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A b s t r a c t - - T h e  aim of this paper is to investigate the effect of the different service disciplines, 
such as FIFO, PS, Priority Processor Sharing, Polling, on the main performance measures, such 
as  utilizations, response times, throughput, mean queue length. It has been shown by numerical 
examples that even in the case of homogeneous sources and homogeneous failure and repair times, 
the CPU utilization depends on the scheduling discipline contrary to the case of reliable terminal 
systems. All random variables involved in the model construction are supposed to be exponentially 
distributed and independent of each other. (~) 1999 Elsevier Science Ltd. All rights reserved. 

Keywords - -Nonre l i ab l e  terminal system, Performance optimization, Scheduling rules, Service 
disciplines. 

1. I N T R O D U C T I O N  

The  machine  interference model  (sometimes called machine- repai rman model,  finite-source 
model)  has  been t rea ted  in many  forms over the  past  years. It  has often been used in analysing 

mul t i te rminal  sys tems under  different scheduling rules, cf. [1,2]. The  opt imal  opera t ion  of 

finite-source sys tems has been one of the  main  objectives of recent research, see for example,  

[3-61 . 
In  this paper,  we consider a s tochast ic  queueing model  for the per formance  evaluat ion of  a 

compu te r  sys tem consist ing of  n terminals  connected with a CPU.  A user at  te rminal  i has 

th inking and processing times, respectively, depending on index i. Let  us suppose  t h a t  the  
opera t ional  sys tem is subject  to r andom breakdowns,  which may  be software and hardware  ones, 
s topping  the  service bo th  at the  terminals  and at the  CPU.  The  failure-free opera t ion  t imes of  

the  sys tem and the  res torat ion t imes are r andom variables. The  busy  terminals  are also subject  
to  r a n d o m  breakdowns not  affecting the  sys tem's  operat ion.  The  failure-free opera t ion  t imes and 

the  repair  t imes of busy  terminal  i are r andom variables with dis t r ibut ion funct ion depending  on 
index i. The  breakdowns are serviced by a single repai rman providing pre-emptive  priori ty to  the  
sys tem ' s  failure, while the  restorat ions at the  terminals  are carried out  according to  F I F O  rule. 

This work was partially supported by the Hungarian National Foundation for Scientific Research under Grant 
OTKA T014974/95 and OTKA T016933/95. 
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We assume that each user generates only one job at a time, and he waits at the CPU before he 
starts thinking again, that is, the terminal is inactive while waiting at the CPU, and it cannot 
break down. Its importance is due to the fact that it is the simplest closed queueing network 
consisting of two nodes only. For more complex investigation of networks, this simple model can 
give some insight into the effects of different system parameters, and in approximate analysis of 
large networks, they can be considered as building-blocks. 

Several works have been devoted to the investigation of the utilization factor of the Central Pro- 
cessor Unit (CPU) and the number of jobs staying at the CPU. It has turned out that in the case 
when the involved random variables are exponentially distributed, the request's generation rates 
are the same, the processing rates are different [3,5], Lehtonen [7] and Van der Wal [8] have proved 
that the utilization of the CPU is not influenced at all by any work-conserving scheduling rule, 
including First-In-First-Out (FIFO), Processor Sharing (PS), Priority Processor Sharing (PPS), 
Pre-emptive or Nonpre-emptive priority, Shortest and Longest-Expected-Processing-Time-First 
disciplines. More precisely, it has been shown that the mean busy period length of the proces- 
sor is the same for any of the above-mentioned schedulings. Furthermore, the mean number of 
jobs staying at the CPU is minimized by giving higher pre-emptive priority to a job with less 
mean job size (so-called H-schedule). Consequently, the overall utilization of the system, the 
sum of CPU and terminal utilizations, sometimes called as effective degree of multiprogram- 
ming, is maximized. Based on this fact, Kameda [9] has investigated more practical models of 
multiprogramming systems to estimate the maximum processing capacity of the system. 

In the case when the request's generation rates are also different by using different methods, 
Koole and Vrijenhoek [6] and Van der Wal [8] have shown that if pre-emptions of the resume 
type are allowed, the CPU utilization is maximized by giving higher priority to the jobs of the 
faster thinking terminals irrespective of the expected job sizes. Results for the overall device 
utilizations have not been mentioned. However, in practice, we can see that the terminals and 
the CPU are not always available for service. These situations could be considered as breakdowns, 
so the analysis of nonreliable terminal systems seems to be also important. Assuming that the 
involved random variables are independent and exponentially distributed, different models have 
been discussed. The homogeneous case, i.e., when the thinking times, processing times, failure- 
free operation times, and the restoration times are the same for all terminals, has been dealt with 
in [10]. The heterogeneous models under PPS, Polling and FIFO rule have been treated in [11,12], 
the main performance measures have been obtained by numerical and simulation approach. The 
aim of this paper is a synthesis of earlier numerical results with the intention to investigate 
the effect of the different scheduling disciplines, such as FIFO, PS, PPS, Polling, on the main 
performance measures, such as utilizations, response times, mean queue length. 

2. M O D E L  F O R M U L A T I O N  

Let us consider a computer system consisting of n _> 2 terminals connected with a CPU. A 
user at the terminal i has thinking and processing times, respectively, depending on index i. 
Let us suppose, as it was mentioned in [7], that the operational system is subject to random 
breakdowns, which may be software and hardware ones, stopping the service both at the terminals 
and at the CPU. The failure-free operation times of the system and the restoration times are 
random variables. The busy terminals are also subject to random breakdowns not affecting 
the system's operation. The failure-free operation times and the repair times of terminal i are 
random variables with distribution function depending on index i. The breakdowns are serviced 
by a single repairman providing pre-emptive priority to the system's failure, while the restorations 
at the terminals are carried out according to FIFO rule. Each user is assumed to generate only 
one job at a time, and he waits at the CPU before he starts thinking again, that is, the terminal 
is inactive while waiting at the CPU, and it cannot break down. All random variables involved 
in the model construction are supposed to be exponentially distributed and independent of each 
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other. 
To deal with the mathematical model, we have to introduce the following random variables 

(stochastic processes): 

j" 1, if the operating system fails at time t, 
X(t) 

O, otherwise, 

Y(t) := the number of failed terminals at time t, 

YI(t)  := the failed terminals' indices at time t in order of their failure, or 0 if Y(t) = O, 

Z(t) := the number of jobs residing at the CPU at time t, 

ZI(t) := the indices of these jobs. 

(1) 

Depending on the service discipline the random variable ZI(t) gives the order of service by the 
CPU, too. It can easily be seen that,  under the exponential distribution condition, the multidi- 
mensional stochastic process M(t) = (X(t), Y(Q, YI(t), Z(t), ZI(t)) is a Markov chain having a 
rather complex, and large state space. To get its steady-state probabilities, an efficient recursive 
computational method has been introduced and used for different service rules mentioned earlier, 
cf. [10-12]. Let us denote the steady-state distribution of (M(t), t >_ 0) by 

P(q; i l . . . i k ; j l , . . . , j s )  = lim P(X(t) = q; Y(t) = k; 
t---*oO 

YI(t)  = i l , . . . , i k ;  Z(t )= s; ZI ( t )=  J l , - . - , j~ ) .  
(2) 

Furthermore, let us denote by P(q, k, s) (q = 0, 1; k -- 1 , . . . ,  n; s = 1 , . . . ,  n - k) the steady-state 
probability that  the operating system is in state q, k terminals are failed and s jobs are at the 
CPU. Assuming tha t  these probabilities exist and are known, the main performance measures 
can be obtained as follows (see [11]). 

(i) Mean number of jobs residing at the CPU 

1 n n - k  

.5 = E E E sP( , k,s) 
i = O k = O s = O  

(ii) Mean number of working terminals 

1 n n - k  

= n - kP( , s ) .  

i = 0  k=O s = 0  

(iii) Average number of busy terminals 

n n - k  

nb = E E (n -- k -  s)P(O,k,s). 
k = 0  s=O 

(iv) Utilization of the repairman 

n n - k  n n - k  

Ur = E E P(1,k,s) + E E P(O,k,s). 
k = 0  s----0 k----1 s = 0  

(v) Utilization of the CPU 
n - l n - k  

k = 0  s = l  
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(vi) Utilization of the i ih terminal, i -- 1 , . . . ,  n 

= ~ ~ ( 1 - - 5 ( i , i , . ) - - 5 ( i , j v ) ) P ( O ; i l , . . . , i k ; j l , . . . , j s ) ,  
k=0 s=0 r=l v--1 il,...,i~ jl,...,j8 

1, i f / = j ,  
where 6(i, j )  -- O, otherwise. 

(vii) Overall utilization of the system 

n 

U = ~-~ U~ + UcPu + U,.. 
i= l  

(viii) Expected response time of jobs for terminal i 

Qi 
T i = ~  

~iUi ' 

Qi denotes the probability of staying at the CPU for the ith terminal, namely, 

1 n- -1  n - k  s 

q=O k = O  s = l  r = l  i l , . . . , ik jx, . . . , js  
6( i, j r  )P(q; i l , . . . ,  ik; j l ,  . . . , Js ). 

It  is easy to see tha t  nb = ) - ~ i = l  Ui. Furthermore, let us denote by T the overall response t ime 
n 

of the system, defined by T := Y~i=l Ti, which is also a very important  measure of effectiveness. 

3. COMPUTATIONAL RESULTS A N D  
THEIR E X P L A N A T I O N  

In this section, we give several numerical examples to illustrate the effect of different system 
parameters  on the performance measures calculated on the basis of (2) for n = 4, 5 and (i)-(viii). 
As it is well known (see, e.g., [1,2]), that  the Pre-emptive Priori ty discipline can be approximated 
by the PPS rule by assigning appropriate weights to the corresponding jobs; tha t  is the reason 
why it will not be mentioned separately. 

Let us denote by Ai, #i,  7i, wi, wi the parameters of the exponentially distributed thinking, 
processing, operating, repair times and weight for terminal i, i -- 1 , . . . ,  n, respectively. Similarly, 
let ~, D denote the failure and repair rate of the CPU, respectively. 

CASE 1. Input  parameters: 

I o : 4  1 o :0®1 1  _- 090 1 

i hl ~i ?i Ti Wi 

1 0.3500 0.4000 0.2000 0.3000 3.0 

2 0.3500 0.8500 0.2000 0.3000 90.0 

3 0.3500 0.5000 0.2000 0.3000 15.0 

4 0.3500 0.9000 0 .2000 0 .3000 190.0 



C A S E  2. 

nb 

u~ 

UCpu 

U 

u1 

u2 
ua 

u4 

T1 

72 

T3 

T4 

T 

Input parameters: 
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Table 1. Performance measures.  

F I F O  PS POLLING PPS 

1.1313 1.1519 1.1310 1.1865 

0.7542 0.7680 0.7540 0.7910 

0.6631 0.6605 0.6631 0.6559 

2.5486 2.5804 2.5481 2.6334 

0.2683 0.2500 0.2685 0.2117 

0.2926 0.3140 0.2926 0.3454 

0.2764 0.2695 0.2765 0.2688 

0.2941 0.3185 0.2933 0.3606 

3.7852 4.3980 3.7767 6.0742 

2.9093 2.3223 2.9125 1.5663 

3.4755 3.6504 3.4699 3.5635 

2.8605 2.2101 2.8826 1.2886 

13.031 12.581 13.042 12.497 

n_-5 1 o_-ooo, i  _-999o I 

i Ai ~i ~i Ti Wi 

1 0.3500 0.4000 0.2000 0.3000 3.0 

2 0.3500 0.8500 0.2000 0.3000 90.0 

3 0.3500 0.5000 0.2000 0.3000 15.0 

4 0.3500 0.9000 0.2000 0.3000 190.0 

5 0.3500 0.6000 0.2000 0.3000 40.0 

nb 

u~ 

UCPU 

U 

u1 

u2 

u3 

u4 
u~ 

T1 

T2 

T3 

T4 

T5 
T 

Table 2. Performance measures.  

F IFO PS POLLING PPS 

1.2271 1.2466 1.2267 1.2841 

0.8181 0.8311 0.8178 0.8561 

0.7195 0.7163 0.7195 0.7095 

2.7647 2.7947 2.7640 2.8497 

0.2344 0.2154 0.2349 0.1694 

0.2529 0.2734 0.2529 0.3055 

0.2406 0.2330 0.2410 0.2236 

0.2540 0.2776 0.2535 0.3224 

0.2452 0.2471 0.2445 0.2634 

4.4009 5.2237 4.3834 8.1091 

3.5028 2.7596 3.5088 1.7521 

4.0826 4.3359 4.0690 4.5728 

3.4530 2.6264 3.4724 1.3788 

3.8575 3.7178 3.8803 2.9726 

19.2968 18.6634 19.3139 18.7854 

17 
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CASE 3. Input parameters: 
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I o-41 o_-oo  I  =1o I 

i Xi ~i ~i ri wi 

1 0.3500 0.4000 0.2000 0.3000 3.0 

2 0.3500 0.8500 0.2000 0.3000 90.0 

3 0.3500 0.5000 0.2000 0.3000 15.0 

4 0.3500 0.9000 0.2000 0.3000 190.0 

n b  

u~ 

UCPU 

U 

u1 

u2 

u3 

u4 

TI 

T2 

T3 

Ta 

T 

Table 3. Performance measures. 

FIFO PS POLLING PPS 

1.0775 1.0971 1.0772 1.1300 

0.7651 0.7782 0.7649 0.8002 

0.6315 0.6291 

2.4741 2.5044 

0.2555 0.2381 

0.6315 0.6247 

2.4736 2.5549 

0.2558 0.2016 

0.2787 0.2990 0.2787 0.3289 

0.2632 0.2567 0.2634 0.2560 

0.2801 0.3033 0.2793 . 0.3434 

3.9744 3.9655 6.3779 

3.0547 

3.6493 

3.0035 

4.6179 

2.4384 

3.8329 

2.3205 

13.2097 13.6819 

3.0581 

3.6433 

3.0267 

13.6936 

1.6446 

3.7416 

1.3530 

13.1171 

CASE 4. Input parameters: 

I n=4 I =0.001 [ /3=999.0 I 

i Ai 

1 0.1000 

2 0.2000 

3 0.3000 

4 0.4000 

l~i "~i "ri w l  - -  1 w i  - 2 w i  - -  3 

0.6000 0.2000 0.3000 i0.0 30.0 1.0 

0.8000 0.2000 0.3000 30.0 20.0 i0.0 

0.7000 0.2000 0.3000 20.0 i0.0 20.0 

0.5000 0.2000 0.3000 1.0 1.0 30.0 



C A S E  5. 

nb 

u~ 

U C p u  

U 

u1 

u2 

u3 

u4 

7"1 

T2 

T3 

T4 

T 
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Table 4. Performance measures.  

F I F O  

1.2787 

0.8525 

0.4951 

2.6263 

0.3626 

0.3352 

0.3067 

0.2743 

2.8595 

2.3393 

2.3536 

2.6458 

10.198 

PS 

1.2833 

0.8556 

0.4934 

2.6323 

0.3618 

0.3428 

0.3113 

0.2675 

2.8577 

2.0629 

2.2112 

2.8199 

9.9517 

POLLI NG 

1.2790 

0.8527 

0.4948 

2.6265 

0.3635 

0.3354 

0.3060 

0.2741 

2.8071 

2.3278 

2.3700 

2.6501 

10.155 

PPS-1 

1.2969 

0.8646 

0.4875 

2.6490 

0.3648 

0.3585 

0.3277 

0.2458 

2.5190 

1.4995 

1.7366 

3.4467 

9.2018 

PPS-2 

1.2980 

0.8653 

0.4864 

2.6497 

0.3741 

0.3563 

0.3209 

0.2468 

2.0112 

1.5575 

1.8965 

3.4106 

8.8758 

Input parameters: 

n : 4  I ~=O.Ol [ 3=1.o I 

PPS-3 

1.2677 

0.8451 

0.5018 

2.6146 

0.3311 

0.3357 

0.3177 

0.2832 

4.9519 

2.3805 

2.1025 

2.4449 

11.879 

19 

i Ai Pi  ~i ~ w i  - 1 w i  - 2 w i  - 3 

1 0.1000 0.6000 0.1000 0.3000 10.0 30.0 1.0 

2 0.2000 0.8000 0.1500 0.3000 30.0 20.0 10.0 

3 0.3000 0.7000 0.2000 0.3000 20.0 10.0 20.0 

4 0.4000 0.5000 0.2500 0.3000 1.0 1.0 30.0 

nb 

U~ 

U c P u  

U 

U1 

U2 

Ua 

U4 

T1 

T2 

Ta 

T4 

T 

Table 5. Performance measures.  

F IFO PS POLLING 

1.4006 1.4077 1.4013 

0.8270 0.8277 0.8269 

0.4858 0.4854 0.4857 

2.7134 2.7208 2.7139 

0.4851 0.4842 0.4863 

0.3845 

0.3124 

0.3935 

0.3168 

0.3848 

0.3117 

0.2187 0.2132 0.2186 

2.7512 2.7765 2.7097 

2.2915 2.0474 2.2846 

2.3559 2.2360 2.3733 

2.7918 3.0099 2.7972 

10.190 10.070 10.165 

PPS-1 

1.4323 

0.8293 

0.4837 

2.7453 

0.4899 

0.4143 

0.3339 

0.1943 

2.5547 

1.5303 

1.8064 

3.8600 

9.7514 

PPS-2 

1.4371 

0.8283 

0.4827 

2.7481 

0.5053 

0.4110 

0.3257 

0.1952 

2.0409 

1.6095 

2.0054 

3.8190 

9.4748 

PPS-3 

1.3762 

0.8287 

0.4893 

2.6942 

0.4412 

0.3855 

0.3238 

0.2258 

4.4758 

2.2520 

2.0506 

2.5151 

11.293 
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CASE 6. I n p u t  p a r a m e t e r s :  
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1o:41o 0011  101 

i Ai ~i ~i ~ wi - 1 wi - 2 wi - 3 

1 0.1000 0.6000 0.1000 0.2000 10.0 30.0 1.0 

2 0.2000 0.8000 0.1500 0.3500 30.0 20.0 10.0 

3 0.3000 0.7000 0.2000 0.3000 20.0 10.0 20.0 

4 0.4000 0.5000 0.2500 0.3500 1.0 1.0 30.0 

nb 

U~ 

UcPu 

U 

U1 

U2 

U3 

U4 

T1 

T2 

Ta 

T4 

T 

Table 6. Performance measures. 

FIFO PS POLLING 

1.3715 1.3785 1.3720 

0.8292 0.8300 0.8292 

0.4807 0.4803 0.4806 

2.6814 2.6888 2.6818 

0.4580 0.4568 0.4589 

0.3855 0.3948 0.3859 

0.3080 0.3123 0.3074 

0.2200 0.2145 0.2199 

2.7560 2.7964 2.7173 

2.2953 2.0468 2.2859 

2.3594 2.2396 2.3760 

2.7919 3.0050 2.7973 

10.202 10.087 10.176 

PPS-1 PPS-2 PPS-3 

1.4006 1 . 4 0 2 6  1.3552 

0.8326 0.8328 0.8273 

0.4777 0.4759 0.4870 

2.7109 2.7113 2.6695 

0.4617 0.4751 0.4177 

0.4152 0.4114 0.3880 

0.3286 0.3202 0.3206 

0.1952 0.1959 0.2287 

2.5640 2.0438 4.5804 

1.5270 1.6015 2.2690 

1.8054 1.9980 2.0657 

3.8420 3.7964 2.5198 

9.7384 9.4379 11.435 

In  Case  1, de sp i t e  homogeneous  th ink ing  t imes ,  our  ca lcu la t ions  give t h a t ,  c o n t r a r y  to  t he  

s t a t e m e n t  of  K a m e d a  [9], U c P v s  are  different.  I t  is t he  leas t  for P P S ;  however,  nb and  U are  t he  

g r e a t e s t  a n d  T is t h e  leas t  under  th is  schedul ing,  as i t  was expec ted .  

In  Case  2, we t r i ed  to  show the  effect of  t he  n u m b e r  of  t e rmina l s  on t h e  pe r fo rmance  measures .  

I t  can  be  seen t h a t  T increased  t h e  values  of  Case  1 wi th  50 percen t  unde r  each discipl ine .  

In  Case  3, we have the  same  p a r a m e t e r s  as earl ier ,  except  t he  C P U  fai lure  and  repa i r  ( a ,  f~). 

U, rib, U i decreased  a n d  T increased  as it  was expec ted .  

In  Case  4, t h e  t h i n k i n g  and  process ing  t imes  are  he terogeneous ,  t he  o p e r a t i n g  and  r epa i r ing  

t i m e s  are  homogeneous .  T h r e e  p r io r i t y  order ings  have been considered.  W h e n  the  p r io r i t y  

a s s ignmen t  t akes  p lace  w i th  respec t  to  t he  decreas ing  o rde r  of  t h ink ing  ra tes ,  t he  UcPv is t h e  

h ighes t  as  i t  was s t a t e d  in [6,8]. In  th is  case, t he  i m p o r t a n c e  of  t he  ob jec t ive  pe r fo rmance  me a su re  

(U,T)  shou ld  be under l ined .  I t  can  be  seen t h a t  for UcPu,  the  PPS-3 ,  and  for U and  T the  P P S - 2  

d isc ip l ine  is op t ima l .  At  t he  same  t ime,  we can  see t h a t  P P S - 2  is a mixed  p r i o r i t y  ass ignment .  

In  Case  5, t h e  C P U  is s u b j e c t  to  b reakdowns ,  the  fai lure ra tes  (~/i) a re  different  a n d  have t h e  

s a m e  a r i t h m e t i c  m e a n  as in Case  4; t he  o the r  sys t em p a r a m e t e r s  a re  unchanged .  U has  inc reased  

unde r  each  discipl ine ,  T has  decreased  in F I F O  and  PPS-3 ,  and  i t  has  increased  in o t h e r  cases. 

In  Case  6, t he  repa i r  r a t e s  a re  different  w i th  t he  same  a r i t h m e t i c  mean  as  in Case  5; t he  o the r  

s y s t e m  p a r a m e t e r s  have  no t  been  varied.  U has decreased  under  each schedul ing,  T has  inc reased  

in F I F O ,  PS,  Pol l ing  and  P P S - 3  cases. 
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It  is shown by numerical calculations that  the effects of different system parameters and sched- 
uling disciplines are unpredictable in many cases. For relatively small number of terminals, the 
performance measures can be calculated numerically. For greater values, only stochastic simula- 
tion is recommended. 

4 .  C O N C L U S I O N S  

A queueing model has been constructed for the mathematical description of a heterogeneous 
multiterminal system in which the CPU and the terminals are subject to random breakdowns. We 
can see that  the most complicated case is pre-emptive priority scheduling since we do not know 
which parameters determine the priority assignment. So altogether, in principle, the number of 
possible cases is 4n!, namely, assignment according to thinking, processing, operating and repair 
times. To reduce the number of cases, we suggest applying only FIFO, PS, Polling scheduling 
because the main performance measures are very close to the arithmetic mean of the different 
PPS runs, respectively. Finally, the importance of the objective performance measure should be 
emphasized, since even in social optimization it could easily occur that  if a scheduling is optimal 
for a given measure, it will not be optimal for another one, cf. Case 4. 
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