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Abstract

A partially linear model is considered when the responses are missing at random. Imputation, semipara-
metric regression surrogate and inverse marginal probability weighted approaches are developed to estimate
the regression coefficients and the nonparametric function, respectively. All the proposed estimators for the
regression coefficients are shown to be asymptotically normal, and the estimators for the nonparametric
function are proved to converge at an optimal rate. A simulation study is conducted to compare the finite
sample behavior of the proposed estimators.
© 2006 Elsevier Inc. All rights reserved.
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1. Introduction

Consider the partial linear model

Y = X�� + g(T ) + ε, (1.1)

where Y is a scalar response variate, X is a p-variate random covariate vector and T is a scalar
covariate taking values in [0, 1], and where � is a p × 1 column vector of unknown regression
parameter, g(·) is an unknown measurable function on [0, 1] and ε is a random statistical error
with E[ε|X, T ] = 0.
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Model (1.1) has gained much attention in recent years. Speckman [17] gave an application
of the partially linear model to a mouthwash experiment. Schmalensee and Stoker [16] used the
partially linear model to analyze household gasoline consumption in the United States. Green
and Silverman [5] provided an example of the use of partially linear models, and compared their
results with a classical approach. Zeger and Diggle [23] used a semiparametric mixed model to
analyze the CD4 cell count in HIV seroconverters where g(·) is estimated by a kernel smoother.
Hu et al. [10] studied the profile-kernel and backfitting methods for the model. The partially linear
model has been applied in various fields such as biometrics, see Gray [4], econometrics, see Ahn
and Powell [1], and so on. The model has been studied extensively for complete data setting, see
Heckman [8], Rice [13], Speckman [17], Robinson [15] among others.

In practice, some response variables may be missing, by design (as in two-stage studies) or by
happenstance. For example, the response Y ’s may be very expensive to measure and only part of
Y ’s are available.Another example is that Y ’s represent the responses to a set of questions and some
sampled individuals refuse to supply the desired information. Actually, missingness of responses
is very common in opinion polls, market research surveys, mail enquiries, social-economic inves-
tigations, medical studies and other scientific experiments. Wang et al. [21] developed inference
tools for the mean of Y in model (1.1) with missing response data.

In this paper, we develop some approaches of estimating � and g(·) with responses missing.
Suppose we obtain a random sample of incomplete data

(Yi, �i , Xi, Ti), i = 1, 2, . . . , n,

from model (1.1), where �i = 0 if Yi is missing, otherwise �i = 1. Throughout this paper,
we assume that Y is missing at random (MAR). The MAR assumption implies that � and Y are
conditionally independent given X and T. That is, p(� = 1|Y, X, T ) = p(� = 1|X, T ). MAR is a
common assumption for statistical analysis with missing data and is reasonable in many practical
situations; see Little and Rubin [11].

To deal with missing data, one method is to impute a plausible value for each missing datum
and then analyze the results as if they are complete. In regression problems, commonly used
imputation approaches include linear regression imputation [7] , nonparametric kernel regression
imputation [3,22], semiparametric regression imputation [21], among others. Wang et al. [21]
developed semiparametric imputation approach to estimate the mean of Y. We here extend the
method to the estimation of � and g(·).

It is interesting to note that Matloff [12] verified that if the form of regression is known and only
characterized by some unknown parameter, the method of replacing the responses by the estimated
regression values outperforms that of using the observed responses directly for the estimation of
means. Motivated by Matloff [12], we develop a so-called semiparametric regression surrogate
approach. This method is just to use the estimated semiparametric regression values instead of
the corresponding response values to define estimators whether the responses are observed or
not. Our research results also verify that the semiparametric regression surrogate approach indeed
works well. Similar methods are also used by Cheng [3] and Wang et al. [21], where the methods
are also competitive.

It is well known that the inverse probability weighted approach is another popular method to
handle missing data. The inverse weighted approach has gained considerable attention to missing
data problems. See Zhao, Lipsitz and Lew [24], Wang et al. [19], Robins, Rotnitzky and Zhao
[14] and Wang, Lindon and Härdle [21]. For missing response problems, the inverse probability
weighted approach usually depends on high-dimensional smoothing for estimating the completely
unknown propensity score function, and hence the well known “curse of dimensionality" may
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restrict the use of this estimator. Wang et al. [21] suggested an inverse marginal probability
weighted method to estimate the mean ofY, which avoids the problem of “curse of dimensionality".
Furthermore, it is shown that the resulting estimator has a credible “double robustness” property.
This motivates us to employ the inverse marginal probability weighted method to estimate �
and g(·).

The rest of this paper is organized as follows. In Section 2, we define imputation estimators
of � and g(·), and investigate their asymptotic properties. In Sections 3 and 4, we develop a
semiparametric regression surrogate method and an inverse marginal probability weighted method
to estimate � and g(·), and investigate their asymptotic properties, respectively. In Section 5, we
conduct a simulation study to compare the finite sample properties of these suggested estimators.
The proofs of the main results are presented in the appendix.

2. Imputation estimators and asymptotic properties

Let Z = (X, T ), �2(Z) = E(ε2|Z), �(z) = P(� = 1|Z = z) and �t (t) = P(� = 1|T = t).
Let U

[I]
i = �iYi + (1 − �i )(X

�
i � + g(Ti)), that is, U

[I]
i = Yi if �i = 1, otherwise, U

[I]
i =

X�
i � + g(Ti). By MAR assumption, we have E[U [I]|Z] = E[�Y + (1 − �)(X�� + g(T ))]|Z) =

X�� + g(T ). This implies

U
[I]
i = X�

i � + g(Ti) + ei, (2.1)

where E[ei |Zi] = 0. This is just the form of the standard partial linear model. Let

�ni(t) =
M
(

t−Ti

bn

)
∑n

i=1 M
(

t−Ti

bn

) ,

where M(·) is a kernel function and bn is a bandwidth sequence. Standard approach can be used
to define the following estimator of �:

�̃I =
[

n∑
i=1

(Xi − g̃1n(Ti))(Xi − g̃1n(Ti))
�

]−1 n∑
i=1

(Xi − g̃1n(Ti))(U
[I]
i − g̃

[I]
2n(t)), (2.2)

where g̃1n(t) and g̃
[I]
2n(t) are, respectively, given by

g̃1n(t) =
n∑

i=1

�ni(t)Xi, g̃
[I]
2n(t) =

n∑
i=1

�ni(t)U
[I]
i . (2.3)

Let

�C
nj (t) =

K
(

t−Tj

hn

)
∑n

j=1 �jK
(

t−Tj

hn

) ,

where K(·) is a kernel function and hn is a bandwidth sequence. Clearly, U
[I]
i contains unknown

� and g(Ti). Hence �̃I is not a true estimator. Naturally, we replace U
[I]
i by

U
[I]
ni = �iYi + (1 − �i )(X

�
i �̂C + gC

n (Ti)) (2.4)
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in (2.2) and denote the corresponding estimator by �̂I, where �̂C and gC
n (Ti) are given, respectively,

by

�̂C =
[

n∑
i=1

�i (Xi − gC
1n(Ti))(Xi − gC

1n(Ti))
�

]−1 n∑
i=1

�i (Xi − gC
1n(Ti))(Yi − gC

2n(Ti))

(2.5)

and

gC
n (t) = gC

2n(t) − gC
1n(t)

��̂C, (2.6)

where

gC
1n(t) =

n∑
j=1

�j�
C
nj (t)Xj , gC

2n(t) =
n∑

j=1

�j�
C
nj (t)Yj . (2.7)

Let g1(t) = E[X|T = t] and g2(t) = E[Y |T = t] = E[U [I]|T = t]. From (2.1), by taking
expectation of T , we have

g(t) = g2(t) − g1(t)
��. (2.8)

Then, g(t) can be estimated by

ĝ[I]
n (t) = g

[I]
2n(t) − g1n(t)

��̂I , (2.9)

where g1n(t) is g̃1n(t) and g
[I]
2n(t) is g̃

[I]
2n(t) with U

[I]
i replaced by U

[I]
ni for i = 1, 2, . . . , n.

Denote X̌ = X − E(X|T ) and X̃ = X − E(�X|T )

E(�|T )
. Let

�0 = E[�(Z)X̃X̃�], �1 = E[X̌X̌�], �2 = E[(1 − �(Z))X̌X̃�].

Theorem 2.1. Under all the assumptions listed in appendix, except (b)(i) and (c)(iii), we have

√
n(�̂I − �)

L−→ N(0, �−1
1 VI�

−1
1 ),

where

VI = (�2 + �0)�
−1
0 E[�(Z)X̃X̃��2(Z)])�−1

0 (�2 + �0).

If �i is independent of Xi given Ti, by simple computation, the asymptotic variance of �̂I
reduces to �−1

01 E[�t (T )X̌X̌��2(Z)]�−1
01 , where �01 = E[�t (T )X̌X̌�]. Furthermore, if �(·) and

hence �t (·) equal to a constant a, i.e. under the assumption of missing completely at random,
it is easy to see that the asymptotic variance reduces to 1

a
�−1

1 E[X̌X̌��2(Z)]�−1
1 . Specifically,

if �(Z) = 1, the asymptotic variance is �−1
1 E[X̌X̌��2(Z)]�−1

1 , which is just the asymptotic
variance of the standard estimator when the data are observed completely (See [2]).

To define a consistent estimator of the asymptotic variance, a natural way is first to define
estimators of �(z), �2(z), E[X|T ], E[�X|T ] and E[�|T ] using kernel regression method and
then define a consistent estimator by combining sample moment approach and “plug in” method.
However, this method may not provide a good estimator of the asymptotic variance in high
dimensions. Kernel smoothing can be avoided because �(z) and �2(z) only enter in the numerator
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and hence can be replaced by the indicator function or squared residuals where appropriate. For
example, �0 can be estimated consistently by

�̂0n = 1

n

n∑
i=1

�i (Xi − gC
1n(Ti))(Xi − gC

1n(Ti))
�,

where gC
1n(t) is defined in (2.7).

Theorem 2.2. Under conditions of Theorem 2.1, if bn = Op(n− 1
3 ) and hn = Op(n− 1

3 ), we have

ĝ[I]
n (t) − g(t) = Op(n− 1

3 ).

The proofs of Theorems 2.1 and 2.2 are given in the Appendix. Theorem 2.2 shows that ĝ
[I]
n (t)

attains the optimal convergence rate of nonparametric kernel regression estimator. See Stone [18].

3. Semiparametric regression surrogate estimators and asymptotic properties

In this section, we develop a so-called semiparametric regression surrogate approach. This
method uses estimated semiparametric regression values instead of the corresponding response
values to define estimators, whether the responses are observed or not. Let

U
[R]
ni = X�

i �̂C + gC
n (Ti). (3.1)

The semiparametric regression surrogate estimator of �, written �̂R, can be defined to be �̂I with
U

[I]
ni in it replaced by U

[R]
ni for i = 1, 2, . . . , n. The estimator of g(·), written ĝ

[R]
n (·), can be

defined to be ĝ
[I]
n (·) with U

[I]
ni and �̂I in it replaced by U

[R]
ni and �̂R, respectively.

Theorem 3.1. Under the assumptions of Theorem 2.1, we have

√
n(�̂R − �)

L−→ N(0, �−1
1 VR�−1

1 ),

where

VR = �1 �−1
0 E[X̃X̃��(Z)�2(Z)]�−1

0 �1.

It is interesting to note that �̂R has the same asymptotic variance as �̂I. This can be seen under
the MAR condition by noting

�0 + �2 = E[(X − E[X|T ])(X − E[X|T ])]

+E

[
(1 + �(Z))(X − E[X|T ])

(
E[X|T ] − E[�X|T ]

E[�|T ]
)�]

+E

[
�(Z)

(
E[X|T ] − E[�X|T ]

E[�|T ]
)(

E[X|T ] − E[�X|T ]
E[�|T ]

)�]

= �1 + E

[
�

(
X − E[�X|T ]

E[�|T ]
)(

E[X|T ] − E[�X|T ]
E[�|T ]

)�]
= �1,

where �0, �1 and �2 are defined in Section 2.
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Theorem 3.2. Under conditions of Theorem 3.1, if bn = Op(n− 1
3 ) and hn = Op(n− 1

3 ), we have

ĝ[R]
n (t) − g(t) = Op(n− 1

3 ).

The proof of Theorems 3.1 and 3.2 are presented in appendix.

4. Inverse marginal probability weighted estimators and asymptotic properties

We note that under the MAR condition,

E

[
�i

�(Zi)
Yi +

(
1 − �i

�(Zi)

)
(X�

i � + g(Ti))|Zi

]
= X�

i � + g(Ti).

Similar to Section 2, one can use the above equation to estimate � and g(·). But this method
concerns the nonparametric regression estimator of �(z) and hence the well known “curse of
dimensionality” problem may occur if the dimension of X is high. Motivated by Wang et al. [21],
we use the inverse marginal probability weighted approach. Let

U
[IP]
i = �i

�t (Ti)
Yi +

(
1 − �i

�t (Ti)

)
(X�

i � + g(Ti)) (4.1)

and taking expectation of Z, we have E(U
[IP]
i |Zi) = X�

i � + g(Ti). Hence

U
[IP]
i = X�

i � + g(Ti) + �i , (4.2)

where �′
i s satisfy E[�i |Zi] = 0. Let

�̃ni(t) =
�
(

t−Ti

�n

)
∑n

j=1 �
(

t−Tj

�n

) ,

where �(·) is a kernel function and �n is a bandwidth sequence. Formula (4.2) is a standard partial
linear model. Hence, similar to Section 2, the inverse marginal probability weighted estimator of
�, say �̂IP, can be defined to be �̂I with U

[I]
ni replaced by U

[IP]
ni , and the estimator of g(·), ĝ

[IP]
n (t),

can be defined to be ĝ
[I]
n (·) with U

[I]
ni and �̂I replaced by U

[IP]
ni and �̂IP, where

U
[IP]
ni = �i

�̂t (Ti)
Yi +

(
1 − �i

�̂t (Ti)

)
(X�

i �̂C + gC
n (Ti))

with

�̂t (Ti) =
n∑

i=1

�̃ni(t)�i .

Let

L(T ) = �0

�t (T )
+ E

((
1 − �

�t (T )

)
(X − g1(T ))(X − gC

1 (T ))�
)

.



1476 Q. Wang, Z. Sun / Journal of Multivariate Analysis 98 (2007) 1470–1493

Theorem 4.1. Under all the assumptions listed in appendix, we have

√
n(�̂IP − �)

L−→ N(0, �−1
1 VIP�−1

1 ),

where

VIP = E
{
L(T )�−1

0 (X − gC
1 (T ))(X − gC

1 (T ))��−1
0 L(T )�(Z)�2(Z)

}
.

In theory, it seems difficult to compare the asymptotic variance of �̂IP with that of �̂I and �̂R.
We will make a simulation comparison between them. Next, we discuss some special cases. If

�i is independent of Xi given Ti, the asymptotic variance reduces to �−1
1 E

[
X̌X̌� �2(Z)

�t (T )

]
�−1

1 .

Under MCAR, the asymptotic variance is the same as that of �̂I and �̂R. In the special case of
�(Z) = 1, the asymptotic variance reduces to that of the standard estimator due to Chen [2] with
data observed completely.

The asymptotic variance can be estimated by the method similar to that used in the estimating
of the asymptotic variance of �̂I.

Theorem 4.2. Under conditions of Theorem 4.1, if bn = O(n− 1
3 ), hn = O(n− 1

3 ) and �n =
O(n− 1

3 ), we have

ĝ[IP]
n (t) − g(t) = Op(n− 1

3 ).

5. Bandwidth selection

It is well known that an important issue in applying kernel regression estimate is the selection
of an appropriate bandwidth sequence. This issue has been extensively studied in the context
of nonparametric regression. One of bandwidth selection rules is the delete-one cross-validation
rule. Hong [9] extend this method to the partially linear regression setting. Here, we further extend
this method to the partially linear regression problem when responses are MAR. It is noted that
our estimators involve two or three bandwidths. Hence, it is somewhat complicated to select
appropriate bandwidths for our estimators. We state the procedure in the following three steps:

(1) Select hn by minimizing

CV1(hn) = 1

n

n∑
i=1

�i (Yi − X�
i �̂C − gC

n,−i (Ti))
2

where gC
n,−i (·) is a “leave one out” version of gC

n (·).
(ii) Select �n by minimizing

CV2(�n) = 1

n

n∑
i=1

(�i − �̂t,−i (Ti))
2,

where �̂t,−i (·) is a “leave one out” version of �̂t (·).
(iii) After obtaining hn and �n, we choose bn to minimize

CV3(bn) = 1

n

n∑
i=1

(Uni − X�
i �̂n − gn,−i (Ti))

2,
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Table 1
Biases of �̂I, �̂R, �̂IP, �̂C and �̂full with different missing functions �(z) and different sample sizes

�(z) n �̂I �̂R �̂IP �̂C �̂full

�1(z) 30 0.0017 0.0010 0.0007 0.0027 0.0016
60 0.0015 0.0014 0.0023 −0.0016 0.0017

120 −0.0005 0.0001 0.0006 −0.0009 0.0001
200 −0.0002 −0.0004 0.0001 −0.0020 −0.0007

�2(z) 30 −0.0042 −0.0045 −0.0053 −0.0087 −0.0021
60 −0.0032 −0.0039 −0.0022 −0.0049 0.0022

120 −0.0011 −0.0013 −0.0010 −0.0021 −0.0017
200 0.0007 0.0007 0.0007 0.0008 0.0007

�3(z) 30 −0.0050 −0.0053 −0.0094 −0.0074 −0.0018
60 0.0047 0.0049 0.0058 0.0056 −0.0036

120 −0.0028 −0.0026 −0.0033 −0.0028 0.0007
200 −0.0012 −0.0011 −0.0015 0.0007 0.0004

Table 2
Standard errors (SE) of �̂I, �̂R, �̂IP, �̂C and �̂full with different missing functions �(z) and different sample sizes

�(z) n �̂I �̂R �̂IP �̂C �̂full

�1(z) 30 0.2332 0.2356 0.2332 0.2689 0.2168
60 0.1516 0.1529 0.1556 0.1681 0.1405

120 0.1008 0.1014 0.1008 0.1064 0.0944
200 0.0787 0.0791 0.0791 0.0819 0.0745

�2(z) 30 0.2802 0.2847 0.2803 0.3231 0.2156
60 0.1765 0.1797 0.1836 0.1973 0.1414

120 0.1144 0.1153 0.1149 0.1211 0.0963
200 0.0875 0.0881 0.0878 0.0914 0.0747

�3(z) 30 0.4330 0.4385 0.4171 0.4788 0.2224
60 0.2376 0.2410 0.2384 0.2574 0.1413

120 0.1490 0.1508 0.1493 0.1574 0.0981
200 0.1072 0.1082 0.1070 0.1129 0.0753

where gn,−i (·) is a “leave one out” version of gn(·), gn(·) denotes one of ĝ
[I]
n (t), ĝ

[R]
n (t) and

ĝIP(t) and Uni denotes one of U
[I]
ni , U

[R]
ni and U

[IP]
ni for i = 1, 2, · · · , n.

On the other hand, we should point out that the selection of bandwidths is not so critical if
one is only interested in estimation of the parametric part. This can be seen from the following
arguments. The fact that � is a global functional and hence the n1/2-rate asymptotic normality of
�̂I, �̂R and �̂IP implies that a proper choice of the bandwidths specified in conditions (g) and (h)
depends only on the second order term of the mean square errors of �̂I, �̂R and �̂IP.

6. Simulation

To understand the finite sample behaviors of the proposed methods, we conducted a simulation
study to compare their finite sample properties.
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Table 3
MSE of �̂I, �̂R, �̂IP, �̂C and �̂full with different missing functions �(z) and different sample sizes

�(z) n �̂I �̂R �̂IP �̂C �̂full

�1(z) 30 0.0543 0.0554 0.0543 0.0723 0.0470
60 0.0229 0.0234 0.0242 0.0282 0.0197

120 0.0102 0.0103 0.0113 0.0154 0.0089
200 0.0062 0.0063 0.0063 0.0067 0.0055

�2(z) 30 0.0785 0.0810 0.0856 0.1044 0.0465
60 0.0312 0.0323 0.0337 0.0389 0.0200

120 0.0131 0.0133 0.0132 0.0147 0.0093
200 0.0076 0.0078 0.0077 0.0084 0.0056

�3(z) 30 0.1874 0.1922 0.1740 0.2292 0.0494
60 0.0564 0.0580 0.0568 0.0662 0.0200

120 0.0222 0.0227 0.0223 0.0248 0.0096
200 0.0115 0.0117 0.0114 0.0128 0.0057

Table 4
Mean integrated square error (MISE) of ĝ

[I]
n (t), ĝ

[R]
n (t), ĝ

[IP]
n (t), ĝC

n (t) and gfull
n (t) with different missing functions �(z)

and different sample sizes

�(z) n ĝ
[I]
n (t) ĝ

[R]
n (t) ĝ

[IP]
n (t) ĝC

n (t) gfull
n (t)

�1(z) 30 0.3124 0.3074 0.3138 0.5810 0.2810
60 0.1694 0.1665 0.1810 0.3611 0.1507

120 0.0906 0.0887 0.0909 0.2021 0.0816
200 0.0606 0.0590 0.0609 0.1375 0.0551

�2(z) 30 0.3981 0.3945 0.4029 0.7089 0.2824
60 0.2104 0.2073 0.2274 0.4354 0.1513

120 0.1137 0.1112 0.1151 0.2531 0.0830
200 0.0741 0.0724 0.0752 0.1706 0.0549

�3(z) 30 0.5753 0.5744 0.5810 0.9128 0.2853
60 0.2862 0.2834 0.2972 0.5602 0.1490

120 0.1555 0.1529 0.1590 0.3385 0.0836
200 0.0982 0.0962 0.1005 0.2256 0.0550

The simulation used the model Y = ��X + g(T ) + ε with X and T simulated from the normal
distribution with mean 1 and variance 1 and the uniform distribution U [0, 1], respectively, and

ε generated from the standard normal distribution, where � = 1.5, g(t) = (sin(2	t2))
1
3 if t ∈

[0, 1], g(t) = 0 otherwise. The kernel function K(·) was taken to be K(t) = 15
16 (1 − t2)2, if

|t |�1, 0, otherwise, M(·) to be M(t) = 15
16 (1 − 2t2 + t4), if |t |�1, 0, otherwise, and �(·) to

be �(t) = − 15
8 t2 + 9

8 , if |t |�1, 0, otherwise. The bandwidths bn, hn and �n were taken to be
2
5n−7/24, 1

5n−1/3 and 4
5n−1/3, which satisfy the conditions (g) and (h), respectively. We did not use

the bandwidth selection method suggested in Section 5 since it is time consuming for calculation
and one is mainly interested in estimation of the parametric part in the partial linear model.
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Fig. 1. Simulated curves of ĝ
[I]
n (t), ĝ

[R]
n (t), ĝ

[IP]
n (t), gfull

n (t) and ĝC
n (t) with different missing functions �(z) and different

sample sizes.

Based on the above model, we considered the following three response probability functions:
�(z) = P(� = 1|X = x, T = t) under the MAR assumption.

We generated, respectively, 2000 Monte Carlo random samples of size n = 30, 60, 120 and
200 for the following three cases, respectively.

Case 1: �1(z) = P(� = 1|X = x, T = t) = 0.8+0.2(|x−1|+|t−0.5|) if |x−1|+|t−0.5|�1,
and = 0.90 elsewhere.

Case 2: �2(z) = P(� = 1|X = x, T = t) = 0.9 − 0.2(|x − 1| + |t − 0.5|) if |x − 1| + |t −
0.5|�1.5, and = 0.80 elsewhere.

Case 3: �3(z) = P(� = 1|X = x, T = t) = 0.8−0.2(|x−1|+|t−0.5|)if |x−1|+|t−0.5|�1,
and = 0.50 elsewhere.

For the above three cases, the mean response rates are E�1(z) ≈ 0.90, E�2(z) ≈ 0.75 and
E�3(z) ≈ 0.60. From the 2000 simulated values of �̂I, �̂R, �̂IP, �̂C and �̂full, we calculated
the biases, standard errors (SEs) and MSE of these estimators, where �̂C denotes the complete
case (CC) estimator which is defined by simply ignoring the missing data and �̂full denotes the
standard estimator when data are observed completely. �̂full is practically unachievable, but it can
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serve as a gold standard. These simulated results are reported in Tables 1–3 respectively. From
the 2000 simulated values of ĝ

[I]
n (t), ĝ

[R]
n (t), ĝ

[IP]
n (t), gC

n (t) and gfull
n (·), we calculated the mean

integrated square error (MISE) and plotted the simulated curves. The result was reported in Table
4 and Fig. 1.

From Tables 1–3, all the proposed estimators of � have similar bias, SE and MSE and hence
perform similarly. Generally, the bias, SE and MSE of �̂I, �̂R and �̂IP are only slightly greater
than �̂full, the gold standard, and hence the proposed estimators of � perform well. From Tables
1–3, �̂I, �̂R and �̂IP perform better than �̂C. From Table 4, the proposed estimators ĝ

[I]
n (t), ĝ

[R]
n (t)

and ĝ
[IP]
n (t) outperform ĝC

n (t), the CC estimator for g(·), in terms of MISE. It is also noted that
ĝ

[IP]
n (t) has uniformly slightly larger MISE than ĝ

[I]
n (t) and ĝ

[R]
n (t), and �̂IP has more complicated

variance structure and requires estimating of the marginal propensity score function 	(·). Hence,
one may prefer the imputation estimator and regression surrogate estimator to the inverse marginal
probability weighted one.

Appendix A. Proofs of Theorems

We begin this section by listing the conditions needed in the proofs of all the theorems.

(a) (i) E[X̌X̌�] is a positive definite matrix.
(ii) E[�(Z)X̃X̃�] is a positive definite matrix.

(b) (i) inf t �t (T ) > 0.

(ii) �t (·) has bounded partial derivatives up to order 2.
(c) (i) K(·) is a bounded kernel function of order 2 with bounded support.

(ii) M(·) is a bounded kernel function of order 2 with bounded support.
(iii) �(·) is a bounded kernel function of order 2 with bounded support.

(d) (i) g1(·) and g2(·) have bounded derivatives up to order 2.
(ii) gC

1 (·) and gC
2 (·) have bounded derivatives up to order 2.

(e) (i) supx,t E[Y 2|X = x, T = t] < ∞,

(ii) supt E[‖X‖2|T = t] < ∞.

(f) The density of T , say ft (T ), exists and has bounded derivatives up to order 2 and satisfies

0 < inf
t∈[0,1] fT (t)� sup

t∈[0,1]
fT (t) < ∞.

(g) nbnhn −→ ∞; nh4
n −→ 0, nb4

n → 0 and h2
n

bn
→ 0.

(h) n�n → ∞ and n�4
n → 0.

Remark. Condition (b)(i) is reasonable since it assumes that the response probability function is
bounded from 0. Condition (f) is a commonly used assumption in the context of partially linear
regression. See, e.g., [6]. Other conditions are some usual assumptions.

For the sake of convenience, we denote by c the general constant whose value may be different
at each appearance.

Lemma A.1. Under Assumptions (a)(ii), (b)(ii), (c)(i), (d)(ii), (e) and (f), if nhn → ∞ we have

√
n(�̂C − �)

L−→ N(0, �−1
0 VC�−1

0 ),
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where

VC = E[�(Z)X̃X̃��2(Z)].

Proof. Wang et al. [21] has shown that

√
n(�̂C − �) = �−1

0√
n

n∑
i=1

[Xi − gC
1 (Ti)]�iεi + op(1), (A.1)

where gC
1 (t) = E[�X|T = t]/E[�|T = t]. By central limit theorem, the lemma is then proved.

�

Proof of Theorem 2.1. Let
√

n(�̂I − �) = B−1
n An,

where

Bn = 1

n

n∑
i=1

(Xi − g1n(Ti))(Xi − g1n(Ti))
�

and

An = 1√
n

n∑
i=1

(Xi − g1n(Ti))[U [I]
ni − g

[I]
2n(Ti) − (Xi − g1n(Ti))

��].

Observe that

Bn = 1

n

n∑
i=1

(Xi − g1n(Ti))(Xi − g1n(Ti))
�

= 1

n

n∑
i=1

(Xi − g1(Ti))(Xi − g1(Ti))
� + 2

n

n∑
i=1

(Xi − g1(Ti))(g1(Ti) − g1n(Ti))
�

+1

n

n∑
i=1

(g1(Ti) − g1n(Ti))(g1(Ti) − g1n(Ti))
�

:= Bn1 + Bn2 + Bn3. (A.2)

By the law of large numbers, we have

Bn1
P−→ �1. (A.3)

Let B(s, m) denote the (s, m)th element of some matrix B and Xis, g1s(t), g1ns(t) the sth element
of xi, g1(t) and g1n(t), respectively, for i = 1, 2, . . . , n, s = 1, 2, . . . , p. For Bn2, we have

|Bn2(s, m)|� sup
t

|g1nm(t) − g1m(t)|2

n

n∑
i=1

|Xis − g1(Tis)| p−→ 0. (A.4)

by conditions (d)(i), (c)(ii) and (e)(ii). Similarly, it can be shown that Bn3
p−→ 0. This together

with (A.2), (A.3) and (A.4) yields

Bn
P−→ �1. (A.5)
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Next we verify that

An = 1√
n

n∑
i=1

[Xi − gC
1 (Ti)]�iεi

+E[(1 − �(Z1))(X1 − g1(T1))(X1 − gC
1 (T1))

�]�
−1
0√
n

n∑
i=1

(Xi − gC
1 (Ti))�iεi

+op(1). (A.6)

For An, we have

An = 1√
n

n∑
i=1

(Xi − g1(Ti))[�iYi + (1 − �i )(X
�
i �̂C + gC

n (Ti)) − g
[I]
2n(Ti)

−(Xi − g1n(Ti))
��] + 1√

n

n∑
i=1

(g1(Ti) − g1n(Ti))

×[�iYi + (1 − �i )(X
�
i �̂C + gC

n (Ti)) − g
[I]
2n(Ti) − (Xi − g1n(Ti))

��]
:= An1 + An2. (A.7)

Further, we have

An1 = 1√
n

n∑
i=1

(Xi−g1(Ti))[�iYi+(1 − �i )(X
�
i �+g(Ti)) − g2(Ti) − (Xi − g1(Ti))

��]

+ 1√
n

n∑
i=1

(Xi − g1(Ti))(1 − �i )(Xi − gC
1n(Ti))

�(̂�C − �)

+ 1√
n

n∑
i=1

(Xi − g1(Ti))(1 − �i )(g
C
n0(Ti) − g(Ti))

+ 1√
n

n∑
i=1

(Xi − g1(Ti))(g2(Ti) − g
[I]
2n(Ti))

+ 1√
n

n∑
i=1

(Xi − g1(Ti))(g1n(Ti) − g1(Ti))
��

:= An11 + An12 + An13 + An14 + An15, (A.8)

where gC
n0(t) = gC

2n(t) − gC
1n(t)

��. By the fact g(t) = g2(t) − g�
1(t)�, it follows that

An11 = 1√
n

n∑
i=1

(Xi − g1(Ti))�iεi . (A.9)

Clearly, the law of large numbers and (A.1) can be used to get

An12 =
[

1

n

n∑
i=1

(1 − �i )(Xi − g1(Ti))(Xi − gC
1n(Ti))

�

]
[√n(�̂C − �)]

= E[(1 − �(Z))(X − g1(T ))(X − gC
1 (Ti))

�]�
−1
0√
n

n∑
j=1

(Xj − gC
1 (Tj ))�j εj

+op(1) (A.10)
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by assumptions (a)(ii), (b)(ii), (c), (d)(ii), (e) and (f). For An13, we have

An13 = 1√
n

n∑
i=1

(Xi − g1(Ti))(1 − �i )

∑n
j=1 �j (Yj − X�

j� − g(Ti))K
(

Ti−Tj

hn

)
∑n

j=1 �jK
(

Ti−Tj

hn

)

= 1√
n

n∑
i=1

(Xi − g1(Ti))(1 − �i )

∑n
j=1 �j (Yj − X�

j� − g(Tj ))K
(

Ti−Tj

hn

)
nhn�t (Ti)ft (Ti)

+ 1√
n

n∑
i=1

(Xi − g1(Ti))(1 − �i )

∑n
j=1 �j (g(Tj ) − g(Ti))K

(
Ti−Tj

hn

)
nhn�t (Ti)ft (Ti)

+ op(1)

= An131 + An132 + op(1) (A.11)

by (f)(ii) and (b)(ii).
By conditions (b)(ii), (c)(i), (d) and (f)(ii), we obtain

An131 = 1√
n

n∑
j=1

�j εj

1

nhn

n∑
i=1

E[(Xi − g1(Ti))(1 − �i )|Ti]
�t (Ti)ft (Ti)

K

(
Ti − Tj

hn

)
+ op(1)

= 1√
n

n∑
j=1

�j εj

E[(Xj − g1(Tj ))(1 − �j )|Tj ]
�(Tj )

+ op(1)

= − 1√
n

n∑
j=1

�j εj

E[(Xj − g1(Tj ))�j |Tj ]
�(Tj )

+ op(1). (A.12)

Assumptions (e)(ii), (b)(i), (c)(i), (d)(i) and (f) can be used to prove that

‖An132‖ = 1√
nhn

∥∥∥∥∥∥
n∑

i=1

(Xi − g1(Ti))(1 − �i )

�t (Ti)ft (Ti)

1

n

n∑
j=1

�j (g(Tj ) − g(Ti))K

(
Ti − Tj

hn

)∥∥∥∥∥∥
� 1√

nhn

∥∥∥∥∥
n∑

i=1

(Xi − g1(Ti))(1 − �i )

�t (Ti)ft (Ti)

∫
�t (t)(g(t)

−g(Ti))K

(
Ti − t

hn

)
ft (t) dt

∥∥∥∥+ op(1)

� ch2
n√
n

n∑
i=1

‖Xi − g1(Ti)‖ + op(1) = op(1) (A.13)

as nh4
n → 0. By (A.11), (A.12) and (A.13), we have

An13 = − 1√
n

n∑
j=1

�j εj

E[(Xj − g1(Tj ))�j |Tj ]
�(Tj )

+ op(1). (A.14)
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For An14, we have

An14 = 1√
n

n∑
i=1

(Xi − g1(Ti))

n∑
j=1

�nj (Ti){g2(Ti) − �j Yj − (1 − �j )(X
�
j �̂C + gC

n (Tj ))}

= 1√
n

n∑
i=1

(Xi − g1(Ti))

n∑
j=1

�nj (Ti)[g2(Ti) − g2(Tj )]

+ 1√
n

n∑
i=1

(Xi − g1(Ti))

n∑
j=1

�nj (Ti)(g2(Tj ) − Yj )

+ 1√
n

n∑
i=1

(Xi − g1(Ti))

n∑
j=1

�nj (Ti)(1 − �j )(Yj − X�
j� − g(Tj ))

+ 1√
n

n∑
i=1

(Xi − g1(Ti))

n∑
j=1

�nj (Ti)(1 − �j )X
�
j (� − �̂C)

+ 1√
n

n∑
i=1

(Xi − g1(Ti))

n∑
j=1

�nj (Ti)(1 − �j )(g
C
n (Tj ) − g(Tj ))

:= An141 + An142 + An143 + An144 + An145. (A.15)

By arguments similar to those used in the analysis of A132, we can show that An141 = op(1).
Similar to (A.12), it is easy to get An142 = op(1) and An143 = op(1). By the fact that �̂C − � =
Op(n− 1

2 ), it is easy to verify that An144 = op(1). To obtain An14 = op(1), it remains to prove
An145 = op(1). Observe that

|An145| �

∣∣∣∣∣∣ 1√
n

n∑
j=1

(1 − �j )(g
C
n (Tj ) − g(Tj ))

n∑
i=1

�nj (Ti)(Xi − g1(Ti))

∣∣∣∣∣∣
� sup

t
|gC

n (t) − g(t)| 1√
n

n∑
j=1

∣∣∣∣∣∣
n∑

j=1

�nj (Ti)(Xi − g1(Ti))

∣∣∣∣∣∣ . (A.16)

By Wang and Li [20] and conditions (c)(ii), (e) and (f), we have

E

⎡⎣ 1√
n

n∑
j=1

∣∣∣∣∣
n∑

i=1

�nj (Ti)(Xi − g1(Ti))

∣∣∣∣∣
⎤⎦2

�c

n∑
j=1

n∑
i

E�2
nj (Ti) = O(b−1

n ). (A.17)

This together with (A.16) and the following fact:

sup
t

|gC
n (t) − g(t)| = OP ((nhn)

− 1
2 ) + OP (hn)

yields An145 = op(1) by condition (g). This proves

An14 = op(1). (A.18)
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Using arguments similar to that used in the proof of (A.14), we have

An15 = op(1) (A.19)

Note that E[(X1−g1(T1))�1|T1]/�(T1) = gC
1 (T1) under MAR assumption. By combining (A.8)–

(A.10), (A.14), (A.18) and (A.19), it follows that

An1 = 1√
n

n∑
i=1

[Xi − gC
1 (Ti)]�iεi

+E[(1 − �(Z1))(X1 − g1(T1))(X1 − gC
1 (T1))

�]�
−1
0√
n

n∑
i=1

(Xi − gC
1 (Ti))�iεi

+op(1). (A.20)

For An2, we have

An2 = 1√
n

n∑
i=1

(g1(Ti) − g1n(Ti))[�iYi + (1 − �i )(X
�
i � + g(Ti)) − g2(Ti)

−(Xi − g1(Ti))
��] + 1√

n

n∑
i=1

(g1(Ti) − g1n(Ti))(1 − �i )X
�
i (�̂C − �)

+ 1√
n

n∑
i=1

(g1(Ti) − g1n(Ti))(1 − �i )(g
C
n (Ti) − g(Ti))

+ 1√
n

n∑
i=1

(g1(Ti) − g1n(Ti))(g2(Ti) − g
[I]
2n(Ti))

+ 1√
n

n∑
i=1

(g1(Ti) − g1n(Ti))(g1n(Ti) − g1(Ti))
��

:= An21 + An22 + An23 + An24 + An25. (A.21)

Similarly to A131, it can be shown that

An21 = 1√
n

n∑
j=1

(Xj − g1(Tj ))E[�j εj |Tj ] + op(1)

= op(1). (A.22)

For An22, we have

‖ An22 ‖ �
√

n ‖ �̂C − � ‖ sup
t

‖ g1(t) − g1n(t) ‖ 1

n

n∑
i=1

‖ Xi ‖= op(1). (A.23)

Hence

An22 = op(1). (A.24)

By a similar method, it can be demonstrated that

An23 = op(1), An24 = op(1), An25 = op(1). (A.25)
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From (A.21)–(A.25), we have

An2 = op(1). (A.26)

Combining (A.7), (A.20) and (A.26), we prove (A.6). This together with central limit theorem
proves Theorem 2.1 by (A.3) and Lemma A.1.

Proof of Theorem 2.2. By the definition of ĝn(t), we have

ĝ[I]
n (t) − g(t) = g

[I]
n2(t) − g2(t) − (gn1(t) − g1(t))

�(�̂I − �) − g1(t)
�(�̂I − �)

−(gn1(t) − g1(t))
��. (A.27)

First, we investigate g
[I]
n2(t) − g2(t). Recalling the definition of g

[I]
n2(t), we have

g
[I]
n2(t) − g2(t) =

n∑
i=1

�ni(t)U
[I]
ni − g2(t)

=
n∑

i=1

�ni(t)[�iYi + (1 − �i )(X
�
i �̂C + gC

n (Ti)) − g2(t)]

=
n∑

i=1

�ni(t)(U
[I]
i − g2(t)) +

n∑
i=1

�ni(t)(1 − �i )X
�
i (�̂C − �)

+
n∑

i=1

�ni(t)(1 − �i )(g
C
n (t) − g(t)). (A.28)

Note that E[U [I]
i |Ti = t] = g2(t) and E[|(1−�i )Xi ||Ti] < ∞. Hence, standard kernel regression

theory gives

sup
t

∣∣∣∣∣
n∑

i=1

�ni(t)(U
[I]
i − g2(t))

∣∣∣∣∣= OP ((nbn)
− 1

2 ) + OP (bn), (A.29)

sup
t

|gC
n (t) − g(t)| = Op((nhn)

−1) + Op(hn), (A.30)

sup
t

|gn1(t) − g1(t)| = OP ((nbn)
− 1

2 ) + OP (bn) (A.31)

and
∑n

i=1 �ni(t)(1 − �i )Xi = OP (1) and
∑n

i=1 �ni(t)(1 − �i ) = OP (1). This is together with

(A.27) and (A.28), the facts �̂C − � = Op(n− 1
2 ) and �̂I − � = Op(n− 1

3 ) yields

sup
t

|ĝ[I]
n (t) − g(t)| = OP ((nbn)

− 1
2 ) + OP (bn) + OP ((nhn)

− 1
2 ) + OP (hn)

+[OP ((nbn)
− 1

2 ) + OP (bn)]OP (n− 1
2 ) + OP (n− 1

2 )

+OP ((nbn)
− 1

2 ) + OP (bn)

= OP ((nbn)
− 1

2 ) + OP (bn) + OP ((nhn)
− 1

2 ) + OP (hn). (A.32)

Theorem 2.2 is then proved if bn = n− 1
3 and hn = n− 1

3 . �

We can show Theorems 3.2 and 4.2 using similar arguments.
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Next we prove Theorems 3.1 and 4.1.

Proof of Theorem 3.1. . Let

√
n(�̂R − �) = B−1

n Cn,

where

Bn = 1

n

n∑
i=1

(Xi − g1n(Ti))(Xi − g1n(Ti))
�

and

Cn = 1√
n

n∑
i=1

(Xi − g1n(Ti))[X�
i �̂C + gC

n (Ti) − g
[R]
2n (Ti) − (Xi − g1n(Ti))

��].

It is shown in Theorem 1 that Bn
P−→ �1. Next we will demonstrate that

Cn = E[(X1 − g1(T1))(X1 − g1(T1))
�]�

−1
0√
n

n∑
j=1

(Xj − gC
1 (Tj ))�j εj + op(1). (A.33)

For Cn, it is easy to get

Cn = 1√
n

n∑
i=1

(Xi − g1(Ti))[X�
i �̂C + gC

n (Ti) − g
[R]
2n (Ti) − (Xi − g1n(Ti))

��]

+ 1√
n

n∑
i=1

(g1(Ti) − g1n(Ti))[X�
i �̂C + gC

n (Ti) − g
[R]
2n (Ti) − (Xi − g1n(Ti))

��]

:= Cn1 + Cn2. (A.34)

Notice that g(t) = g2(t) − g1(t)
�� and then we have

Cn1 = 1√
n

n∑
i=1

(Xi − g1(Ti))X
�
i (�̂C − �) + 1√

n

n∑
i=1

(Xi − g1(Ti))(g
C
n (Ti) − g(Ti))

+ 1√
n

n∑
i=1

(Xi − g1(Ti))(g2(Ti) − g
[R]
2n (Ti))

+ 1√
n

n∑
i=1

(Xi − g1(Ti))(g1n(Ti) − g1(Ti))
��

:= Cn11 + Cn12 + Cn13 + Cn14. (A.35)

By (A.1) and the law of large numbers, it follows that

Cn11 = E[(X − g1(T ))X�]�
−1
0√
n

n∑
j=1

(Xj − gC
1 (Tj ))�j εj + op(1). (A.36)
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For Cn12, we have

Cn12 = 1√
n

n∑
i=1

(Xi − g1(Ti))[gC
2n(Ti) − gC

1n(Ti)
��̂C − gC

2 (Ti) + gC
1 (Ti)

��]

= 1√
n

n∑
i=1

(Xi − g1(Ti))(g
C
2n(Ti) − gC

2 (Ti))

+ 1√
n

n∑
i=1

(Xi − g1(Ti))g
C
1 (Ti)

�(� − �̂C)

+ 1√
n

n∑
i=1

(Xi − g1(Ti))(g
C
1 (Ti) − gC

1n(Ti)
��

+ 1√
n

n∑
i=1

(Xi − g1(Ti))(g
C
1 (Ti) − gC

1n(Ti)
�(�̂C − �)

:= Cn121 + Cn122 + Cn123 + Cn124. (A.37)

Using similar arguments as in the analysis of the terms An12, An13, An14 and An15, it can be
verified that Cn12i = op(1), i = 1, 2, 3, 4. Hence by (A.37), it follows that Cn12 = op(1).
Similar to An14, we can obtain Cn13 = op(1). Notice that Cn14, is just the same as An15. By
(A.19), we have Cn14 = op(1). This together with (A.35) and (A.36) proves

Cn1 = E[(X − g1(T ))X�]�
−1
0√
n

n∑
j=1

(Xj − gC
1 (Tj ))�j εj + op(1)

= E[(X − g1(T ))(X − g1(T ))�]�
−1
0√
n

n∑
j=1

(Xj − gC
1 (Tj ))�j εj + op(1). (A.38)

For Cn2, similarly to the proof of An2 = op(1), it can be shown that Cn2 = op(1). This,
together with (A.34) and (A.38), has proved (A.33). By the central limit theorem, Lemma A.1 and
assumption (a), Theorem 3.1 is then proved. �

Proof of Theorem 4.1. Let
√

n(�̂IP − �) = B−1
n Dn,

where

Bn = 1

n

n∑
i=1

(Xi − g1n(Ti))(Xi − g1n(Ti))
�

and

Dn = 1√
n

n∑
i=1

(Xi − g1n(Ti))
[
(U

[IP]
ni − g

[IP]
2n (Ti)) − (Xi − g1n(Ti))

��
]
,
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where g1n(·) is defined in Section 2 and g
[IP]
2n (t) = ∑n

i=1 �ni(t)U
[IP]
ni . Recalling that U

[IP]
ni =

�i

�̂t (Ti )
Yi + (1 − �i

�̂t (Ti )
)(X�

i �̂C + gC
n (Ti)), by some simple computations, we have

Dn = 1√
n

n∑
i=1

(Xi − g1n(Ti))
�i

�̂t (Ti)
[Yi − (X�

i �̂C + gC
n (Ti))]

+ 1√
n

n∑
i=1

(Xi − g1n(Ti))[(X�
i �̂C + gC

n (Ti)) − g
[IP]
2n (Ti) − (Xi − g1n(Ti))

��]

:= Dn1 + Dn2. (A.39)

Observe

Dn1 = 1√
n

n∑
i=1

(Xi − g1(Ti))
�i

�̂t (Ti)
[Yi − (X�

i �̂C + gC
n (Ti))]

+ 1√
n

n∑
i=1

(g1(Ti) − g1n(Ti))
�i

�̂t (Ti)
[Yi − (X�

i �̂C + gC
n (Ti))]

:= Dn11 + Dn12. (A.40)

For Dn11, we have

Dn11 = 1√
n

n∑
i=1

(Xi − g1(Ti))
�iεi

�t (Ti)

+ 1√
n

n∑
i=1

(Xi − g1(Ti))

(
�i

�̂t (Ti)
− �i

�t (Ti)

)
εi

− 1√
n

n∑
i=1

(Xi − g1(Ti))
�i

�t (Ti)
X�

i (�̂C − �)

− 1√
n

n∑
i=1

(Xi − g1(Ti))

(
�i

�̂t (Ti)
− �i

�t (Ti)

)
X�

i (�̂C − �)

− 1√
n

n∑
i=1

(Xi − g1(Ti))
�i

�t (Ti)
(gC

n (Ti) − g(Ti))

− 1√
n

n∑
i=1

(Xi − g1(Ti))

(
�i

�̂t (Ti)
− �i

�t (Ti)

)
(gC

n (Ti) − g(Ti))

:= Dn111 + Dn112 + Dn113 + Dn114 + Dn115 + Dn116. (A.41)
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By assumption (b), (c)(iii) and (d), we have

Dn112 = 1√
n

n∑
i=1

(Xi − g1(Ti))
�t (Ti) − �̂t (Ti)

�2(Ti)
�iεi + op(1)

= 1√
n

n∑
i=1

(Xi − g1(Ti))�iεi

∑n
j=1(�(Tj ) − �j )�

(
Ti−Tj

�n

)
nbn�

2(Ti)ft (Ti)
+ op(1)

= 1√
n

n∑
j=1

(�(Tj ) − �j )
1

nbn

n∑
i=1

(Xi − g1(Ti))�iεi�
(

Ti−Tj

�n

)
�2(Ti)ft (Ti)

+ op(1)

= 1√
n

n∑
j=1

(�(Tj ) − �j )
1

nbn

n∑
i=1

E[(Xi − g1(Ti))�iεi |Ti]�
(

Ti−Tj

�n

)
�2(Ti)ft (Ti)

+ op(1)

= 1√
n

n∑
j=1

(�(Tj ) − �j )
E[(Xj − g1(Tj ))�j εj |Tj ]

�2(Tj )
+ op(1) = op(1) (A.42)

by noting E[(X − g1(T ))�ε|T ] = 0 under MAR assumption. For Dn113, by the law of large
numbers, we have

Dn113 = −E

[
�1

�(T1)
(X1 − g1(T1))X

�
1

]
[√n(�̂C − �)] + op(1). (A.43)

Similar to (A.23), we can verify

Dn14 = op(1), Dn16 = op(1). (A.44)

Observe

Dn115 = − 1√
n

n∑
i=1

(Xi − g1(Ti))
�i

�t (Ti)
(gC

2n(Ti) − gC
2 (Ti))

− 1√
n

n∑
i=1

(Xi − g1(Ti))
�i

�t (Ti)
gC

1 (Ti)
�(� − �̂C)

− 1√
n

n∑
i=1

(Xi − g1(Ti))
�i

�t (Ti)
(gC

1 (Ti) − gC
1n(Ti))

��

− 1√
n

n∑
i=1

(Xi − g1(Ti))
�i

�t (Ti)
(gC

1 (Ti) − gC
1n(Ti))

�(�̂C − �)

:= Dn1151 + Dn1152 + Dn1153 + Dn1154. (A.45)
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Similar to An131, we obtain

Dn1151 = − 1√
n

n∑
j=1

�j (Yj − gC
2 (Tj ))

E[(Xj − g1(Tj ))�j /�t (Tj )|Tj ]
�t (Tj )

+ op(1), (A.46)

Dn1152 = E

[
(X1 − g1(T1))

�1

�t (T1)
gC

1 (T1)
�
]

[√n(�̂C − �)] + op(1), (A.47)

Dn1153 = 1√
n

n∑
j=1

�j (Xj − gC
1 (Tj ))

��
E[(Xj − g1(Tj ))�j /�t (Tj )|Tj ]

�t (Tj )
+ op(1) (A.48)

and

Dn1154 = op(1). (A.49)

By (A.45)–(A.49), it can be shown that

Dn115 = − 1√
n

n∑
j=1

�j εj

�t (Tj )
E[(Xj − g1(Tj ))�j /�t (Tj )|Tj ]

+E[(X1 − g1(T1))
�i

�t (Ti)
gC

1 (T1)
�][√n(�̂C − �)] + op(1). (A.50)

From (A.41)–(A.44) and (A.50), we have

Dn11 = 1√
n

n∑
i=1

(Xi − gC
1 (Ti))

�iεi

�t (Ti)

−E

[
�i

�t (Ti)
(X1 − g1(T1))(X1 − gC

1 (T1)
�)

]
[√n(�̂C − �)] + op(1). (A.51)

Similarly to the proof of An2 = op(1), it can be shown that Dn12 = op(1). This together with
(A.40) and (A.51) demonstrates that

Dn1 = 1√
n

n∑
i=1

(Xi − gC
1 (Ti))

�iεi

�t (Ti)

−E

[
�i

�t (Ti)
(X1 − g1(T1))(X1 − gC

1 (T1))
�
]

[√n(�̂C − �)] + op(1). (A.52)

Recalling the definitions of g
[R]
2n (·) and g

[IP]
2n (·), it is direct to verify that

1√
n

n∑
i=1

(Xi − g1n(Ti))(g
[R]
2n (Ti) − g

[IP]
2n (Ti)) = op(1). (A.53)
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This proves

Dn2 = Cn + op(1) (A.54)

= E[(X − g1(T ))(X − g1(T1))
�]�

−1
0√
n

n∑
j=1

(Xj − gC
1 (Tj ))�j εj + op(1), (A.55)

where Cn is defined in the proof of Theorem 3.1.
From (A.39), (A.52) and (A.54), we have

Dn = 1√
n

n∑
i=1

(Xi − gC
1 (Ti))

�iεi

�t (Ti)

+E

[(
1 − �i

�t (Ti)

)
(X1 − g1(T1))(X1 − gC

1 (T1)
�)

]
�−1

0√
n

n∑
j=1

(Xj − gC
1 (Tj ))�j εj

+op(1). (A.56)

By the central limit theorem and Lemma A.1, Theorem 4.1 is then proved. �
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