and

N ′ =
(

0 cT

c N

)
,

thus rk N ′ ∈ {rk N, rk N + 1, rk N + 2}.
Case (i). c �∈ ImN . This means rk N ′ = rkN + 2, and hence co N ′ = co N − 1.
Case (ii). c ∈ ImN , c = Ny. Then yTc = yTNy = 0 by (2), and thus yT(c, N) =

(0, cT), implying rk N ′ = rk N , that is, co N ′ = co N + 1. �

Remark. Lemma 1 shows, in particular, that co A = 0 implies |V | ≡ 0 (mod 2). In
other words, if |N | is odd, then A is a singular matrix. Furthermore, we obtain the
evaluation

q(G, 0) =
∑
T ⊆V

(−1)co AT =
∑
T ⊆V

(−1)|T | = 0 for |V | � 1.

Lemma 2. If (A + I )y = 1, then
∣∣‖y‖∣∣ ≡ rk(A + I ) (mod 2).

Proof. This is shown by an induction argument as in Lemma 1. �

Now we come to the central definition.

Definition. A vector y is Eulerian if the subgraph G[R] induced by the support
R = ‖y‖ is an Eulerian graph.

A moment’s thought shows that Eulerian vectors are characterized in the follow-
ing manner.

Lemma 3. The vector y is Eulerian if and only if ‖y‖ ∩ ‖Ay‖ = ∅.

If y is Eulerian, then we say that y spans F = ‖y‖ ∪ ‖Ay‖. Let EF denote the
set of Eulerian vectors which span F , and set eF = |EF |. We call F ⊆ V proper
if eF /= 0.

The following result is immediate.

Lemma 4. The Eulerian vector y spans F if and only if ‖y‖ ⊆ F, ‖Ay‖ ⊆ F and
‖(A + I )y‖ = F . In particular, the whole set V is proper (since 1 ∈ Im(A + I ) by
(4)), and y ∈ EV if and only if (A + I )y = 1.

The next two propositions are the key results.



M. Aigner, H. van der Holst / Linear Algebra and its Applications 377 (2004) 11–30 25

Proposition 3. Let T ⊆ V. Then

|KerAT | = #{y : ‖y‖ ⊆ T , ‖Ay‖ ⊆ V \ T }.

Proof. Let yT be the restriction of y to T . Then clearly

‖y‖ ⊆ T , ‖Ay‖ ⊆ V \ T ⇐⇒ ‖y‖ ⊆ T and AT yT = 0,

and the result follows. �

Proposition 4. Let F ⊆ V be proper. Then

eF = #{y : ‖y‖ ⊆ F, y ∈ Ker(A + I )}.

Proof. Denote the set on the right-hand side by ẼF , and let u ∈ EF . We claim
that ẼF = u + EF which will prove the result. Suppose z ∈ EF , then by Lemma
4 ‖u + z‖ ⊆ F and further ‖(A + I )u‖ = F = ‖(A + I )z‖ which implies ‖(A +
I )(u + z)‖ = ∅, i.e. u + z ∈ Ker(A + I ). Hence u + EF ⊆ ẼF . The converse in-
clusion u + ẼF ⊆ EF is just as easily established. �

We can bring the result of Proposition 4 into the following succinct form. Denote
by P(F) the subspace of all vectors y with ‖y‖ ⊆ F . Clearly,

dim P(F) = |F | and P(F)⊥ = P(V \ F). (12)

With this notation, ẼF = P(F) ∩ Ker(A + I ), and in particular ẼV = Ker(A + I ).
In summary, we note that for a proper set F

eF = 2dim(P (F )∩Ker(A+I )) (13)

and
eV = 2dim Ker(A+I ). (14)

We come to the main results. First we reprove Theorem 2.

Proof of Theorem 2. For x = −1 we have

q(G, −1) =
∑
T

(−2)co AT =
∑
T

2co AT (−1)co AT ,

which is by Proposition 3

=
∑
T

∑
y:‖y‖⊆T

‖Ay‖⊆V \T

(−1)co AT

=
∑

y Eulerian

∑
‖y‖⊆T ⊆V \‖Ay‖

(−1)co AT .

Now if ‖y‖ ∪ ‖Ay‖ /= V , then the inner sum is by Lemma 1∑
‖y‖⊆T ⊆V \‖Ay‖

(−1)|T | = 0.
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Hence we obtain from Lemmas 1 and 2 and (14)

q(G, −1) =
∑

y∈EV

(−1)

∣∣‖y‖
∣∣ = (−1)rk(A+I )eV

= (−1)rk(A+I )2dim Ker(A+I ) = (−1)n(−2)co(A+I ). �

The following result was proved by Las Vergnas [9] for the Tutte polynomial
T (x, x) of a graph and generalized by Jaeger to binary matroids [7]. Our proof is an
adaption of their arguments.

Theorem 6. For any graph, q(G, 3) is divisible by q(G, −1), and the quotient is
an odd integer.

Proof. We have by Proposition 3

q(G, 3) =
∑
T

2co AT =
∑
T

∑
y:‖y‖⊆T

‖Ay‖⊆V \T

1

=
∑

y Eulerian

∑
‖y‖⊆T ⊆V \‖Ay‖

1 =
∑

y Eulerian

2|V |−
∣∣‖y‖∪‖Ay‖

∣∣

=
∑

F proper

∑
y∈EF

2|V |−|F | =
∑

F proper

2|V |−|F |eF .

Claim. Let F /= V be proper, then

2dim Ker(A+I )+1 divides 2|V |−|F |eF .

Using (13) and (12) we find

2|V |−|F |eF = 2|V |−|F |2dim(P (F )∩ Ker(A+I ))

= 2|V |−|F |2dim P(F)+dim Ker(A+I )−dim(P (F )+Ker(A+I ))

= 2dim Ker(A+I )+dim(P (F )+Ker(A+I ))⊥

= 2dim Ker(A+I )+dim(P (V \F)∩Im(A+I )),

and it remains to show that P(V \ F) ∩ Im(A + I ) /= {0}.
Let u span F , then by Lemma 4, ‖(A + I )u‖ = F , and hence y = 1 + (A + I )u

is in P(V \ F) ∩ Im(A + I ), since 1 ∈ Im(A + I ). Finally, we note that y /= 0, since
F /= V .
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To finish the proof we have by the claim and (14)

q(G, 3) = eV +
∑

F /=V proper

2|V |−|F |eF

= 2dim Ker(A+I ) + 2
∑

F /=V proper

2dim Ker(A+I )pF

= 2dim Ker(A+I )

[
1 + 2

∑
pF

]
,

where the pF are integers, and the proof is complete by Theorem 2. �

We finally come to the proof of Theorem 5. As in Section 4 we consider the
matrix L = (A|I |A + I ), and admissible subsets S. Let T = S ∩ {1, . . . , n}, T1 =
S ∩ {1̄, . . . , n̄}, T2 = S ∩ {¯̄1, . . . , ¯̄n}, and denote by LT ∪T2 the submatrix of LS with
rows and columns from T ∪ T2. Thus

We clearly have co LS = co LT ∪T2 . Furthermore, we note

z =
(

zT

zT2

)
∈ KerLT ∪T2 �⇒ zT

T2
zT2 = 0. (15)

Indeed, by (2) we have

0 = zTLT ∪T2z = zT(AT ∪T2)z + zT
T2

zT2 = zT
T2

zT2 .

We say that an Eulerian vector y fits the admissible set S if ‖y‖ ⊆ T ∪ T2, ‖Ay‖ ⊆
T1 ∪ T2, T2 ⊆ ‖(A + I )y‖. Let FitS be the set of Eulerian vectors that fit S.

Lemma 5. For any Eulerian vector y there are precisely 2n admissible sets for
which y fits.

Proof. If i ∈ ‖y‖, then i may belong to T or T2. Similarly i ∈ ‖Ay‖ may belong to
T1 or T2, and i ∈ V \ (‖y‖ ∪ ‖Ay‖) may belong to T or T1. �



28 M. Aigner, H. van der Holst / Linear Algebra and its Applications 377 (2004) 11–30

Proposition 5
(i) An Eulerian vector y fits S if and only if yT1 = 0 and LT ∪T2

(
yT

yT2

) = ( 0T

1T2

)
.

(ii) |FitS | = 2co LT ∪T2 = 2co LS for any admissible set S.

Proof. (i) is proved by an analogous argument as in Proposition 3. To verify (ii)
we need only show FitS /= ∅ for any S, since then FitS corresponds to a coset of
KerLT ∪T2 by (i). Now

FitS /= ∅ ⇐⇒
(

0T

1T2

)
∈ ImLT ∪T2 ⇐⇒

(
0T

1T2

)
⊥

(
yT

yT2

)

for all

(
yT

yT2

)
∈ KerLT ∪T2 .

By (15) we find yT
T2

yT2 = 0, and hence

(
0T
T , 1T

T2

)(yT

yT2

)
= 1T

T2
yT2 = yT

T2
yT2 = 0. �

Proof of Theorem 5. The interlace polynomial Q(G, x) is given by Q(G, x) =∑
S(x − 2)co LS . According to Lemma 5 and and Proposition 5 we find

2n · (# Eulerian vectors) =
∑

y Eulerian

∑
S:y∈FitS

1 =
∑
S

∑
y∈FitS

1

=
∑
S

2co LS = Q(G, 4). �

6. Isotropic systems

Isotropic systems were introduced by Bouchet in a series of papers to unify cer-
tain properties of binary matroids and transition systems of 4-regular graphs. For
convenience we recall the definition.

Let V = {1, 2, . . . , n} be the ground-set. We consider the vector space V =
(GF(2))2n where the coordinates are indexed by {1, . . . , n; 1̄, . . . , n̄}. On the set
GF(2)2 = {(0, 0), (1, 0), (0, 1), (1, 1)} we consider the bilinear form

〈(x, y), (x′, y′)〉 =
{

1, if (0, 0) /= (x, y) /= (x′, y′) /= (0, 0),

0, otherwise,

and extend this by linearity to V (over GF(2))

〈X, Y 〉 =
∑
v∈V

〈(Xv, Xv̄), (Yv, Yv̄)〉. (16)

A subset L ⊆ V is called totally isotropic if 〈X, Y 〉 = 0 for any X, Y ∈ L.
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Definition. S = (V ,L) ⊆ GF(2)2n is called an isotropic system if

(i) L is a totally isotropic subspace,
(ii) dimL = n.

Example. Let C ∈ V with (Cv, Cv̄) /= (0, 0) for all v. By C(P ) we denote the
restriction to P ⊆ V , that is

(C(P )v, C(P )v̄) =
{
(Cv, Cv̄) if v ∈ P,

(0, 0) if v �∈ P.

Clearly, Ĉ = {C(P ) : P ⊆ V } is an isotropic system.
For our purposes we are interested in the following isotropic system (see [3]). Let

G = (V , E) be a simple graph and A its adjacency matrix. Consider the matrix

L = ( A
1...n

| In

1̄...n̄

)

as in Theorem 1, indexed by 1, . . . , n; 1̄, . . . , n̄.

Claim. SG = (V ,LG) where LG is the row space of L is an isotropic system.
We obviously have dimLG = n. Consider two rows C and D of L, corresponding

to the vertices c and d , respectively. For v /= c, d we have Cv̄ = Dv̄ = 0, and hence

〈(Cv, Cv̄), (Dv, Dv̄)〉 = 0 by (16).

If cd �∈ E(G), then (Dc, Dc̄) = (0, 0) and (Cd, Cd̄) = (0, 0). On the other hand,
if cd ∈ E(G), then

(Cc, Cc̄) = (0, 1), (Dc, Dc̄) = (1, 0),

(Cd, Cd̄) = (1, 0), (Dd, Dd̄) = (0, 1),

and we conclude 〈C, D〉 = 1 + 1 = 0 by (16). Thus in all cases 〈C, D〉 = 0, and by
linearity LG is totally isotropic.

Bouchet defines in [4] the Martin polynomials m(S, x) of an arbitrary isotropic
system S (relative to a complete vector), which in our case reduces to

m(SG, x) =
∑
C

(x − 1)dim(LG∩Ĉ),

where the sum is extended over all vectors C with (Cv, Cv̄) /= (0, 0), (1, 1).
Now it is readily verified that for SG

dim(LG ∩ Ĉ) = co(LS)

in the notation of Theorem 1 where v ∈ S ⇐⇒ Cv = 0 and thus v̄ ∈ S ⇐⇒ Cv = 1.
From this follows

Theorem 7. We have

q(G, x) = m(SG, x).
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The second interlace polynomial Q(G, x) can also be found within the context of
isotropic systems. Call a vector C ∈ GF(2)2n complete if (Cv, Cv̄) /= (0, 0) for all
v ∈ V . Then the Martin polynomial M(S, x) of an isotropic system S = (V ,L) is
defined as

M(S, x) =
∑
C

(x − 2)dim(LG∩Ĉ),

where C runs through all complete vectors.
It can again be shown with the notation of Theorem 4 that for the system SG

considered above

dim(LG ∩ Ĉ) = co(LS),

where v ∈ S ⇐⇒ (Cv, Cv̄) = (0, 1), v̄ ∈ S ⇐⇒ (Cv, Cv̄) = (1, 0), ¯̄v ∈ S ⇐⇒
(Cv, Cv̄) = (1, 1). From this follows

Theorem 8. We have

Q(G, x) = M(SG, x).
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