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Abstract

This paper aims to show the existence of nontrivial solutions for discrete elliptic boundary value problems by using the
“Mountain Pass Theorem”. Some conditions are obtained for discrete elliptic boundary value problems to have at least two
nontrivial solutions. The results obtained improve the consequences of the known literature [Guang Zhang, Existence of nontrivial
solutions for discrete elliptic boundary value problems, Numer. Methods Partial Differential Equations 22 (6) (2006) 1479–1488].
c© 2007 Elsevier Ltd. All rights reserved.
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1. Introduction

In recent years, partial difference equations have been paid more and more attention due to the importance in
applications such as those involving population dynamics with spatial migrations, chemical reactions, and even in
computation and analysis of finite difference equations [1]. In this paper, we will consider the existence of nontrivial
solutions for a boundary value problem (BVP) of the form{

Du (w) + λ fw (u (w)) = 0, w ∈ S
u (w) = 0, w ∈ ∂S

(1.1)

where S is a net, λ is a positive constant, and fw ∈ C(R, R) for w ∈ S.
To understand the above problem, we need some terminology. A lattice point z = (i, j) in the plane is a point with

integer coordinates. Two lattice points are said to be neighbors if their Euclidean distance is 1. An edge is a set {w, z}
consisting of two neighboring points while a directed edge is an ordered pair (w, z) of neighboring points. A path
between two lattice points w and z is a sequence w = z0, z1, . . . , zn−1, zn = z of lattice points such that zi and zi+1
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are neighbors for 0 ≤ i ≤ n − 1. A set S of lattice points is said to be connected if there is a path contained in S
between any two points of S. A finite and connected set of lattice points is called a net. An exterior boundary point of
a net S is a point outside S that has a neighbor in S. The set of all exterior boundary points in denoted by ∂S. The set
of all edges of S is denoted by Γ (S) and the set of all directed edges of a net S by E(S). Note that the pair (S,Γ (S))

is a planar graph and the pair (S, E(S)) is a (planar) directed graph.
Also, the operator ∆x is defined by ∆x h(i, j) = h(i + 1, j) − h(i, j) and ∆y is defined by ∆yh(i, j) =

h(i, j + 1) − h(i, j). The discrete Laplacian D is defined by

Du(i, j) = u(i + 1, j) + u(i − 1, j) + u(i, j + 1) + u(i, j − 1) − 4u(i, j)

= ∆2
x u(i − 1, j) + ∆2

yu(i, j − 1),

where u(i, j) is a real function defined on S ∪ ∂S. The problem (1.1) is regarded as a discrete analogue of the elliptic
partial differential equation

∂2u

∂x2 +
∂2u

∂y2 + λ f (x, y, u (x, y)) = 0, (x, y) ∈ Ω (1.2)

with the boundary value condition

u (x, y) = 0, (x, y) ∈ ∂Ω . (1.3)

Thus, Eq. (1.1) is called the boundary value problem for an elliptic partial difference equation. See Marchuk (1982)
[1]. Therefore, it is of practical significance to investigate the BVP (1.1).

In [2–9], the authors considered the existence of positive solutions for (1.1) by using the extremum principle,
eigenvalue method, contraction method and monotone method. The related PDE (1.2) and (1.3) has been extensively
studied; for example, see [10–12]. In this paper, we will consider the existence of nontrivial solutions for (1.1) by
applying a critical point theory that was recently developed for dealing with difference equations; see [13]. We have
found that the main results in [2] are corollaries of this paper.

Let H be a real Hilbert space, J ∈ C1(H, R), which means that J is a continuously Fréchet-differentiable
functional defined on H . J is said to satisfy the Palais–Smale condition (P–S condition for short) if any sequence
{xn} ⊂ H for which J (xn) is bounded and J ′(xn) −→ 0 as n −→ ∞ possesses a convergent subsequence in H .

Let Br be the open ball in H with radius r and centered at 0 and let ∂ Br denote its boundary. Let T denote the
transpose of a vector. The following lemma is from [14], which will be useful in the proof of our main results.

Lemma 1.1 (Mountain Pass Lemma). Let E be a real Banach space and I ∈ C1(E, R) satisfy the Palais–Smale
condition. If further I (0) = 0,

(A1) there exist constants ρ, α > 0 such that

I |∂βρ (0) ≥ α

and
(A2) there exists e ∈ E \ β̄ρ(0) such that I (e) ≤ 0, then I possesses a critical value c ≥ α given by

c = inf
g∈Γ

max
s∈[0,1]

I (g(s)), (1.4)

where

Γ = {g ∈ C([0, 1], E)|g(0) = 0, g(1) = e}. (1.5)

2. Main results and proof

Let us denote the points in S by z1, z2, . . . , zm . Let A = (ai j ) be the adjacency matrix of the directed graph
(S, E(S)), so that ai j = 1 if there is a directed edge from zi to z j and ai j = 0 otherwise. Then (1.1) can be written as

(A − 4I )u + λ f (u) = 0. (2.1)
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(see [4]) where I is the identity matrix, u = (u(z1), u(z2), . . . , u(zm))T
∈ Rm and f (u) = ( fz1(u(z1)),

fz2(u(z2)), . . . , fzm (u(zm)))T.
Let E be the vector space

E = {u ∈ Rm
: u = (u(z1), u(z2), . . . , u(zm))T, zk ∈ S, k = 1, 2, . . . , m}.

In view of [4], we know that the matrix 4I − A is positive definite and symmetrical. Thus it has the eigenvalues
0 < λ1 ≤ λ2 ≤ · · · ≤ λm and corresponding eigenvectors η1, η2, . . . , ηm which satisfy

〈
ηi , η j

〉
=

{
0, i 6= j,
1, i = j,

i, j = 1, 2, . . . , m (2.2)

where
〈
ηi , η j

〉
denotes the usual inner product of the vectors ηi and η j . So {η1, η2, . . . , ηm} is a normal orthogonal

basis of the Hilbert space (E, 〈, 〉).
From the above section we know that fzk ∈ C(R, R) for k = 1, 2, . . . , m. Now define the functional J on E as

follows:

J (u) =
1
2

uT(A − 4I )u + λF(u), u ∈ E, (2.3)

where F(u) =
∑m

k=1

∫ u(zk )

0 fzk (s)ds. Then J ∈ C1(E, R) and for any u ∈ E , we can compute the Fréchet derivative
of (2.3) as

∂ J (u)

∂u(zk)
= (A − 4I )u + λ f (u).

Thus, u is a critical point of J (i.e. J ′(u) = 0) on E if and only if

(A − 4I )u + λ f (u) = 0.

Theorem 2.1. Assume that fzk (z), z ∈ R, k = 1, 2, . . . , m, satisfies the following conditions:

(f1) lim‖u‖→0

∑m
k=1

∫ u(zk )

0 fzk (s)ds

‖u‖2 = 0;
(f2) there exist the real constants a1 > 0, a2 > 0, M1 > 0 and β > 2 such that

m∑
k=1

∫ u(zk )

0
fzk (s)ds ≤ −a1‖u‖

β
+ a2,

for any u = (u(z1), u(z2), . . . , u(zm))T
∈ E, ‖u‖ ≥ M1.

Then, for any parameter λ > 0, the BVP (1.1) has at least two nontrivial solutions.

Proof. First we need to verify the P–S condition. Next we will check the assumptions (A1) and (A2) of Lemma 1.1.
For any sequence {un} ⊂ E such that J (un) is bounded and J ′(un) −→ 0 as n −→ ∞, then there exists a positive
constant C satisfying |J (un)| ≤ C . Thus by (f2), we have

−C ≤ J (un) =
1
2

uT
n (A − 4I )un + λF(un) ≤

1
2
λm‖un‖

2
− λa1‖un‖

β
+ λa2. (2.4)

Therefore, for any n ∈ N ,

λa1‖un‖
β

−
1
2
λm‖un‖

2
≤ λa2 + C.

Since β > 2, the above inequality implies that {un} is a bounded sequence in E . So {un} possesses a convergent
subsequence, and the P–S condition is satisfied.

By (f1), there exists a constant ρ > 0 such that for any ‖u‖ ≤ ρ, u ∈ E , |F(u)| <
λ1
4λ

‖u‖
2 and

J (u) =
1
2

uT(A − 4I )u + λF(u) ≥
1
2
λ1‖u‖

2
−

λ1

4
‖u‖

2
=

λ1

4
‖u‖

2.
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Take a =
λ1
4 ρ2 > 0; we have

J (u)|∂ Bρ ≥ a

and the assumption (A1) is verified.
It is clear that J (0) = 0. For any given ω ∈ E with ‖ω‖ = 1 and a constant α > 0, by (A2), we get

J (αω) =
1
2
(αω)T(A − 4I )(αω) + λF((αω))

≤
1
2
λm‖(αω)‖2

− λa1‖(αω)‖β
+ λa2

=
λm

2
α2

− λa1α
β

+ λa2 −→ −∞ as α −→ +∞.

Thus we can choose α large enough to make α > ρ and for u0 = αω ∈ E, J (u0) < 0. Thus, by Lemma 1.1, there
exists at least one critical value c ≥ α > 0. Let ū be a critical point corresponding to c, i.e. J (ū) = c and J ′(ū) = 0.
By (2.3) and (f2), we have

J (u) ≤
1
2
λm‖u‖

2
− λa1‖u‖

β
+ λa2, u ∈ E . (2.5)

So J is bounded from above. Let cmax denote the supremum of J (u), u ∈ E . Inequality (2.5) leads to

lim
‖u‖→+∞

J (u) = −∞.

−J is coercive and J attains a maximum at some point ũ, i.e. J (ũ) = cmax. Clearly, ũ 6= 0. If ũ 6= ū, then the proof
of Theorem 2.1 is complete. Otherwise, ũ = ū and c = cmax. By Lemma 1.1,

c = inf
h∈Γ

max
s∈[0,1]

J (h(s)),

where

Γ = {h ∈ C([0, 1], E)|h(0) = 0, h(1) = u0}.

Then for any h ∈ Γ , cmax = maxs∈[0,1] J (h(s)). The continuity of J (h(s)) in s, J (0) ≤ 0 and J (u0) < 0 show
that there exists s ∈ (0, 1) such that J (h(s0)) = cmax. If we choose h1, h2 ∈ Γ such that the intersection {h1(s)|s ∈

(0, 1)}
⋂

{h2(s)|s ∈ (0, 1)} is empty, then there exist s1, s2 ∈ (0, 1) such that J (h1(s1)) = J (h2(s2)) = cmax. Thus
we obtain two different critical points u1 = h1(s1), u2 = h2(s2) of J in E . In fact, in this case there exist infinitely
many nontrivial critical points for J which correspond to the critical value cmax.

In fact, when ũ 6= ū, the BVP (1.1) has at least 2m nontrivial solutions including one positive solution, one negative
solution and at least 2m

− 2 sign-changing solutions; see [2].
The proof of Theorem 2.1 is completed. �

The result below is a direct corollary of Theorem 2.1, and is just the main consequence of Ref. [2].

Corollary 2.2. Suppose that the following hypotheses are true:

(f3) limz→0
fzk (z)

z = 0, z ∈ R, k = 1, 2, . . . , m;

(f4) there exist the constants a1, a2 and β > 2 such that∫ z

0
fzk (s)ds ≤ −a1|z|

β
+ a2, z ∈ R, k = 1, 2, . . . , m.

Then, for any parameter λ > 0, the BVP (1.1) has at least two nontrivial solutions.

Clearly (f3) together with (f4) shows that f (t, x) grows superlinearly both at infinity and at zero.
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To prove this corollary, we only need to note that for any u = (u(z1), u(z2), . . . , u(zm))T
∈ E ,

F(u) =

m∑
k=1

∫ u(zk )

0
fzk (s)ds ≤ a2m +

m∑
k=1

−a1|u(zk)|
β

= a2m − a1

m∑
k=1

|u(zk)|
β

≤ −a1

(
m

2−β
β

m∑
k=1

|u(zk)|
2

) β
2

+ a2m

≤ −a1m
2−β
β ‖u‖

β
+ a2m.

Let B1 = −a1m
2−β
β , B2 = a2; then

F(u) ≤ −B1‖u‖
β

+ B2m,

which is identical to the condition (f2) of Theorem 2.1. In addition, it is obvious that (f3) can lead to (f1) of
Theorem 2.1. The remainder of the proof is omitted.

Theorem 2.3. Assume that fzk (z), z ∈ R, k = 1, 2, . . . , m, satisfy the following conditions:

(f5) lim‖u‖→0

∑m
k=1

∫ u(zk )

0 fzk (s)ds

‖u‖2 = −∞;
(f6) there exist the real constants b1 > 0, b2 > 0, M2 > 0 and 1 < α < 2 such that

m∑
k=1

∫ u(zk )

0
fzk (s)ds ≥ −b1‖u‖

α
− b2,

for any u = (u(z1), u(z2), . . . , u(zm))T
∈ E, ‖u‖ ≥ M2.

Then, for any parameter λ > 0, Eq. (1.1) has at least one nontrivial solution.

Proof. For any u ∈ E, ‖u‖ ≥ R, by (2.3) and (f6), we have

J (u) ≥
1
2
λ1‖u‖

2
− λb1‖u‖

α
− b2λ

−→ +∞ as ‖u‖ −→ ∞.

By the continuity of J , J is bounded from below. Therefore J will attain its minimum at some point u1, i.e. J (u1) =

cmin = infu∈E J (u). u1 is also the critical point of the functional J . Next we will prove that u1 6= 0. By (f5), there
exists σ > 0 such that

F(u) ≤ −
λm

λ
‖u‖

2, ∀u ∈ E, ‖u‖ ≤ σ.

So we have

J (u1) ≤ J (u) =
1
2

uT(A − 4I )u + λF(u)

≤
1
2
λm‖u‖

2
+ λF(u)

≤
1
2
λm‖u‖

2
− λm‖u‖

2

= −
1
2
λm‖u‖

2 < 0, u ∈ ∂ Bσ ,

which implies u1 6= 0. The proof is finished. �

An explanation similar to that in Corollary 2.2 will give the next corollary from Theorem 2.3. The proof will be
omitted.
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Corollary 2.4. Suppose that the following hypotheses are true:

(f7) limz→0
fzk (z)

z = −∞, z ∈ R, k = 1, 2, . . . , m;

(f8) there exist the constants c1 > 0, c2 > 0 and 1 < γ < 2 such that∫ z

0
fzk (s)ds ≥ −c1|z|

γ
− c2, z ∈ R, k = 1, 2, . . . , m.

Then, for any parameter λ > 0, the BVP (1.1) has at least one nontrivial solution.

Clearly (f7) and (f8) show that f (t, x) grows sublinearly both at infinity and at zero.

Remark 1. The solutions that we have obtained in the above theorems and corollaries are all nontrivial. But they may
be nonzero constant solutions. If we want to obtain nonconstant solutions, we only need to rule out nonzero constant
solutions. So the following corollaries follow immediately:

Corollary 2.5. Suppose that (f1) and (f2), or (f3) and (f4) hold. Further, assume that

(f9) fzk (z) = 0, k = 1, 2, . . . , m if and only if z = 0.

Then, for any parameter λ > 0, the BVP (1.1) has at least two nonconstant solutions.

Corollary 2.6. Suppose that (f5) and (f6), or (f7) and (f9) hold. Further, assume that (f9) is satisfied.
Then, for any parameter λ > 0, the BVP (1.1) has at least one nonconstant solution.

3. An example

In this section, we will give an example to help with understanding our main results. In the meantime, we can also
see that for the superlinear case the positive solutions may be not unique.

Consider the partial difference equation

∆2
x u(i − 1, j) + ∆2

yu(i, j − 1) − λu(i, j)|u(i, j)|α(i, j) = 0, (i, j) ∈ S (3.1)

with the boundary value condition

u(i, j) = 0, (i, j) ∈ ∂S (3.2)

where S is a net which has n points, λ > 0 is a parameter, and α(i, j) > 0 for (i, j) ∈ S. Then the BVP (3.1)
and (3.2) has at least 2n nontrivial solutions when α(i, j) < 1 or α(i, j) > 1 for (i, j) ∈ S. Indeed, we let
β = 1 + min(i, j)∈S{α(i, j)} when α(i, j) > 1 for (i, j) ∈ S and let β = 1 + max(i, j)∈S{α(i, j)} when α(i, j) < 1 for
(i, j) ∈ S. The conditions of Corollary 2.2 hold.

In particular, we let

S = {(1, 1), (1, 2), (2, 1), (2, 2, )},

and then

∂S = {(1, 0), (2, 0), (0, 1), (0, 2), (3, 1), (3, 2), (1, 3), (2, 3)}.

We consider the problem{
∆2

x u(i − 1, j) + ∆2
yu(i, j − 1) − λu(i, j)|u(i, j)|3 = 0, (i, j) ∈ S,

u(i, j) = 0, (i, j) ∈ ∂S,
(3.3)

which can be rewritten as the system
4 −1 −1 0

−1 4 0 −1
−1 0 4 −1
0 −1 −1 4




u(1, 1)

u(1, 2)

u(2, 1)

u(2, 2)

 = λ


u(1, 1)|u(1, 1)|3

u(1, 2)|u(1, 2)|3

u(2, 1)|u(2, 1)|3

u(2, 2)|u(2, 2)|3

 . (3.4)
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In view of Corollary 2.2, for any parameter λ > 0, the problem (3.3) or system (3.4) admits at least 16 nontrivial
solutions where one solution is positive, another is negative and 14 nontrivial solutions are sign-changing. We have
verified this using MATLAB. We can find at least 16 nontrivial solutions of system (3.4) when λ = 1.

Remark 2. These research results can provide some useful information for analyzing the associated partial differential
equation

∂2u

∂x2 +
∂2u

∂y2 + λu(x, y)|u(x, y)|α(x,y)
= 0, (x, y) ∈ Ω , (3.5)

with the boundary condition (1.3). Thus, for the problem (3.5)–(1.3) there may exist an infinite number of nontrivial
solutions when α(x, y) ≥ α > 1 or 0 < α(x, y) ≤ β < 1.
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