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Abstract 

Jamison, B. and S. Olariu, On a unique tree representation for P4-extendible graphs, Discrete 

Applied Mathematics 34 (1991) 151-164. 

Several practical applications in computer science and computational linguistics suggest the study 

of graphs that are unlikely to have more than a few induced paths of length three. These applica- 

tions have motivated the notion of a cograph, defined by the very strong restriction that no vertex 

may belong to an induced path of length three. The class of P,-extendible graphs that we in- 

troduce in this paper relaxes this restriction, and in fact properly contains the class of cographs, 

while still featuring the remarkable property of admitting a unique tree representation. Just as 

in the case of cographs, the class of P,-extendible graphs finds applications to clustering, 

scheduling, and memory management in a computer system. We give several characterizations for 

P4-extendible graphs and show that they can be constructed from single-vertex graphs by a finite 

sequence of operations. Our characterization implies that the P4-extendible graphs admit a tree 

representation unique up to isomorphism. Furthermore, this tree representation can be obtained 

in polynomial time. 

1. Introduction 

Finding a wide array of applications in communications, transportation, VLSI 

design, program optimization, database design, and other areas of computer science 

and engineering, graph problems often require fast solutions. A powerful tool for 

obtaining efficient solutions to graph problems is the divide-and-conquer paradigm, 

one of whose manifestations is graph decomposition. 

An increasingly popular approach to graph decomposition involves associating 

with a given graph G a rooted tree T(G) whose leaves are subgraphs of G (e.g. ver- 
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tices, edges, cliques, stable sets, cutsets) and whose internal nodes correspond to cer- 

tain prescribed graph operations. Of a particular interest are classes of graphs G for 

which the following conditions hold: 

l T(G) can be obtained efficiently, that is, in time polynomial in the size of G; 

l T(G) is unique up to labelled tree isomorphism. 

One of the earliest and best known examples of graphs satisfying both conditions 

mentioned above is the class of cographs discovered and investigated independently 

by various researchers. (The interested reader is referred to [3,12] for a wealth of 

information about cographs.) Lerchs [9] showed that the cographs are precisely the 

graphs containing no chordless path on four vertices (termed a P4). In addition, he 

showed that with every cograph G one can associate a unique rooted tree T(G), call- 

ed the cotree of G, whose leaves are precisely the vertices of G; the internal nodes 

are labeled by 0 or 1 in such a way that two vertices X, y are adjacent in G if and 

only if their lowest common ancestor in T(G) is labeled 1. Later, Stewart [ 121 prov- 

ed that the tree representations of a cograph can be obtained in polynomial time. 

Tree representation satisfying the conditions mentioned above have been obtained 

for several other classes of graphs including the interval graphs [2], chordal graphs 

[l 11, maximal outerplanar graphs [l], TSP digraphs [8], P,-reducible graphs [5], 

and P4-sparse graphs [7], among others. 

Several practical applications in computer science and computational linguistics 

suggest the study of graphs that are unlikely to have more than a few induced P4's. 
Examples include examination scheduling and semantic clustering of index terms 

(see [3]). In examination scheduling, a conflict graph is readily constructed: the ver- 

tices represent different courses offered, while courses x and y are linked by an edge 

if and only if some student takes both of them. (In the weighted version, the weight 

of edge xy stands for the number of students taking both x and y.) Clearly, in any 

coloring of the conflict graph, vertices that are assigned the same color correspond 

to courses whose examinations can be held concurrently. It is usually anticipated 

that very few paths of length three will occur in the conflict graph. In the second 

application, we construct a graph whose vertices are the index terms; an edge occurs 

between two index terms to denote self-referencing or semantic proximity. Again, 

very few P4 are expected to occur. 

These applications have motivated Jamison and Olariu [5] to introduce the notion 

of a P,-reducible graph: this is a graph none of whose vertices belongs to more 

than one Pd. Clearly, P,-reducible graphs strictly contain the class of cographs. AS 

it turns out, a remarkable property of the P,-reducible graphs is their unique tree 

representation up to (labelled) tree isomorphism. 

The purpose of this paper is to generalize the notion of P,-reducibility, by relax- 

ing in a natural way the constraints prescribing how the P4's interact: we allow a 
P4 to “extend” in a sense that will be made precise later. Just as in the case of 

P,-reducible graphs, the class of P4-extendible graphs that we introduce and in- 

vestigate finds applications to clustering, scheduling, and memory management in 

a computer system. 
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Our main result gives a constructive characterization of the P,-extendible 

graphs. To anticipate, all the P,-extendible graphs turn out to be constructible 

from single vertices by a finite sequence involving three graph operations. Our 

characterization implies that P,-extendible graphs are uniquely tree representable. 

Our result implies, trivially, that the isomorphism problem can be decided in 

polynomial time for P4-extendible graphs, since it reduces to labelled tree isomor- 

phism. An interesting feature of the class of P,-extendible graphs is that they can 

be “reduced” in a canonical way to P,-reducible graphs, by using a very simple 

greedy algorithm, that performs local changes only. The details are spelled out by 

Theorem 3.2. 

The paper is organized as follows: Section 2 presents the main result, including 

two characterizations of P,-extendible graphs. Section 3 deals with the details of 

the tree representation, as suggsted by Theorems 2.12 and 2.14. Finally, Section 4 

summarizes the results and presents open problems. 

2. Basics 

All the graphs in this work are finite, with no loops or multiple edges. We assume 

familiarity with standard graph-theoretical terminology compatible with Golumbic 

[4]. At the same time, to specify our results we use some new terms that we are about 

to define. 

Let G = (V, E) be an arbitrary graph. For a vertex x of G, we let No(x) denote the 

set of all the vertices of G which are adjacent to X: we assume adjacency to be 

nonreflexive, and so x@No(x); INo is termed the degree of w. If S is a subset 

of the vertex set of G, we let Gs stand for the subgraph of G induced by S. Occa- 

sionally, to simplify the notation, we shall blur the distinction between a set H of 

vertices and the graph GH it induces, using the same symbol for both. 

A vertex z is said to distinguish vertices u and u, whenever z is adjacent to precisely 

one of u, u. We let Pk (C,) stand for the chordless path (cycle) on k vertices. In a 

P4 with vertices, a, b, c, d and edges ab, bc, cd the vertices a and d are referred to 

as endpoints while b and c are termed midpoints. 
Let W be a proper subset of V. For a vertex x outside W, write x E S(W) whenever 

x belongs to a P4 sharing vertices with W. In case S(W) contains at most one 

vertex, we shall say that W has a proper extension. A set D is said to be an extension 
set if D = WU S(W) for a set W with a proper extension, inducing a P4 in G. 

For later reference we take note of the following simple results whose justification 

is immediate. 

Observation 2.1. Let W be a set with a proper extension, inducing a P4 in G. If a 
vertex x outside W belongs to S(W) then x together with three vertices in W induces 
a PA. 

(Follows directly from the fact that W has a proper extension.) 
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0 e 0 
Fig. 1. 

Observation 2.2. Let W be a set with a proper extension, inducing a P4 in G. A 
vertex x outside W belongs to S(W) if and only if at least one of the following is 
satisfied : 

(1.1) x distinguishes the midpoints of W; 
(1.2) x distinguishes the endpoints of W, 
(1.3) x is adjacent to both endpoints and nonadjacent to both midpoints. 

(First, if x belongs to S(W) then, by Observation 2.1, it must induce a P4 with 

three vertices in W. It is easy to see that whenever this happens, one of the condi- 

tions (1. l), (1.2) or (1.3) must be satisfied. Conversely, if one of the conditions 

(1 .l)-(1.3) is satisfied, then x together with three vertices in Winduce a P4, implying 

that XES(W).) 

Observation 2.3. If D is an extension set and some set B c D induces a P4 in G, 
then D = B U S(B). 

(Since D is an extension set, we find a set W with a proper extension, inducing 

a P4 in G such that D = WU S(W). If B and W coincide, then there is nothing to 

prove. Otherwise, by Observation 2.1, B and W have three vertices in common. The 

conclusion follows.) 

Observation 2.3 asserts that for an extension set D the role of Win the definition 

of D can be played by any subset B of D inducing a P4 in G. This property of ex- 

tension sets will be frequently used in this work with no further explanation. 

A graph G is termed P,-extendible if every set W inducing a P4 in G has a proper 

extension. Trivially, every P,-reducible graph is P,-extendible: to see this, note that 

for every set W inducing a P4, S(W) must be empty. It is easy to see, however, that 

all the graphs featured in Fig. 1 are P,-extendible but not P,-reducible. Hence the 

class of P,-extendible graphs strictly contains the class of P,-reducible graphs. (It 

should also be noted that none of the graphs in Fig. 1 is P4-sparse; conversely, the 

graph with vertices a, a‘, 6, b’, c, c’ and edges aa’, bb’, cc’, ab, bc, ca is P,-sparse 

but not P,-extendible.) 

In the remainder of this paper we shall often rely directly or indirectly on the 

following simple observations. A P,-extendible graph G = (I’, E) along with a set 

W= { wO, wl, w2, w3} inducing a P4 in G with edges wow,, w, w2, ~2~3 is assumed. 

We let D stand for the extension set WU S(W). 
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Observation 2.4. D induces a connected subgraph of both G and G. 

(Follows from Observation 2.1 together with the fact that every P4 is self- 

complementary.) 

For a vertex z outside D write 

l ZE To(D) whenever z is adjacent to all the vertices in D; 
l z E P,(D) whenever z is adjacent to some, but not all the vertices of G; 

l zeZo(D) whenever z is adjacent to no vertices of D. 
Whenever possible, we shall drop the reference to the graph G writing, simply, 

T(D), P(D), and Z(D). 
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An extension set D in an arbitrary graph G is said to be separable if no vertex 

of D is both endpoint of some P4 in GD and midpoint of some P4 in GD. 

Our next result shows that an extension set D is separable as soon as P,(D) is 

nonempty. More precisely, we have the following. 

Lemma 2.5. Let D be an extension set in a P,-extendible graph G. If P,(D) is 
nonempty, then D is separable. Moreover, every vertex in P,(D) is adjacent to all 
the midpoints in D and nonadjacent to all the endpoints in D. 

Proof. We only need show that for every set A c D inducing a P4 in G, every 

vertex in P&D) is adjacent to both its midpoints and nonadjacent to both its end- 

points. 

By virtue of Observation 2.3, we can write D =A U S(A). If A and D coincide, 

then there is nothing to prove. We shall, therefore, assume that S(A) is nonempty. 

Let p E P(D) be a counterexample to our claim. Since p $ S(A), the characterization 

provided by Observation 2.2 implies that p is adjacent (nonadjacent) to all the ver- 

tices in A. Sincep is adjacent to some, but not all the vertices in D, p must be nonad- 

jacent (adjacent) to the unique vertex in x in S(A). 
By Observation 2.1, x belongs to a P4 A’ in D sharing three vertices with A. 

Hence, p is adjacent to an odd number of vertices in A’. Now Observation 2.2 im- 

plies p E S(A’) c D, a contradiction. This completes the proof of the lemma. 0 

Observation 2.6. Let D be a separable extension set in a P,-extendible graph 
G=(l/,E). If V=DU P&D), then D contains at least one vertex of degree 1. 

(Let a subset A of D induce a P4 with vertices a, b, c, d and edges ab, bc, cd. 
We propose to show that at least one of the vertices a or d has degree 1 in G. First, 

by Lemma 2.5, no vertex in P,(D) is adjacent to either a or d. Hence, we only 

need show that no vertex in S(A) is adjacent to both a and d. Since this is, trivially, 

true if S(A) is empty, we shall assume that {x} = S(A). Suppose that x is adjacent 

to both a and d. Since D is separable, neither a nor d can be midpoints of a P4. In 

particular neither of {b, a, x, d}, {c, d,x, a} can induce a P4. But now, xb, xc E E, 
contradicting Observation 2.2.) 

Observation 2.7. No vertex in I(D) is adjacent to a vertex in P(D). 

(Consider adjacent vertices i in I(D) and p in P(D); by Lemma 2.5, { wc, w,,p, i} 
induces a P4 in G, implying that p, i E S(W), a contradiction.) 

Observation 2.8. Every vertex in T(D) is nonadjacent to all the vertices in P(D). 

(Let vertices t in T(D) and p in P(D) be adjacent. By Lemma 2.5, pw, E E and 

pw,,@E. By the definition of T(D), two, tw2 E E. But now, { wO, t, w2, p} induces a 

P4 in G, implying that t, peS(W), a contradiction.) 
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Observation 2.9. No vertex in Z(D) distinguishes nonadjacent vertices in T(D). 

(Else, if a vertex i in Z(D) distinguishes nonadjacent vertices t, t’ in T(D), then 

{ wc, t, t’, i} induces a P4 in G, implying that t, t’, i E S(W), a contradiction.) 

Observation 2.10. No vertex in T(D) distinguishes adjacent vertices in Z(D). 

(Otherwise, if a vertex t in T(D) distinguishes adjacent vertices i, i’ in Z(D), then 

{ wo, t, i, i’} induces a P4 in G, a contradiction.) 

Observation 2.11. Let G be a graph whose vertex set I/partitions into nonempty, 
disjoint sets V’ and V” such that no P4 in G contains vertices from both V’ and V”. 
Then G is P,-extendible as soon as the subgraphs of G induced by V’ and V” are. 

(Let G’, G” be the subgraphs of G induced by V’, V”, respectively. Assume that 

both G’ and G” are P,-extendible graphs and let A be an arbitrary set of vertices 

of G inducing a P4. By assumption, A C V’ or A C V”. The conclusion follows.) 

We are now in a position to state the first characterization of P,-extendible 

graphs which is at the heart of all subsequent results presented in this paper. In par- 

ticular, Theorem 2.12 suggests a constructive characterization of P,-extendible 

graphs which will be specified in Theorem 2.14. 

Theorem 2.12. A graph G is P,-extendible if and only if for every induced sub- 
graph H= (Vn, Eu) of G, precisely one of the following conditions is satisfied: 

(i) H is disconnected; 
(ii) I7 is disconnected; 

(iii) H is an extension set; 
(iv) there is a unique separable extension set DC V, such that every vertex out- 

side D is adjacent to all midpoints and nonadjacent to all endpoints of D. 

Proof. Write G = (V,E). The proof of the “if” part is by induction: assuming the 

statement true for all graphs with fewer vertices than G, we only need show that G 

is a P,-extendible graph as soon as one of conditions (i)-(iv) is satisfied. 

To begin, if (iii) is satisfied, then there is nothing to prove. Next, if one of the 

conditions (i) or (ii) is satisfied, then V can be partitioned into two nonempty sets 

with no P4 in G containing vertices from both, and we are done by the induction 

hypothesis together with Observation 2.11. 

We may, therefore, assume that (iv) holds. Let D be the extension set featured 

in (iv). Again, consider the partition of V into D and V-D. Since D is an extension 

set, no P4 in G contains vertices from both D and V-D. Now the conclusion 

follows from Observation 2.11 together with the induction hypothesis. 

To prove the “only if” part, suppose that G is a P,-extendible graph and let 

H= (Vn, En) be an arbitrary induced subgraph of G. Since P,-extendible graphs 
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are hereditary, it follows that H is P,-extendible. By Observation 2.4 it follows 

easily that conditions (i)-(iv) are pairwise incompatible. Thus, we only need show 

that (iv) must hold true whenever conditions (i)-(iii) fail. 

For this purpose, we shall assume that both H and R are connected and that H 

itself is not an extension set. Since both Hand I? are connected, a result of Seinsche 

[lo] guarantees that H contains a Pd. This, in turn, implies that G must contain at 

least one extension set. 

Our proof of Theorem 2.12 relies, in part, on the following intermediate result. 

Lemma 2.13. Let D be an extension set in G with both TH(D) and Z,(D) nonemp- 
ty. Zf no vertex in T,(D) is adjacent to ail the vertices in Z,(D), then 
T,(D) U Z,(D) contains an extension set D’ with PH(D) c P,(D’). 

Proof. Choose a vertex t in T,(D) such that 

IN,&) n MD)1 is as large as possible. (1) 

We claim that: 

If a vertex x in T,(D) is nonadjacent to a vertex in some 

component 2 of Z,(D), then x is adjacent to no vertices in Z. (2) 

(Follows by the connectedness of Z and Observation 2.10 combined.) 

Since, by assumption, no vertex in T,(D) is adjacent to all the vertices of Z,(D), 

(2) guarantees the existence of a component Z’ of Z,(D) such that t is adjacent to 

no vertices in Z’. The connectedness of H, together with Observation 2.7 guarantees 

that some vertex z’ in Z’ is adjacent to some vertex t’ in T,(D). 

Our choice of 1, expressed in (l), implies the existence of a vertex z in some com- 

ponent Z distinct from Z’ such that tz e EH and t’ze EH. We note that since z 

distinguishes t and t’, Observation 2.9 guarantees that t and t’ are adjacent, and so 

the set B= {t, t’,z,z’} induces a P4 in H. Let D’ stand for BUS(B): since H is a 

P,-extendible graph, D’ is an extension set in H. 

Observations 2.7 and 2.8, combined, imply that 

P,(D) c P,(W). 

To see that the inclusion is strict, note that by the definition of T,(D) and 

Z,(D), every vertex in D belongs to P,(D’). With this, the proof of the lemma is 

complete. 0 

Proof of Theorem 2.12 (continued). Choose an extension set D in H such that 

IPH( is as large as possible. (3) 

We claim that 

both T,(D) and Z,(D) are empty. (4) 
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If precisely one of the sets T,(D) and I,(D) is nonempty, then by Observations 

2.7 and 2.8 combined, either H or R is disconnected, contrary to our assumption. 

Hence, if (4) is false, then both r,(D) and 1,(O) are nonempty. 

Further, if no vertex of T,(D) is adjacent to all the vertices of Z,(D), then Lem- 

ma 2.13 guarantees the existence of an extension set D’ with P,(D)c P,(D’), con- 

tradicting our choice of D in (1). 

It must be the case, therefore, that some vertex t in T,(D) is adjacent to all the 

vertices in I,(D). Let F stand for the connected component of the subgraph of A 

induced by T,(D), containing t. Note that by Observation 2.9, every vertex in F is 

adjacent to all the vertices in Z,(D). But now, by the definition of T,(D), together 

with Observation 2.8, it follows that I? is disconnected (since every vertex in F is 

adjacent to all the vertices in VH- F), a contradiction. Thus, (4) must hold true. 

By virtue of (4) we can write 

V,=DUPH(D). 

Since, by assumption, H itself is not an extension set, (4) guarantees that 

P&D) f0. 

Note that by virtue of Lemma 2.5, D is separable, and every vertex in PH(D) is 

adjacent to all the midpoints and nonadjacent to all the endpoints in D. Finally, the 

uniqueness of D follows directly from Observation 2.6: D contains the only vertices 

of degree 1 in H. 

With this, the proof of Theorem 2.12 is complete. 0 

Our constructive characterization of the P,-extendible graphs relies, in part, on 

two graph operations devised by Lerchs [8] for the purpose of characterizing the 

class of cographs. More precisely, let Gi = (Vi, E,) and G, = (V,, E2) be disjoint 

graphs. Define 

l G,@G2 = (Vi U V,, El U &); 

l G,0G2=(V,U~~,E,UE,U{xy(x~~~,y~V;)). 
It is easy to see that the operations @ and (lJ reflect the conditions (i) and (ii), 

respectively, in Theorem 2.12. For the purpose of constructing the P,-extendible 

graphs, we need to introduce two new operations to reflect conditions (iii) and (iv). 

The @ operation is defined in Fig. 2: taking graphs Gi and Gz as input, it con- 

structs a new graph G,@G2 which is an extension set. It is easy to verify that the 

@ operation is well defined and admits a unique inverse: given an arbitrary graph 

G that is an extension set, the graphs G, and G, of Fig. 2 are uniquely determined. 

The @ operation will reflect condition (iv) in Theorem 2.12. More precisely, let 

Gi =(Vi,E,) be a graph such that Vi is a separable extension set and let Ga= 

(I/,,&) be an arbitrary graph disjoint from G, . Define 

l G1@G2=(ViUV~,ElUE2U{x~~xamidpointof V,,YEV~}. 

As it turns out, all P,-extendible graphs are constructible by means of the opera- 

tions @, 0, 0, and 0. More precisely, we have the following result. 
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Theorem 2.14. For a graph G the following statements are equivalent: 
(i) G is a P,-extendible graph; 

(ii) G is obtained from single-vertex graphs by a finite sequence of operations @, 

0, BY@. 

Proof. Let G = (V,E) be obtained from single-vertex graphs by a finite sequence CJ 

of zero or more operations @, a,@, 0. We prove the implication (ii) + (i) by in- 

duction on the length of CJ. Assume the statement true for graphs obtained by se- 

quences involving fewer operations than 0. If G arises from the nonempty graphs 

Gi = (Vr,E,) and Gz = (VZ,E,) by some operation SE 0, then, by the induction 

hypothesis, both G, and Gz are P,-extendible graphs. If s is a @ operation, then 

G is trivially P4-extendible. 

Furthermore, ifs is one of the operations @, 0, or 0, then no P4 in G can have 

vertices from both Gi and G,; since by the induction hypothesis both Gi and G2 

are P,-extendible graphs, Observation 2.11 guarantees that G is P,-extendible. 

To prove the implication (i) ---t (ii), we proceed by induction on the size of G. 

Assuming the implication true for all graphs with fewer vertices than G, we propose 

to prove the implication for G itself. 

For this purpose, note that if G or G is disconnected, then G arises from two of 

its proper induced subgraphs by a @ or a @ opertion, and the conclusion is 

guaranteed by the induction hypothesis. If G is an extension set, then G arises from 

two of its proper induced subgraphs by a @ operation as in Fig. 2. Finally, by 

Theorem 2.12, if both G and G are connected and if G itself is not an extension set, 

then there exists a unique separable extension set D in G such that every vertex in 

V-D is adjacent to every midpoint in D and nonadjacent to every endpoint in D. 

But now, it is obvious that G arises from the graphs Go and G,_, by a @ 

operation, and the proof of the theorem is complete. 0 

3. The tree representation 

Theorems 2.12 and 2.14 suggest a natural way of associating with every P4- 
extendible graph G a tree T(G) (called the px-tree of G). To anticipate, the leaves 

of T(G) are precisely the vertices of G; an internal node A of T(G) is labelled i 
(OS is 3) whenever the subgraph G’ of G corresponding to the subtree T’ of T(G) 

rooted at A arises from two of its proper induced subgraphs by an @ operation. 

As a preliminary step, however, given a P,-extendible graph G distinct from an 

extension set with G and G connected, we present an algorithm to compute the 

unique separable extension set featured in condition (iv) of Theorem 2.12. The 

details are spelled out by the following procedure. 

Procedure Find_SeparableExtension_Set(G, D); 

{Input: a P,-extendible graph G=(V,E) distinct from an extension 

set with both G and G connected; 
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Output: the unique separable extension set D featured in condition 

(iv) of Theorem 2.12) 

begin 

a + an arbitrary vertex of degree 1 in G; 

b + N,(a); 
T+ I/- No(b); 
No(T) + (u E I/- T 1 u is adjacent to some vertex in T}; 
D+{a,b}UTUNo(T) 

end; {Find_Separable_Extension_Set} 

Theorem 3.1. Given a P,-extendible graph G distinct from an extension set and 
such that both G and G are connected, Procedure Find_Separable3xtension_ 
Set correctly computes the unique separable extension set D featured in condition 
(iv) of Theorem 2.12. 

Proof. Write G=(I/,E). By assumption, P&D) is nonempty. By Lemma 2.5, 

every vertex in P,(D) is adjacent to all the midpoints and nonadjacent to all the 

endpoints in D. Consequently, all the vertices of degree one (which exist by virtue 

of Observation 2.6) must belong to D, each of them being an endpoint in D. 
Let a be an arbitrary vertex of degree one in G, and let b stand for the unique 

neighbor of a. Consider the set T= V-No(b) computed in line 4 of the procedure. 

We claim that 

every vertex in T belongs to D. (5) 

(To justify (5), note that b must be a midpoint in D, and so by Lemma 2.5 we have 

P,(D) = I/- DCNo(b). Hence, T= V-No(b) c D, as claimed.) 

Next, we claim that 

no vertex in T is adjacent to a vertex in P,(D). (6) 

(Otherwise, if a vertex t in T were adjacent to a vertex p in P,(D), then {a, b,p, t} 
would induce a P4 in G, implying that p E D, a contradiction.) 

Finally, note that by (5) and (6) combined, it follows that the set D computed in 

line 5 is the desired one, thus completing the proof of the theorem. 0 

Next, we describe the formal construction of the px-tree of a P,-extendible graph 

G by the following recursive procedure. 

Procedure Build-tree(G); 

{Input: a P,-extendible graph G= (K/,E); 

Output: the px-tree T(G) corresponding to G} 

begin 

if IV/=1 then 

return the tree T consisting of the unique vertex of G; 
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if G (respectively G) is disconnected then 
begin 

let G1,G2, . . . . Gp (pr2) denote the components of G 

(respectively G); 

let T,, T,, . . . , Tp be the corresponding px-trees rooted at 

r,,r,, *.a, rp; 
return the tree T(G) obtained by adding rl, r2, . . . , rp as 

children of a node labelled 0 (1); 

end; 

if G is an extension set then 

begin 

write G = GI@G2 as in Fig. 2; 

let T,, T2 be the corresponding px-trees rooted at rl and r2; 
return the tree T(G) obtained by adding rl, r2 as children 

of a node labelled 2 

end; 

Find_Separable_ExtensioLSet(G, D); 

let T,, T2 be the px-trees corresponding to G, and Gv_D, 

respectively, rooted at r, and r,; 
return the tree T(G) obtained by adding rl, r2 as the left and 

right children, respectively, of a node labelled 3 

end; {Build-tree} 

By Theorems 2.12 and 2.14 it follows immediately that the px-tree of a P,-ex- 
tendible graph G is unique up to labelled tree isomorphism. 

An important property of P4-extendible graphs is that they can be “reduced” 

easily to P,-reducible graphs in a natural way. More precisely, given an arbitrary 

P4-extendible graph G, the reduced graph R(G) associated with G is the induced 

subgraph of G obtained by the following procedure. 

Procedure Collapse(G); 

{Input: a P,-extendible graph G; 

Output: the reduced graph R(G)} 

begin 

H&G; 
while there exists an extension set D = W U S(W) in H do 

H+-H-S(W); 
return(H) 

end; 

The definition of a P,-extendible graph guarantees that the graph R(G) returned 

by Procedure Collapse is a P,-reducible graph. The uniqueness implied by the 

definition of the reduced graph is justified by the following result. 
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Theorem 3.2. The reduced graph of a P,-extendible graph is unique up to isomor- 
phism. 

Proof. Assume the statement true for all P,-extendible graphs with fewer vertices 

than G. 

If G or G is disconnected, then we are done by the induction hypothesis since no 

P4 in G has vertices in distinct components of G or G. We may assume, therefore, 

that both G and G are connected. Note that if G is an extension set, then the reduced 

graph is always isomorphic to the P4. 
Otherwise, Theorem 2.12 guarantees the existence of a unique separable extension 

set D such that every vertex outside of D is adjacent to every midpoint and nonadja- 

cent to every endpoint of D. By the induction hypothesis, the reduced graph R(G’) 

of the graph G’ induced by V-D is unique up to isomorphism. Let A be some 

subset of D inducing a P,. By Observation 2.3, we can write D=A U S(A). Now 

the conclusion follows from the observation that R(G) is obtained from R(G’) by 

replacing D by A. 0 

4. Conclusion and open questions 

In this paper we have introduced and investigated the class of P,-extendible 

graphs which is a natural generalization of the class of P,-reducible graphs with 

applications to clustering and scheduling. As it turns out, the P,-extendible graphs 

feature the remarkable property of being uniquely tree representable. 

Furthermore, the conversion between a PA-extendible graph and the correspon- 

ding tree representation can be carried out in polynomial time and, consequently, 

the graph isomorphism problem can be soived in polynomial time for P,-extendible 

graphs. It would be of interest to further investigate this tree structure for the pur- 

pose of solving efficiently other computational problems important in applications 

such as: clustering, minimum fill-in, minimum weight dominating set, hamiltonicity 

and others. Linear-time recognition algorithms for cographs and P,-reducible 

graphs are known to exist (see [3,6]). It would be very interesting to see whether the 

same techniques can be applied for the purpose of recognizing P,-extendible 

graphs efficiently. We conjecture that a linear-time recognition algorithm for 

P,-extendible graphs is achievable, and pose it as an open problem. 
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