Available online at www.sciencedirect.com

LINEAR ALGEBRA

AND ITS

Interlace polynomials **

Martin Aigner *, Hein van der Holst
II Mathematisches Institut, Freie Universität Berlin, Arnimallee 3, D-14195 Berlin, Germany
Received 21 June 2002; accepted 26 June 2003
Submitted by R.A. Brualdi

Abstract

In a recent paper Arratia, Bollobás and Sorkin discuss a graph polynomial defined recursively, which they call the interlace polynomial $q(G, x)$. They present several interesting results with applications to the Alexander polynomial and state the conjecture that $|q(G,-1)|$ is always a power of 2 . In this paper we use a matrix approach to study $q(G, x)$. We derive evaluations of $q(G, x)$ for various x, which are difficult to obtain (if at all) by the defining recursion. Among other results we prove the conjecture for $x=-1$. A related interlace polynomial $Q(G, x)$ is introduced. Finally, we show how these polynomials arise as the Martin polynomials of a certain isotropic system as introduced by Bouchet. © 2003 Elsevier Inc. All rights reserved.

Keywords: Interlace polynomial; Binary matroid; Tutte polynomial; Isotropic system

1. Introduction

In a recent paper Arratia, Bollobás and Sorkin discussed a graph polynomial which they called the interlace polynomial $q(G)$. To define $q(G)$ we need the switching operation along an edge $u v \in E(G)$. Let $A, B, C \subseteq V(G) \backslash\{u, v\}$ be the sets of vertices adjacent to u but not to v, to v but not to u, and to both u and v, respectively (see Fig. 1). Then $G^{(u v)}$ is the graph obtained from G by exchanging edges and nonedges between any two different sets from A, B, C, keeping the rest of the graph unchanged (including the edges within A, B and C). Fig. 2 shows an example.

[^0]

Fig. 1. Switching operation.

Fig. 2. Example of switching.
The interlace polynomial $q(G)$ of a simple graph G is now defined recursively as follows:
(i) $q\left(E_{n}, x\right)=x^{n}$ where E_{n} is the edgeless graph on n vertices.
(ii) $q(G, x)=q(G \backslash u, x)+q\left(G^{(u v)} \backslash v, x\right)$ for $u v \in E(G)$.

Arratia, Bollobás and Sorkin show in [1] that $q(G, x)$ is well-defined, that is, it is independent of the sequence of edge-removals. They give several interesting results on $q(G, x)$ with applications to the Alexander polynomial, and state the conjecture that $|q(G,-1)|$ is always a power of 2 .

Example. (i) $q\left(K_{n}, x\right)=2^{n-1} x$, (ii) $q\left(K_{1, n}, x\right)=2 x+x^{2}+\cdots+x^{n}$, and more generally, $q\left(K_{m, n}, x\right)=\left(1+x+\cdots+x^{m-1}\right)\left(1+x+\cdots+x^{n-1}\right)+x^{m}+x^{n}-1$.

We derive in Section 2 a formula for $q(G, x)$ in terms of the adjacency matrix of G, thereby reproving the independence of the order of removal of edges. Then we look at the evaluation of $q(G, x)$ at $x=1$ and $x=-1$, proving the conjecture for $q(G,-1)$, and discuss some further results for trees. In Section 3 we show that the interlace polynomial $q(G)$ of a bipartite graph equals the symmetric Tutte polynomial of a certain binary matroid associated with G. In Section 4 we discuss another interlace polynomial $Q(G, x)$. Section 5 shows how a linear algebra approach can be used to provide further interesting evaluations which are difficult to obtain (if at all) by the basic recursion. Finally, in Section 6 we show that $q(G, x)$ and $Q(G, x)$ arise as the Martin polynomials $m(\mathscr{S}, x)$ and $M(\mathscr{S}, x)$ of a certain isotropic system \mathscr{S}
(as introduced by Bouchet [2]). Thus the results of [1] and in the present paper can be found within the theory outlined by Bouchet in several papers [2-4]. It appears, however, worthwhile to look at these polynomials via the recursive definition (1) and via the approach in Section 5, since many of the proofs become simpler and more transparent.

2. The interlace polynomial $\boldsymbol{q}(\boldsymbol{G}, \boldsymbol{x})$

Let $G=(V, E)$ be a simple graph on $V=\{1, \ldots, n\}, A$ the adjacency matrix of G, and I_{n} the identity matrix. Henceforth all matrices will be considered as matrices over $G F(2)$. Let L be the $(n \times 2 n)$-matrix

$$
L=(\underset{1 \ldots n}{A} \mid
$$

where we label the rows by $1, \ldots, n$ and the columns by $1, \ldots, n ; \overline{1}, \ldots, \bar{n}$. We say that a column-set S is admissible if $|S \cap\{i, \bar{i}\}|=1$ for all i, thus $|S|=n$. Let L_{S} be the $(n \times n)$-submatrix of L with column-set S. We denote by $\mathrm{rk} M$ the rank of a matrix M.

Theorem 1. We have

$$
\begin{equation*}
q(G, x)=\sum_{S}(x-1)^{\mathrm{co}\left(L_{S}\right)} \tag{2}
\end{equation*}
$$

where the sum extends over all admissible column-sets S, and $\operatorname{co}\left(L_{S}\right)$ is the corank of L_{S}.

Proof. For $G=E_{n}$ we have $L=\left(O_{n} \mid I_{n}\right)$ and so $\operatorname{co}\left(L_{S}\right)=|S \cap\{1, \ldots, n\}|$. Hence $\sum_{S}(x-1)^{\operatorname{co}\left(L_{S}\right)}=\sum_{k=0}^{n}\binom{n}{k}(x-1)^{k}=x^{n}$. Suppose w.l.o.g. $(n-1) n \in E(G)$, then we have to verify the recursion (1) for the right-hand side of (2).

Case (i). $\bar{n} \in S$. Let $S^{\prime}=S \backslash \bar{n}$, then the matrix L_{S} looks as shown in Fig. 3.
Clearly, $\operatorname{rk}\left(L_{S}\right)=\operatorname{rk}\left(L_{S^{\prime}}\right)+1$, where $L_{S^{\prime}}$ is the submatrix with the nth row removed. Thus $\operatorname{co}\left(L_{S^{\prime}}\right)=\operatorname{co}\left(L_{S}\right)$ and we obtain by induction:

$$
\sum_{S: \bar{n} \in S}(x-1)^{\operatorname{co}\left(L_{S}\right)}=\sum_{S^{\prime}}(x-1)^{\operatorname{co}\left(L_{S^{\prime}}\right)}=q(G \backslash n, x)
$$

Fig. 3. Matrix L.

Case (ii). $n \in S$. We write L as

$$
L=\left(\begin{array}{ccc|ccc}
B & c_{1} & c_{2} & I & 0 & 0 \\
c_{1}^{\mathrm{T}} & 0 & 1 & 0^{\mathrm{T}} & 1 & 0 \\
c_{2}^{\mathrm{T}} & 1 & 0 & 0^{\mathrm{T}} & 0 & 1
\end{array}\right)
$$

and multiply L from the left by the matrix C

$$
C=\left(\begin{array}{ccc}
I & c_{2} & c_{1} \\
0 & 1 & 0 \\
0 & 0 & 1
\end{array}\right)
$$

Since C is non-singular, all coranks are preserved, and we obtain

$$
C L=\left(\begin{array}{ccc|ccc}
B+c_{1} c_{2}^{\mathrm{T}}+c_{2} c_{1}^{\mathrm{T}} & 0 & 0 & I & c_{2} & c_{1} \\
c_{1}^{\mathrm{T}} & 0 & 1 & 0 & 1 & 0 \\
c_{2}^{\mathrm{T}} & 1 & 0 & 0 & 0 & 1
\end{array}\right)
$$

It is easily seen that $B+c_{1} c_{2}^{\mathrm{T}}+c_{2} c_{1}^{\mathrm{T}}$ is precisely the adjacency matrix of $G^{(n-1, n)}$ on $V \backslash\{n-1, n\}$. Interchanging columns $n-1 \longleftrightarrow \overline{n-1}, n \longleftrightarrow \bar{n}$ and rows $n-1 \longleftrightarrow n$ yields

$$
\left(\begin{array}{ccc|ccc}
B+c_{1} c_{2}^{\mathrm{T}}+c_{2} c_{1}^{\mathrm{T}} & c_{2} & c_{1} & I & 0 & 0 \\
c_{2}^{\mathrm{T}} & 0 & 1 & 0 & 1 & 0 \\
c_{1}^{\mathrm{T}} & 1 & 0 & 0 & 0 & 1
\end{array}\right) .
$$

Hence by the same argument as in case (i) we find

$$
\sum_{S: n \in S}(x-1)^{\operatorname{co}\left(L_{S}\right)}=q\left(G^{(n-1, n)} \backslash(n-1), x\right),
$$

and the proof is complete.
Formula (2) can be rewritten in a more convenient way. We clearly have $\operatorname{co}\left(A_{T}\right)=$ $\operatorname{co}\left(L_{S}\right)$ where $T=S \cap\{1, \ldots, n\}$, and A_{T} is the corresponding $T \times T$-submatrix of A. Since A_{T} is a principal submatrix of A we conclude:

Corollary 1. We have

$$
\begin{equation*}
q(G, x)=\sum_{T \subseteq\{1, \ldots, n\}}(x-1)^{\operatorname{co}\left(A_{T}\right)} \tag{3}
\end{equation*}
$$

where A_{T} is the adjacency matrix of the subgraph induced by T, and where we define $\operatorname{co}(\varnothing)=0$.

The Corollary permits some interesting evaluations of $q(G, x)$. Let us first look at $x=1$. By (3)

$$
q(G, 1)=\#\left\{T \subseteq\{1, \ldots, n\}: \operatorname{rk}\left(A_{T}\right)=|T|\right\}
$$

or equivalently

$$
\begin{equation*}
q(G, 1)=\#\left\{T: \operatorname{det} A_{T}=1\right\} . \tag{4}
\end{equation*}
$$

Let H be any graph and B its adjacency matrix. It is well-known that $\operatorname{det} B=0$ if H has an odd number of vertices (always over $G F(2)$). On the other hand, if $|V(H)|$ is even, then the Pfaffian $\operatorname{Pf}(B)$ counts the number of perfect matchings in H, and we have (see e.g. [6]):

$$
\operatorname{det} B=(\operatorname{Pf}(B))^{2} \text {. }
$$

Hence we obtain the following corollary:
Corollary 2. We have

$$
\begin{aligned}
q(G, 1)= & \# \text { induced subgraphs of } G \text { with an odd number of perfect } \\
& \text { matchings (including the empty set). }
\end{aligned}
$$

Since a forest has at most one perfect matching, this yields in particular:
Corollary 3. For a forest $G, q(G, 1)$ counts the number of matchings in G (including the empty matching).

Example. (i) $q\left(K_{n}, x\right)=2^{n-1} x, q\left(K_{n}, 1\right)=2^{n-1}$, and it is precisely the 2^{n-1} (complete) subgraphs $K_{2 h}$ on an even number of vertices that have an odd number 1.3. $5 \cdots(2 h-1)$ of perfect matchings.
(ii) $q\left(K_{m, n}, 1\right)=m n+1$. Since $K_{h, h}$ has h ! perfect matchings, we see that only the $m n$ individual edges have an odd number of perfect matchings (plus \varnothing).

We come next to the evaluation at $x=-1$. Another proof will be given in Section 5.

Theorem 2. We have

$$
\begin{equation*}
q(G,-1)=(-1)^{n}(-2)^{\operatorname{co}\left(A+I_{n}\right)}, \tag{5}
\end{equation*}
$$

where A is the adjacency matrix of G and I_{n} is the identity matrix.
Proof. Set $M=A+I_{n}$. For the edgeless graph $G=E_{n}$ we have $M=I_{n}$, thus $\operatorname{co}(M)=0$ in agreement with $\left.x^{n}\right|_{x=-1}=(-1)^{n}$.

Suppose $(n-1) n \in E(G)$. By recursion (1)

$$
q(G,-1)=q(G \backslash n,-1)+q\left(G^{(n-1, n)} \backslash(n-1),-1\right)
$$

Using the same notation as in the proof of Theorem 1 with $C=B+I_{n-2}$, we have to consider the matrices

$$
\begin{aligned}
M & =\left(\begin{array}{ccc}
C & c_{1} & c_{2} \\
c_{1}^{\mathrm{T}} & 1 & 1 \\
c_{2}^{\mathrm{T}} & 1 & 1
\end{array}\right), \quad M^{\prime}=\left(\begin{array}{cc}
C & c_{1} \\
c_{1}^{\mathrm{T}} & 1
\end{array}\right), \\
M^{\prime \prime} & =\left(\begin{array}{cc}
C+c_{1} c_{2}^{\mathrm{T}}+c_{2} c_{1}^{\mathrm{T}} & c_{2} \\
c_{2}^{\mathrm{T}} & 1
\end{array}\right) .
\end{aligned}
$$

It is easily checked that for these matrices exactly one of the following cases holds:
(i) $\operatorname{co}(M)=\operatorname{co}\left(M^{\prime}\right)+1=\operatorname{co}\left(M^{\prime \prime}\right)+1$,
(ii) $\operatorname{co}(M)=\operatorname{co}\left(M^{\prime}\right)=\operatorname{co}\left(M^{\prime \prime}\right)-1$,
(iii) $\operatorname{co}(M)=\operatorname{co}\left(M^{\prime \prime}\right)=\operatorname{co}\left(M^{\prime}\right)-1$.

Now by induction $q(G \backslash n,-1)=(-1)^{n-1}(-2)^{\operatorname{co}\left(M^{\prime}\right)}$,

$$
q\left(G^{(n-1, n)} \backslash(n-1),-1\right)=(-1)^{n-1}(-2)^{\operatorname{co}\left(M^{\prime \prime}\right)}
$$

Hence in case (i) we obtain

$$
q(G,-1)=2(-1)^{n-1}(-2)^{\operatorname{co}(M)-1}=(-1)^{n}(-2)^{\operatorname{co}(M)}
$$

and in cases (ii) or (iii)

$$
q(G,-1)=(-1)^{n-1}\left[(-2)^{\operatorname{co}(M)}+(-2)^{\operatorname{co}(M)+1}\right]=(-1)^{n}(-2)^{\operatorname{co}(M)}
$$

as claimed.

Let us make a few general remarks about the interlace polynomial.

1. Since $G^{(u v)(u v)}=G$, it follows from (1) that $q\left(G^{(u v)}, x\right)=q(G, x) \quad$ for all edges $u v$.
Let us say that two graphs G and H are equivalent, $G \approx H$, if one can be obtained from the other by a sequence of edge-switchings. Let $[G]=\{H: H \approx$ $G\}$ be the switch-class of G. Thus $q(H, x)=q(G, x)$ for all $H \in[G]$.
2. If G is not connected, then $q(G, x)=\prod_{i=1}^{t} q\left(G_{i}, x\right)$ where G_{i} are the components of G. Furthermore, all coefficients q_{i} of $q(G, x)$ are non-negative integers, and $t=\#$ components is the smallest index h with $q_{h}>0$. Again this is clear from (1).
3. Next we look at the degree of $q(G, x)$. Denote by $\alpha(G)$ the independence number of G.

Proposition 1. We have

$$
\begin{equation*}
\operatorname{deg} q(G, x)=\max _{H \in[G]} \alpha(H) \tag{7}
\end{equation*}
$$

Proof. Suppose $H \in[G]$ and U is a maximum independent set, $|U|=\alpha(H)$. Since the adjacency matrix A_{U} is the all-zero matrix, we have $\operatorname{co}\left(A_{U}\right)=\alpha(H)$, and hence $\operatorname{deg} q(H, x) \geqslant \alpha(H)$, for all $H \in[G]$. Now choose $H \in[G]$ with $\alpha(H) \geqslant \alpha(K)$ for all $K \in[G]$. If $n=|V(H)|=1$ or 2 , then (7) is true. We proceed by induction on n. We have to show $\alpha(H) \geqslant \operatorname{deg} q(G, x)=\operatorname{deg} q(H, x)$, where we may assume H to be connected. Choose an edge $u v \in E(H)$, then

$$
q(H, x)=q(H \backslash u, x)+q\left(H^{(u v)} \backslash v, x\right)
$$

By induction, $\operatorname{deg} q(H \backslash u, x)=\alpha(K \backslash u)$ with $K \approx H$, and hence by the maximality of $\alpha(H)$

$$
\operatorname{deg} q(H \backslash u, x)=\alpha(K \backslash u) \leqslant \alpha(K) \leqslant \alpha(H)
$$

Similarly, we find $\operatorname{deg} q\left(H^{(u v)} \backslash v, x\right) \leqslant \alpha(H)$, and thus $\operatorname{deg} q(H, x) \leqslant \alpha(H)$.
Proposition 2. If G is a forest, then $\operatorname{deg} q(G, x)=\alpha(G)$.
Proof. We may assume that G is a tree. Let u be a leaf of G and v its neighbor. Then $G^{(u v)}=G$ and thus

$$
q(G, x)=q(G \backslash u, x)+q(G \backslash v, x)
$$

Fig. 4 explains the proof. We have $\alpha(G \backslash u), \alpha(G \backslash v) \leqslant \alpha(G)$. Any maximum independent set U of G contains either u or v. If $v \in U$, then $\alpha(G \backslash u)=\alpha(G)$ and hence by induction $\operatorname{deg} q(G \backslash u, x)=\alpha(G)$. If, on the other hand, $u \in U$, then $\alpha(G \backslash v)=$ $\alpha(G)$, and we find $\operatorname{deg} q(G \backslash v, x)=\alpha(G)$.

Note that we have also proved on the way that for forests G the highest coefficient q_{α} equals the number of maximum independent sets.
4. Let $q(G, x)=q_{1} x+q_{2} x^{2}+\cdots+q_{d} x^{d}$. In general, it appears to be difficult to say something substantial about the coefficients, except that $q_{t}>0, q_{t+1}>0, \ldots$, $q_{d}>0$ where $t=\#$ components. But for trees we can say more. Looking at Fig. 4 we find with a little work

Fig. 4. Switching in trees.

$$
\begin{aligned}
q_{1}= & & (n \geqslant 2), \\
q_{2}= & 2 i-1, \quad \text { where } i \text { is the number of non-leaves } & (n \geqslant 3), \\
q_{3}= & i^{2}-2 d_{2}^{\prime}-4 d_{2}^{\prime \prime}, \text { where } d_{2}^{\prime} \text { is the number of } & \\
& \text { vertices of degree } 2 \text { which are adjacent to some leaf, and } & \\
& d_{2}^{\prime \prime} \text { the number of the remaining vertices of degree } 2 & (n \geqslant 4) .
\end{aligned}
$$

5. If H is an induced subgraph of G, then Theorem 1 immediately implies that $q(H, x) \leqslant q(G, x)$ meaning that for corresponding coefficients $q_{i}(H) \leqslant q_{i}(G)$ holds.

As an example, suppose that G is connected and non-bipartite. Then G contains an induced odd cycle C_{k} of length $k \geqslant 3$. Since any odd cycle can be tranformed by a series of edge-switchings into a graph containing triangles (see Fig. 5), it follows that $q_{1} \geqslant 4$ since $q\left(K_{3}, x\right)=4 x$.

Now (1) implies by induction that for any connected graph with at least two vertices, the linear coefficient q_{1} is always even. Hence $q_{1}=2$ implies that G is connected and bipartite.
6. Another interesting question concerns invariants of a switching class [G]. Apart form $|V(G)|$ and $q(G, x)$ we have seen that the number of components is one such invariant. A more interesting invariant is bipartiteness. More precisely, if G is connected and bipartite with color classes containing r resp. s vertices, then any graph $H \in[G]$ has the same property, since all switching operations occur between the color classes.

This settles also the natural question: "Are two trees with the same interlace polynomial equivalent?" in the negative. Fig. 6 shows the smallest example.

Both trees have interlace polynomial $2 x+7 x^{2}+8 x^{3}+6 x^{4}+2 x^{5}$. But they cannot be equivalent since the bipartition of the first tree is $(4,4)$, while it is $(5,3)$ for the second tree.

Fig. 5. Odd cycles.

Fig. 6. The smallest non-equivalent trees.

3. Bipartite graphs and the Tutte polynomial

The last remark in the previous section suggests that bipartite graphs play a special role, and this is indeed the case. Suppose the bipartite graph G has color-classes $R=$ $\{1, \ldots, r\}, S=\{r+1, \ldots, r+s\}$. We consider the so-called shortened adjacency matrix

$$
A=\left(a_{i j}\right)=\begin{gathered}
1 \\
\vdots \\
r+1
\end{gathered}\left(\begin{array}{ccc}
r+1 & & r+s \\
& & 1 \\
& 0 &
\end{array}\right)
$$

where $a_{i j}=1$ or 0 depending on whether i is adjacent to j or not. We associate to A the binary matroid \mathscr{M} generated by the rows of the $r \times(r+s)$-matrix N

$$
N=\left(\underset{1 \ldots r}{\left(I_{r} \mid\right.} \underset{r+1 \ldots r+s}{A}\right) .
$$

Theorem 3. If G is bipartite on $R=\{1, \ldots, r\}, S=\{r+1, \ldots, r+s\}$, then

$$
\begin{equation*}
q(G, x)=T_{\mathscr{M}}(x, x) \tag{8}
\end{equation*}
$$

where $T_{\mathscr{M}}$ is the Tutte polynomial of \mathscr{M}.

Proof. Let $e_{1}, e_{2}, \ldots, e_{r+s}$ be the elements of \mathscr{M} corresponding to the columns of N. If G has no edges, then $N=(I \mid O)$. Every e_{i} is a loop or coloop, whence $T_{M}(x, x)=x^{r+s}$. Now suppose $1,(r+1) \in E(G)$, then we have to verify recursion (1) for $T_{M}(x, x)$. We write N in the form

$$
N=\left(\begin{array}{ccc|ccc}
1 & \ldots & r & r+1 & \ldots & r+s \\
1 & & 0^{\mathrm{T}} & 1 & & b_{1}^{\mathrm{T}} \\
0 & & I_{r-1} & b_{2} & & B
\end{array}\right) .
$$

Clearly, e_{1} is not a loop of \mathscr{M}, and it is also not a coloop since the first column is the sum of column $r+1$ and an appropriate subset of the columns $2, \ldots, r$. For the Tutte polynomial we have the recursion

$$
T_{M}(x, x)=T_{M / e_{1}}(x, x)+T_{M / M e_{1}}(x, x)
$$

and we now verify $q(G \backslash 1, x)=T_{\mathcal{M} / e_{1}}(x, x), q\left(G^{(1, r+1)} \backslash(r+1), x\right)=T_{\mathcal{M} \backslash e_{1}}(x, x)$, which will prove our result.

The contraction \mathscr{M} / e_{1} is generated by the matrix

$$
N^{\prime}=\left(I_{r-1} \mid b_{2} B\right)
$$

whence $q(G \backslash 1, x)=T_{M / e_{1}}(x, x)$ by induction.
To treat the deletion $\mathscr{M} \backslash e_{1}$, we multiply N on the left by the non-singular matrix $\left(\begin{array}{cc}1 & 0^{\mathrm{T}} \\ b_{2} & I_{r-1}\end{array}\right)$. This gives

$$
N^{\prime \prime}=\left(\begin{array}{cc|cc}
1 & 0^{\mathrm{T}} & 1 & b_{1}^{\mathrm{T}} \\
b_{2} & I_{r-1} & 0 & B+b_{2} b_{1}^{\mathrm{T}}
\end{array}\right)
$$

and it is immediately verified that $B+b_{2} b_{1}^{\mathrm{T}}$ corresponds to $G^{(1, r+1)}$ on $\{2, \ldots, r$; $r+2, \ldots, r+s\} . \mathscr{M}$ is again generated by the matrix $N^{\prime \prime}$. Now $\mathscr{M} \backslash e_{1}$ is generated by the matrix

$$
\left(\begin{array}{cc|c}
1 & 0^{\mathrm{T}} & b_{1}^{\mathrm{T}} \\
0 & I_{r-1} & B+b_{2} b_{1}^{\mathrm{T}}
\end{array}\right)
$$

(after moving column $r+1$ to the front), and we obtain by induction $q\left(G^{(1, r+1)} \backslash\right.$ $(r+1), x)=T_{M \backslash e_{1}}(x, x)$.

The results of Section 2 can be reproved quite easily for bipartite graphs using Theorem 3. On the other hand, Section 2 can be used to provide insights into the Tutte polynomial $T_{M}(x, x)$. As an example consider the evaluation at $x=-1$. The matrix M of Section 2 is $M=\left(\begin{array}{cc}I & A \\ A^{\mathrm{T}} & I\end{array}\right)$. Hence $\left(\frac{a}{b}\right)$ is in the nullspace of M if and only if $a=A b, b=A^{\mathrm{T}} a$. On the other hand, considering the matrix N we find $a^{\mathrm{T}} N=\left(a^{\mathrm{T}}, a^{\mathrm{T}} A=b^{\mathrm{T}}\right)$, and $a=A b$ is equivalent to $N\left(\frac{a}{b}\right)=0$. Thus $\left(\frac{a}{b}\right)$ is in the nullspace of M if and only if ($a^{\mathrm{T}}, b^{\mathrm{T}}$) is in the bicycle space $\mathscr{C} \cap \mathscr{C}^{\perp}$ of \mathscr{M}, where \mathscr{C} is the row space (cycle space) of \mathscr{M} and \mathscr{C}^{\perp} the cocycle space. This gives the theorem of Read-Rosenstiehl [11]: $T_{\mathscr{M}}(-1,-1)=(-1)^{n}(-2)^{\operatorname{dim}\left(\mathscr{C} \cap \mathscr{\&}^{\perp}\right)}$.

4. The interlace polynomial $Q(G, x)$

Let us first recall the switch operation at a vertex u. The graph $G * u$ is obtained from G by interchanging edges \longleftrightarrow non-edges in the neighborhood of u. We trivially have $G * u * u=G$. If u and v are not adjacent, then $G * u * v=G * v * u$. Furthermore, it is well-known that for adjacent vertices u, v (see [6])

$$
\begin{equation*}
G * u * v * u=G * v * u * v \tag{9}
\end{equation*}
$$

where the operations are always read from left to right. If H is a graph, then $H_{u v}$ is the graph obtained by swapping the labels $u \longleftrightarrow v$. It is now easily checked that

$$
\begin{equation*}
G * u * v * u=\left(G^{(u v)}\right)_{u v}, \quad u v \in E(G) \tag{10}
\end{equation*}
$$

Recursion (1) becomes therefore

$$
q(G, x)=q(G \backslash u, x)+q(G * u * v * u \backslash u, x)
$$

Now we define the polynomial $Q(G, x)$ by a 3 -term recursion:
(i) $Q\left(E_{n}, x\right)=x^{n}$,
(ii) $Q(G, x)=Q(G \backslash u, x)+Q(G * u \backslash u, x)+Q(G * u * v * u \backslash u, x)$,
if $u v \in E(G)$, or equivalently

$$
Q(G, x)=Q(G \backslash u, x)+Q(G * u \backslash u, x)+Q\left(G^{(u v)} \backslash v, x\right)
$$

Example. $Q\left(K_{2}, x\right)=3 x, Q\left(K_{3}, x\right)=6 x+x^{2}, Q\left(K_{4}, x\right)=12 x+2 x^{2}+x^{3}$. We want to show that $Q(G, x)$ is independent of the order of removal of edges. Let A be the adjacency matrix of G and consider the $(n \times 3 n)$-matrix L

$$
L=\left(A\left|I_{n}\right| A+I_{n}\right)
$$

where the columns are indexed by $1, \ldots, n ; \overline{1}, \ldots, \bar{n} ; \overline{\overline{1}}, \ldots, \overline{\bar{n}}$. A column-set S is admissible if $|S \cap\{i, \bar{i}, \overline{\bar{i}}\}|=1$ for all i, thus $|S|=n$. Let us denote by L_{S} the $n \times n$ submatrix of L with column-set S. The following proof proceeds along the same lines as that of Theorem 1 and is omitted.

Theorem 4. We have

$$
Q(G, x)=\sum_{S}(x-2)^{\mathrm{co}\left(L_{S}\right)}
$$

where S extends over all admissible column-sets.

Corollary 4. We have
(i) $Q(G * u, x)=Q(G, x)$ for all $u \in V(G)$,
(ii) $Q\left(G^{(u v)}, x\right)=Q(G, x)$ for all $u v \in E(G)$.

Proof. If u is an isolated vertex, then $G * u=G$, and there is nothing to show. Otherwise, let $u v \in E(G)$. By (9) and (11)

$$
Q(G, x)=Q(G \backslash u, x)+Q(G * u \backslash u, x)+Q(G * v * u * v \backslash u, x)
$$

On the other hand,

$$
\begin{aligned}
Q(G * u, x)= & Q(G * u \backslash u, x)+Q(G \backslash u, x) \\
& +Q(G * u * u * v * u \backslash u, x)
\end{aligned}
$$

Since by induction

$$
Q(G * v * u \backslash u, x)=Q((G * v * u \backslash u) * v, x)
$$

Fig. 7. Illustration of Corollary 5.
and clearly $G * v * u * v \backslash u=(G * v * u \backslash u) * v$, claim (i) follows. The proof of (ii) is similar.

Let us look at the evaluation of $Q(G, x)$ at $x=2$. By Theorem 4

$$
Q(G, 2)=\#\left\{S: \operatorname{det} L_{S}=1\right\} .
$$

The result of Corollary 1 now carries over with the following modification. Let $H=G[T]$ be the induced subgraph on T. With H we consider all subgraphs with possible loops attached to the vertices, and call all these subgraphs induced. So if $|T|=k$, there are altogether 2^{k} (general) induced subgraphs on T. A (general) perfect matching of H is now a perfect matching where we also allow loops to be part of the matching. The following result is now again proved by considering the Pfaffian.

Corollary 5. We have

$$
\begin{aligned}
Q(G, 2)= & \#(\text { general }) \text { induced subgraphs with an odd number of } \\
& (\text { general }) \text { perfect matchings. }
\end{aligned}
$$

Example. $Q\left(K_{4}, x\right)=12 x+2 x^{2}+x^{3}$, thus $Q\left(K_{4}, 2\right)=40$. The induced subgraphs with an odd number of perfect matchings are shown in Fig. 7.

Another interesting evaluation which can be shown using (11) and the switch operation occurs at $x=4$. It will be proved in the next section. An Eulerian graph is one in which all degrees are even.

Theorem 5. We have
$Q(G, 4)=2^{n} \cdot(\#$ induced Eulerian subgraphs $)$.

In particular, if G is a forest, then the induced Eulerian subgraphs are just the independent sets.

Corollary 6. If G is a forest, then

$$
Q(G, 4)=2^{n} \cdot(\# \text { independent sets }) .
$$

Example. Let P_{n} be the path on n vertices. Solving recursion (11) we find

$$
\begin{aligned}
& Q\left(P_{2 m}, x\right)=\sum_{k=0}^{m-1} \frac{2 m+4 k+1}{m+k} 2^{2 k}\binom{m+k}{2 k+1} x^{m-k}, \\
& Q\left(P_{2 m+1}, x\right)=\sum_{k=0}^{m} \frac{m+2 k}{m+k} 2^{2 k}\binom{m+k}{2 k} x^{m+1-k}
\end{aligned}
$$

It is easily seen that the number of independent sets in P_{n} is precisely the Fibonacci number F_{n+2}. Hence Corollary 6 gives the formulae

$$
\begin{aligned}
& F_{2 m}=\sum_{k=0}^{m-2} \frac{2 m+4 k-1}{m+k-1}\binom{m+k-1}{2 k+1} \\
& F_{2 m+1}=\sum_{k=0}^{m-1} \frac{2 m+4 k-2}{m+k-1}\binom{m+k-1}{2 k} \quad(m \geqslant 2) .
\end{aligned}
$$

5. A linear algebra look at the interlace polynomials

Let us consider the interlace polynomial $q(G, x)$ in the form (3) of Corollary 1. Set $V=\{1,2, \ldots, n\}$, then

$$
q(G, x)=\sum_{T \subseteq V}(x-1)^{\operatorname{co} A_{T}} .
$$

We will see how easy matrix manipulations (as always over $G F(2)$) yield some further interesting evaluations of $q(G, x)$. We begin with some simple observations.

1. Let B be a symmetric matrix, then $\operatorname{Im} B=(\operatorname{Ker} B)^{\perp}$, $\operatorname{Ker} B=(\operatorname{Im} B)^{\perp}$.

If $y \in \operatorname{Ker} B, z=B w \in \operatorname{Im} B$, then $z^{\mathrm{T}} y=w^{\mathrm{T}} B y=0$, and hence $\operatorname{Im} B \subseteq(\operatorname{Ker} B)^{\perp}$. But since the subspaces $\operatorname{Im} B$ and $(\operatorname{Ker} B)^{\perp}$ have the same dimension, they are, in fact, equal.
For $y \in G F(2)^{n}$, denote by $\|y\|$ the support of y, that is $\|y\|=\left\{i \in V: y_{i}=1\right\}$.
2. If A is the adjacency matrix of any graph G, then $y^{\mathrm{T}} A y=0$ for all y.

Let $R=\|y\|$, then $y^{\mathrm{T}} A y=\sum_{i, j \in R} a_{i j}=2 \cdot(\#$ edges in $G[R])$, hence $y^{\mathrm{T}} A y=$ 0.
3. It follows from (2) that $y^{\mathrm{T}}(A+I) y=y^{\mathrm{T}} y$, and thus $y^{\mathrm{T}} y=0$ if $y \in \operatorname{Ker}(A+I)$.
4. We have $\mathbf{1} \in \operatorname{Im}(A+I)$ where $\mathbf{1}$ is the all-ones vector.

By (3), $\mathbf{1}$ is orthogonal to all $y \in \operatorname{Ker}(A+I)$, and hence $\mathbf{1} \in \operatorname{Im}(A+I)$ by 1$)$.
Lemma 1. We have co $A_{T} \equiv|T|(\bmod 2)$ for any $T \subseteq V$.

Proof. If $|T|=0$, then co $A_{\varnothing}=0$, and for $|T|=1$ we have co $A_{T}=1$. Now we proceed by induction on $|T|$. Consider $N=A_{T}$ and

$$
N^{\prime}=\left(\begin{array}{ll}
0 & c^{\mathrm{T}} \\
c & N
\end{array}\right)
$$

thus rk $N^{\prime} \in\{\operatorname{rk} N, \operatorname{rk} N+1, \operatorname{rk} N+2\}$.
Case (i). $c \notin \operatorname{Im} N$. This means $\operatorname{rk} N^{\prime}=\operatorname{rk} N+2$, and hence $\operatorname{co} N^{\prime}=\operatorname{co} N-1$.
Case (ii). $c \in \operatorname{Im} N, c=N y$. Then $y^{\mathrm{T}} c=y^{\mathrm{T}} N y=0$ by (2), and thus $y^{\mathrm{T}}(c, N)=$ $\left(0, c^{\mathrm{T}}\right)$, implying $\mathrm{rk} N^{\prime}=\mathrm{rk} N$, that is, $\operatorname{co} N^{\prime}=\operatorname{co} N+1$.

Remark. Lemma 1 shows, in particular, that co $A=0$ implies $|V| \equiv 0(\bmod 2)$. In other words, if $|N|$ is odd, then A is a singular matrix. Furthermore, we obtain the evaluation

$$
q(G, 0)=\sum_{T \subseteq V}(-1)^{\operatorname{co} A_{T}}=\sum_{T \subseteq V}(-1)^{|T|}=0 \quad \text { for }|V| \geqslant 1 .
$$

Lemma 2. If $(A+I) y=1$, then $|\|y\|| \equiv r k(A+I)(\bmod 2)$.
Proof. This is shown by an induction argument as in Lemma 1.
Now we come to the central definition.

Definition. A vector y is Eulerian if the subgraph $G[R]$ induced by the support $R=\|y\|$ is an Eulerian graph.

A moment's thought shows that Eulerian vectors are characterized in the following manner.

Lemma 3. The vector y is Eulerian if and only if $\|y\| \cap\|A y\|=\varnothing$.
If y is Eulerian, then we say that y spans $F=\|y\| \cup\|A y\|$. Let E_{F} denote the set of Eulerian vectors which span F, and set $e_{F}=\left|E_{F}\right|$. We call $F \subseteq V$ proper if $e_{F} \neq 0$.

The following result is immediate.
Lemma 4. The Eulerian vector y spans F if and only if $\|y\| \subseteq F,\|A y\| \subseteq F$ and $\|(A+I) y\|=F$. In particular, the whole set V is proper (since $\mathbf{1} \in \operatorname{Im}(A+I)$ by (4)), and $y \in E_{V}$ if and only if $(A+I) y=\mathbf{1}$.

The next two propositions are the key results.

Proposition 3. Let $T \subseteq V$. Then

$$
\left|\operatorname{Ker} A_{T}\right|=\#\{y:\|y\| \subseteq T, \quad\|A y\| \subseteq V \backslash T\}
$$

Proof. Let y_{T} be the restriction of y to T. Then clearly
$\|y\| \subseteq T, \quad\|A y\| \subseteq V \backslash T \Longleftrightarrow\|y\| \subseteq T \quad$ and $\quad A_{T} y_{T}=0$,
and the result follows.

Proposition 4. Let $F \subseteq V$ be proper. Then

$$
e_{F}=\#\{y:\|y\| \subseteq F, \quad y \in \operatorname{Ker}(A+I)\} .
$$

Proof. Denote the set on the right-hand side by \tilde{E}_{F}, and let $u \in E_{F}$. We claim that $\tilde{E}_{F}=u+E_{F}$ which will prove the result. Suppose $z \in E_{F}$, then by Lemma $4\|u+z\| \subseteq F$ and further $\|(A+I) u\|=F=\|(A+I) z\| \underset{\tilde{E}}{\text { which implies } \|(A+}$ $I)(u+z) \|=\varnothing$, i.e. $u+z \in \operatorname{Ker}(A+I)$. Hence $u+E_{F} \subseteq \tilde{E}_{F}$. The converse inclusion $u+\tilde{E}_{F} \subseteq E_{F}$ is just as easily established.

We can bring the result of Proposition 4 into the following succinct form. Denote by $P(F)$ the subspace of all vectors y with $\|y\| \subseteq F$. Clearly,

$$
\begin{equation*}
\operatorname{dim} P(F)=|F| \quad \text { and } \quad P(F)^{\perp}=P(V \backslash F) \tag{12}
\end{equation*}
$$

With this notation, $\tilde{E}_{F}=P(F) \cap \operatorname{Ker}(A+I)$, and in particular $\tilde{E}_{V}=\operatorname{Ker}(A+I)$. In summary, we note that for a proper set F

$$
\begin{equation*}
e_{F}=2^{\operatorname{dim}(P(F) \cap \operatorname{Ker}(A+I))} \tag{13}
\end{equation*}
$$

and

$$
\begin{equation*}
e_{V}=2^{\operatorname{dim} \operatorname{Ker}(A+I)} . \tag{14}
\end{equation*}
$$

We come to the main results. First we reprove Theorem 2.
Proof of Theorem 2. For $x=-1$ we have

$$
q(G,-1)=\sum_{T}(-2)^{\mathrm{co} A_{T}}=\sum_{T} 2^{\mathrm{co} A_{T}}(-1)^{\mathrm{co} A_{T}}
$$

which is by Proposition 3

$$
\begin{aligned}
& =\sum_{T} \sum_{\substack{y:\|y\| \subseteq T \\
\|A y\| \subseteq V \backslash T}}(-1)^{\operatorname{co} A_{T}} \\
& =\sum_{y \text { Eulerian }\|y\| \subseteq T \subseteq V \backslash\|A y\|}(-1)^{\operatorname{co} A_{T}} .
\end{aligned}
$$

Now if $\|y\| \cup\|A y\| \neq V$, then the inner sum is by Lemma 1

$$
\sum_{\|y\| \subseteq T \subseteq V \backslash\|A y\|}(-1)^{|T|}=0 .
$$

Hence we obtain from Lemmas 1 and 2 and (14)

$$
\begin{aligned}
q(G,-1) & =\sum_{y \in E_{V}}(-1)^{|\|y\||}=(-1)^{\mathrm{rk}(A+I)} e_{V} \\
& =(-1)^{\mathrm{rk}(A+I)} 2^{\operatorname{dim} \operatorname{Ker}(A+I)}=(-1)^{n}(-2)^{\operatorname{co}(A+I)} .
\end{aligned}
$$

The following result was proved by Las Vergnas [9] for the Tutte polynomial $T(x, x)$ of a graph and generalized by Jaeger to binary matroids [7]. Our proof is an adaption of their arguments.

Theorem 6. For any graph, $q(G, 3)$ is divisible by $q(G,-1)$, and the quotient is an odd integer.

Proof. We have by Proposition 3

$$
\begin{aligned}
q(G, 3) & =\sum_{T} 2^{\operatorname{co} A_{T}}=\sum_{T} \sum_{\substack{y\| \|\|\subseteq T\\
\| A y\| \| V \backslash T}} 1 \\
& =\sum_{y \text { Eulerian }} \sum_{\|y\| \subseteq T \subseteq V \backslash\|A y\|} 1=\sum_{y \text { Eulerian }} 2^{|V|-|\|y\| U\|A y\||} \\
& =\sum_{F \text { proper }} \sum_{y \in E_{F}} 2^{|V|-|F|}=\sum_{F \text { proper }} 2^{|V|-|F|} e_{F} .
\end{aligned}
$$

Claim. Let $F \neq V$ be proper, then

$$
2^{\operatorname{dim} \operatorname{Ker}(A+I)+1} \text { divides } 2^{|V|-|F|} e_{F} .
$$

Using (13) and (12) we find

$$
\begin{aligned}
2^{|V|-|F|} e_{F} & =2^{|V|-|F|} 2^{\operatorname{dim}(P(F) \cap \operatorname{Ker}(A+I))} \\
& =2^{|V|-|F|} 2^{\operatorname{dim} P(F)+\operatorname{dim} \operatorname{Ker}(A+I)-\operatorname{dim}(P(F)+\operatorname{Ker}(A+I))} \\
& =2^{\operatorname{dim} \operatorname{Ker}(A+I)+\operatorname{dim}(P(F)+\operatorname{Ker}(A+I))^{\perp}} \\
& =2^{\operatorname{dim} \operatorname{Ker}(A+I)+\operatorname{dim}(P(V \backslash F) \cap I m(A+I))},
\end{aligned}
$$

and it remains to show that $P(V \backslash F) \cap \operatorname{Im}(A+I) \neq\{0\}$.
Let u span F, then by Lemma $4,\|(A+I) u\|=F$, and hence $y=\mathbf{1}+(A+I) u$ is in $P(V \backslash F) \cap \operatorname{Im}(A+I)$, since $\mathbf{1} \in \operatorname{Im}(A+I)$. Finally, we note that $y \neq 0$, since $F \neq V$.

To finish the proof we have by the claim and (14)

$$
\begin{aligned}
q(G, 3) & =e_{V}+\sum_{F \neq V \text { proper }} 2^{|V|-|F|} e_{F} \\
& =2^{\operatorname{dim} \operatorname{Ker}(A+I)}+2 \sum_{F \neq V \text { proper }} 2^{\operatorname{dim} \operatorname{Ker}(A+I)} p_{F} \\
& =2^{\operatorname{dim} \operatorname{Ker}(A+I)}\left[1+2 \sum p_{F}\right]
\end{aligned}
$$

where the p_{F} are integers, and the proof is complete by Theorem 2.
We finally come to the proof of Theorem 5. As in Section 4 we consider the matrix $L=(A|I| A+I)$, and admissible subsets S. Let $T=S \cap\{1, \ldots, n\}, T_{1}=$ $S \cap\{\overline{1}, \ldots, \bar{n}\}, T_{2}=S \cap\{\overline{\overline{1}}, \ldots, \overline{\bar{n}}\}$, and denote by $L_{T \cup T_{2}}$ the submatrix of L_{S} with rows and columns from $T \cup T_{2}$. Thus

We clearly have co $L_{S}=\operatorname{co} L_{T \cup T_{2}}$. Furthermore, we note

$$
\begin{equation*}
z=\binom{z_{T}}{z_{T_{2}}} \in \operatorname{Ker} L_{T \cup T_{2}} \Longrightarrow z_{T_{2}}^{\mathrm{T}} z_{T_{2}}=0 \tag{15}
\end{equation*}
$$

Indeed, by (2) we have

$$
0=z^{\mathrm{T}} L_{T \cup T_{2}} z=z^{\mathrm{T}}\left(A_{T \cup T_{2}}\right) z+z_{T_{2}}^{\mathrm{T}} z_{T_{2}}=z_{T_{2}}^{\mathrm{T}} z_{T_{2}} .
$$

We say that an Eulerian vector y fits the admissible set S if $\|y\| \subseteq T \cup T_{2},\|A y\| \subseteq$ $T_{1} \cup T_{2}, T_{2} \subseteq\|(A+I) y\|$. Let Fit S_{S} be the set of Eulerian vectors that fit S.

Lemma 5. For any Eulerian vector y there are precisely 2^{n} admissible sets for which y fits.

Proof. If $i \in\|y\|$, then i may belong to T or T_{2}. Similarly $i \in\|A y\|$ may belong to T_{1} or T_{2}, and $i \in V \backslash(\|y\| \cup\|A y\|)$ may belong to T or T_{1}.

Proposition 5

(i) An Eulerian vector y fits S if and only if $y_{T_{1}}=0$ and $L_{T \cup T_{2}}\binom{y_{T}}{y_{T_{2}}}=\binom{\mathbf{0}_{T}}{\mathbf{1}_{T_{2}}}$.
(ii) $\left|\mathrm{Fit}_{S}\right|=2^{\mathrm{co}^{\mathrm{co}} L_{T T_{2}}}=2^{\mathrm{co} L_{S}}$ for any admissible set S.

Proof. (i) is proved by an analogous argument as in Proposition 3. To verify (ii) we need only show $\mathrm{Fit}_{S} \neq \varnothing$ for any S, since then Fit_{S} corresponds to a coset of $\operatorname{Ker} L_{T \cup T_{2}}$ by (i). Now

$$
\begin{aligned}
& \text { Fit }_{S} \neq \varnothing \Longleftrightarrow\binom{\mathbf{0}_{T}}{\mathbf{1}_{T_{2}}} \in \operatorname{Im} L_{T \cup T_{2}} \Longleftrightarrow\binom{\mathbf{0}_{T}}{\mathbf{1}_{T_{2}}} \perp\binom{y_{T}}{y_{T_{2}}} \\
& \quad \text { for all }\binom{y_{T}}{y_{T_{2}}} \in \operatorname{Ker} L_{T \cup T_{2}} .
\end{aligned}
$$

By (15) we find $y_{T_{2}}^{\mathrm{T}} y_{T_{2}}=0$, and hence

$$
\left(0_{T}^{\mathrm{T}}, \mathbf{1}_{T_{2}}^{\mathrm{T}}\right)\binom{y_{T}}{y_{T_{2}}}=\mathbf{1}_{T_{2}}^{\mathrm{T}} y_{T_{2}}=y_{T_{2}}^{\mathrm{T}} y_{T_{2}}=0
$$

Proof of Theorem 5. The interlace polynomial $Q(G, x)$ is given by $Q(G, x)=$ $\sum_{S}(x-2)^{\mathrm{co} L_{S}}$. According to Lemma 5 and and Proposition 5 we find

$$
\begin{aligned}
2^{n} \cdot(\# \text { Eulerian vectors }) & =\sum_{y \text { Eulerian }} \sum_{S: y \in \text { Fit }_{S}} 1=\sum_{S} \sum_{y \in \text { Fit }_{S}} 1 \\
& =\sum_{S} 2^{\operatorname{co} L_{S}}=Q(G, 4) .
\end{aligned}
$$

6. Isotropic systems

Isotropic systems were introduced by Bouchet in a series of papers to unify certain properties of binary matroids and transition systems of 4-regular graphs. For convenience we recall the definition.

Let $V=\{1,2, \ldots, n\}$ be the ground-set. We consider the vector space $\mathscr{V}=$ $(G F(2))^{2 n}$ where the coordinates are indexed by $\{1, \ldots, n ; \overline{1}, \ldots, \bar{n}\}$. On the set $G F(2)^{2}=\{(0,0),(1,0),(0,1),(1,1)\}$ we consider the bilinear form

$$
\left\langle(x, y),\left(x^{\prime}, y^{\prime}\right)\right\rangle= \begin{cases}1, & \text { if }(0,0) \neq(x, y) \neq\left(x^{\prime}, y^{\prime}\right) \neq(0,0) \\ 0, & \text { otherwise }\end{cases}
$$

and extend this by linearity to \mathscr{V} (over $G F(2))$

$$
\begin{equation*}
\langle X, Y\rangle=\sum_{v \in V}\left\langle\left(X_{v}, X_{\bar{v}}\right),\left(Y_{v}, Y_{\bar{v}}\right)\right\rangle . \tag{16}
\end{equation*}
$$

A subset $\mathscr{L} \subseteq \mathscr{V}$ is called totally isotropic if $\langle X, Y\rangle=0$ for any $X, Y \in \mathscr{L}$.

Definition. $\mathscr{S}=(V, \mathscr{L}) \subseteq G F(2)^{2 n}$ is called an isotropic system if
(i) \mathscr{L} is a totally isotropic subspace,
(ii) $\operatorname{dim} \mathscr{L}=n$.

Example. Let $C \in \mathscr{V}$ with $\left(C_{v}, C_{\bar{v}}\right) \neq(0,0)$ for all v. By $C(P)$ we denote the restriction to $P \subseteq V$, that is

$$
\left(C(P)_{v}, C(P)_{\bar{v}}\right)= \begin{cases}\left(C_{v}, C_{\bar{v}}\right) & \text { if } v \in P \\ (0,0) & \text { if } v \notin P .\end{cases}
$$

Clearly, $\hat{C}=\{C(P): P \subseteq V\}$ is an isotropic system.
For our purposes we are interested in the following isotropic system (see [3]). Let $G=(V, E)$ be a simple graph and A its adjacency matrix. Consider the matrix

$$
L=\left(\underset{1 \ldots n}{A} \left\lvert\, \begin{array}{c}
I_{n} \ldots \bar{n}
\end{array}\right.\right)
$$

as in Theorem 1 , indexed by $1, \ldots, n ; \overline{1}, \ldots, \bar{n}$.
Claim. $\mathscr{S}_{G}=\left(V, \mathscr{L}_{G}\right)$ where \mathscr{L}_{G} is the row space of L is an isotropic system.
We obviously have $\operatorname{dim} \mathscr{L}_{G}=n$. Consider two rows C and D of L, corresponding to the vertices c and d, respectively. For $v \neq c, d$ we have $C_{\bar{v}}=D_{\bar{v}}=0$, and hence

$$
\left\langle\left(C_{v}, C_{\bar{v}}\right),\left(D_{v}, D_{\bar{v}}\right)\right\rangle=0 \text { by }(16)
$$

If cd $\notin E(G)$, then $\left(D_{c}, D_{\bar{c}}\right)=(0,0)$ and $\left(C_{d}, C_{\bar{d}}\right)=(0,0)$. On the other hand, if $c d \in E(G)$, then

$$
\begin{aligned}
& \left(C_{c}, C_{\bar{c}}\right)=(0,1), \quad\left(D_{c}, D_{\bar{c}}\right)=(1,0), \\
& \left(C_{d}, C_{\bar{d}}\right)=(1,0), \quad\left(D_{d}, D_{\bar{d}}\right)=(0,1),
\end{aligned}
$$

and we conclude $\langle C, D\rangle=1+1=0$ by (16). Thus in all cases $\langle C, D\rangle=0$, and by linearity \mathscr{L}_{G} is totally isotropic.

Bouchet defines in [4] the Martin polynomials $m(\mathscr{S}, x)$ of an arbitrary isotropic system \mathscr{S} (relative to a complete vector), which in our case reduces to

$$
m\left(\mathscr{S}_{G}, x\right)=\sum_{C}(x-1)^{\operatorname{dim}\left(\mathscr{L}_{G} \cap \hat{C}\right)}
$$

where the sum is extended over all vectors C with $\left(C_{v}, C_{\bar{v}}\right) \neq(0,0),(1,1)$.
Now it is readily verified that for \mathscr{S}_{G}

$$
\operatorname{dim}\left(\mathscr{L}_{G} \cap \hat{C}\right)=\operatorname{co}\left(L_{S}\right)
$$

in the notation of Theorem 1 where $v \in S \Longleftrightarrow C_{v}=0$ and thus $\bar{v} \in S \Longleftrightarrow C_{v}=1$. From this follows

Theorem 7. We have

$$
q(G, x)=m\left(\mathscr{S}_{G}, x\right) .
$$

The second interlace polynomial $Q(G, x)$ can also be found within the context of isotropic systems. Call a vector $C \in G F(2)^{2 n}$ complete if $\left(C_{v}, C_{\bar{v}}\right) \neq(0,0)$ for all $v \in V$. Then the Martin polynomial $M(\mathscr{S}, x)$ of an isotropic system $\mathscr{S}=(V, \mathscr{L})$ is defined as

$$
M(\mathscr{S}, x)=\sum_{C}(x-2)^{\operatorname{dim}\left(\mathscr{L}_{G} \cap \hat{C}\right)},
$$

where C runs through all complete vectors.
It can again be shown with the notation of Theorem 4 that for the system \mathscr{S}_{G} considered above

$$
\operatorname{dim}\left(\mathscr{L}_{G} \cap \hat{C}\right)=\operatorname{co}\left(L_{S}\right)
$$

where $\quad v \in S \Longleftrightarrow\left(C_{v}, C_{\bar{v}}\right)=(0,1), \quad \bar{v} \in S \Longleftrightarrow\left(C_{v}, C_{\bar{v}}\right)=(1,0), \quad \overline{\bar{v}} \in S \Longleftrightarrow$ $\left(C_{v}, C_{\bar{v}}\right)=(1,1)$. From this follows

Theorem 8. We have

$$
Q(G, x)=M\left(\mathscr{S}_{G}, x\right) .
$$

References

[1] R. Arratia, B. Bollobás, G. Sorkin, The interlace polynomial: a new graph polynomial, in: Proc. 11th Anual ACM-SIAM Symp. on Discrete Math., 2000, pp. 237-245.
[2] A. Bouchet, Isotropic systems, European J. Combin. 8 (1987) 231-244.
[3] A. Bouchet, Graphic presentation of isotropic systems, J. Combin. Theory B 45 (1988) 58-76.
[4] A. Bouchet, Tutte-Martin polynomials and orienting vectors of isotropic systems, Graphs Combin. 7 (1991) 235-252.
[5] T. Brylawski, J. Oxley, The Tutte polynomial and its applications, in: N. White (Ed.), Matroid Applications, Cambridge University Press, 1992, pp. 123-225.
[6] C. Godsil, Algebraic Graph Theory, Chapman \& Hall, 1987.
[7] F. Jaeger, On Tutte polynomials of matroids representable over $G F(q)$, European J. Combin. 10 (1989) 247-255.
[8] M. Las Vergnas, Le polynôme de Martin d'un graphe Eulérien, Ann. Discrete Math. 17 (1983) 397-411.
[9] M. Las Vergnas, On the evaluation at $(3,3)$ of the Tutte polynomial of a graph, J. Combin. Theory B 45 (1988) 367-372.
[10] P. Martin, Enumérations eulériennes dans les multigraphes et invariants de Tutte-Grothendieck, These, Univ. Grenoble, 1977.
[11] P. Rosenstiehl, R. Reed, On the principal edge tripartition of a graph, Ann. Discrete Math. 3 (1978) 195-226.

[^0]: ${ }^{\text {\# }}$ Work supported by European Graduate College "Combinatorics, Geometry and Computation" of the Deutsche Forschungsgemeinschaft, grant GRK 588/1.

 * Corresponding author.

 E-mail address: aigner@math.fu-berlin.de (M. Aigner).

