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Abstract

For infinite horizon nonlinear optimal control problems in which the control term enters linearly
in the dynamics and quadratically in the cost, well-known conditions on the linearised problem
guarantee existence of a smooth globally optimal feedback solution on a certain region of state
space containing the equilibrium point. The method of proof is to demonstrate existence of a sta-
ble Lagrangian manifold/ and then construct the solution froM in the region where\f has a
well-defined projection onto state space. We show that the same conditions also guarantee existence
of a nonsmooth viscosity solution and globally optimal set-valued feedback on a much larger region.
The method of proof is to extend the construction of a solution fidnmto the region wheré/
no-longer has a well-defined projection onto state space.
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1. Introduction

This paper addresses a gap in the literature concerning the existence of solutions to
infinite horizon nonlinear optimal control problems in which the control term enters lin-
early in the dynamics and quadratically in the cost function. We show that the well-known
conditions which guarantee existence of a smooth feedback solution on a certain region
containing the equilibrium point, also guarantee existence of a nonsmooth viscosity solu-
tion and set-valued feedback on a much larger region.

This class of problems can be formulated as follows.LetR”, u € R", 7z € R? and
f, g, h be C? functions of the appropriate dimensions witf0) = 0 andh(x) # 0 for
x # 0. Consider the dynamical system

x=fx)+gxu, x(0)=E¢,
z=h(x) 1)

and assume that there is an equilibriumxat 0, i.e. f(0) = 0. Define the set of control
functions by

v = {u :[0,00) — R™: u(.) € Lp[0, T forall T < oo}.

Given an initial point € R”, denote by (.; u) or simplyxg (.) or x(.) the unique solution
to (1) corresponding to the choice of controk ¥. Letr :R” — R™*” be aC? function
such that-(x) is positive definite for alk and define the following cost function:

T

J(u(),&,T) =/ %(|h(x(t))}2 +u® r(x(@®)u®)dt )
0

on solution trajectories (.; u) to (1). Given an open setd2 C R" and an initial point
& € 2, define the set of admissable controlg#rto be

Ag={ue¥: xz(t;u) € 2 forallr > 0}. (3)

Then the infinite horizon optimal control problem on the §ets to maximiseJ with
respect tal' > 0 and minimise it with respect toe Ag,. In particular, a solution is said to
exist to this problem on the s& if there exists a finite continuous value function

V() = inf supJ(u(.),&T) (4)
uelde 70

forall & € 2.

In order for this problem to have a solution, the standard assumption is that the linearisa-
tion of the dynamics (1) at = 0 is stabilisable and detectable. Under this condition, which
we call assumption (A), itis well known (see, for instance, [16]) that the linearisation of the
above problem has a solution on a small neighbourlid@d x = 0 in state space. Clearly
we can take/ (0) = 0 and, if we letP = 32V /3x?|_o then onU we haveV (x) = 3x7 Px,
where P satisfies the well-known algebraic Riccati equation. An optimal feedback control
exists in the formi(x) = —r*l(O)gT(O)aV/ax. The existence of this stationary solution
is proved directly by showing that the value functions for the corresponding sequence of
linearised finite horizon problems converges to an explicit limif'as co.
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Under the same assumption (A), existence of a solution to the full nonlinear problem on
a larger region2g containing the equilibrium point = 0 was proved in [3,11] over thirty
years ago. This proof is less direct than the argument used in the linear case and applies
a theorem of global topology to deduce the existence of a certain differential manifold in
phase space and then constructs the solution from this manifold.

The modern viewpoint on this proof is that of symplectic geometry and is set out in
[18,19], where the proof is generalised to solve the nonliéar control problem with
affine control and disturbance terms. This viewpoint is fundamental to the current paper
and the basic idea as it applies to the optimal control problem (4) is as follows. We refer the
reader to standard references such as [12,15,21] for background on symplectic geometry
and Lagrangian manifolds. The maximum principle applied to our control problem gives
the following Hamiltonian:

_ T Lo L
H(x,y)—‘ggﬁ,{({y (f () +gou) Zlh(X)} Su r(x)u}

1 1
= 5" 8r) ey + 37 () — §|h<x>|2 5)

onR?" phase space, wheses R” is the adjoint variable and € R” is the state variable.
Then assumption (A) implies that the Hamiltonian dynamics

X=0H/dy, y=—0H/dx (6)

have a hyperbolic equilibrium point at= y = 0. The stable manifold theorem then says
that there exists a global stable manifaiit in R?* for these dynamics. This manifold
is n-dimensional, Lagrangian and vanishes on it. Also, there exists a simply connected
region Mo of M+ which contains the point = y = 0 and which has a well-defined pro-
jection onto a region2g in state space containing the point 0. If we letr : R?* — R”
denote the canonical projection, then this meanssthgj is nonsingular, and so can be
expressed as a function effor (x, y) € Mp. If we defineS(x) for x € £29 to be the func-
tion satisfyingd S = y dx on My, with §(0) = 0, thenMj is the grapHx, 95/dx} in phase
space. It follows tha¥ (x) defined by (4) exists o2y and equals-S(x). Furthermore,

V (x) is a smooth solution to the Hamilton—Jacobi—Bellman (HJB) equation

H(x,—3V/dx)=0 (7)
on 29 and an optimal feedback control exists in the form
@) =r1x)g" )y =—r"tx)g" (x)aV /ox 8)

on £20. The functions is called a generating function farp, and it can be seen that the
solution to the linearised problem above is given by the generating function for the tangent
plane toMp atx = 0.

The existence of a smooth solution to (7) breaks down at points wihgye becomes
singular. These correspond to points where asymptotically stable optimal trajectories in
state space start to cross one another as we go backwards in time from the equilibrium
point. However, the manifold/ ™ exists globally in phase space and, in general, covers
a region of state space strictly larger th@g. On this larger region) ™ becomes multi-
valued when thought of as a section of the co-tangent bundle over state space.
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In the next section we show how to construct frafit a locally Lipschitz single valued
functionV (x) which gives a viscosity solution to (7) on a regig@nstrictly larger tharf2o,
and which reduces to the above smooth solutiaf(x) on 2. This result combines a
topological technigue for constructing a global Lipschitz function frti, with a local
proof of the viscosity property put forward by Marty Day. The existence of this nonsmooth
solution, on the larger regiaf?, follows, with no extra hypotheses, from the same assump-
tion (A) already required for the smooth case. We refer the reader to standard references
such as [6,9] for background on viscosity solutions.

Then in Section 3, under the additional assumption that) > 0 for x # 0, we show
thatV (x) equals the value functioi(x) defined by (4) on2, and that an optimal feedback
exists in set-valued form which reduces to (8)@p. The main result of this paper is the
proof (in Proposition 3.2) that this feedback is well defined—in particular that any multi-
valued points can only occur at the start of controlled trajectories. These are the points of
nondifferentiability ofV at which controlled trajectories given by the feedback lose global
optimality as we go backwards in time. Similar results have been proved for finite horizon
problems in [4] and, more recently, in [10] for manifolds containing just fold and cusp type
singularities.

2. Existence of a nonsmooth solution to the HIB equation

To establish the existence ©f let £2 be the largest open region in state space containing
0 with the following properties:

(1) 2 is covered byM ™, i.e. for everyx € £2 there is soméx, y) e M ™,

(2) 2 is forward invariant with respect to the dynamics (6)Mrt, i.e. for every(x, y) €
M with x € £2, the integral curvey, for (6) with y,(0) = (x, y) satisfiest(yy (1)) €
2 forallr > 0.

Note thats2 will in general be strictly larger thafeg. Consider the submanifolstf of
M consisting of thoséx, y) € MT with x € £2. Now, as noted in [18,19}}/ is simply
connected. So far € £2, we can define a smooth functiditx, y) on phase space which
satisfiesdS = ydx on M. This function reduces t§(x) over £29 and is the generating
function of M, i.e. M = {(x,d,S(x,y): x € 2, d,S(x,y) = 0}. Now defineV to be the
following function ons2:

V(x):inf{—S(x,y): y such tha’(x,y)eM}. (9)

Over the region2g whereM is just the single branchy, V clearly equals-S(x) and so
coincides with the above smooth solution to (7). Over the larger re@ipwe can apply
results in the recent literature to state the following theorem. For background details on the
following proof see [14].

Theorem 2.1. V (x) isalocally Lipschitz viscosity solution of Eq. (7) for all x € £2.
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Proof. M is simply connected and Lagrangian isotopic to the zero section of the cotan-
gent bundle over?, i.e. to the Lagrangian submanifold &2 = £ x R”" given by 2

itself. So 2 can be lifted to a closed manifold and M to a Lagrangian submanifold

of T*X satisfying the required exactness and transversality conditions for existence of a
global generating function quadratic at infinity—see the results of [5,17,20]. It is further
shown in these references how to apply a Lusternik—Schnirelman type minimax procedure
to construct fromM a global Lipschitz continuous functioW over X. This function is
smooth on a subséfy of X of full measure, and is called a graph selector¥bbecause
(x,dV(x)) € M for x € Xg. SinceH is convex, it follows that/ has the local expression

(9) overs2. We can then apply results of [7] to show that this local functiois a viscosity
solution of (7) inf2. O

3. Optimality of the nonsmooth solution to the HIB eguation

In the previous section we established the existence of a viscosity solutionto (7)
for x € £2. We now show thaV (x) = V (x) for x € 2.

The first step is to show that the sat; of admissable controls of2 is nonempty.
Recall that, for(x, y) € M, the maximum in (5) is achieved hy*(y) = r~1(x)g” (x)y.
Define a potentially multi-valued feedback control for.alt §2 as follows:

i) =r 1" (I ), (10)
where
F(x) € Y(x) =argmin{—S(x, y): y s.t.(x, y) € M}. (11)

It is shown in [7] that? (x) = ¢ for eachx € £2.

Forx € 29, S(x, y) = S(x) and there is only ong € R" such that(x, y) € M, namely
y = 05/0x. By default, this is the minimising argument ferS(x,.) on M and so (10)
reduces to (8) om2g.

For x € 2 \ £20, where there exist multiple such that(x, y) € M, there can also
be multiple y(x) € Y (x). We therefore interpret the resulting controlled systérs
S (x) 4+ gx)i(x) in the sense of Filippov [8], namely as an almost sure differential inclu-
sionx € F(x), whereF(x) is a set-valued extension of the vector figldx) + g(x)i(x)
satisfying certain compactness and continuity conditions. For our purposes these are satis-
fied by taking

F(x) = f(x)+gx)U), (12)
where

U)=r""x)g" (1Y (x) (13)
and

Y (x) = cof¥ (x)}. (14)

Here co denotes convex hull. Note that in general for a Hamiltonian such as (5) which is
convex iny and for dimM > 2, Y (x) is strictly contained in cfy: (x, y) € M}.
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We require some definitions in order to state the results of this section. We will show
thatU (x) is a weakly admissable multi-valued feedback in the sense of Definition 2.59 of
Chapter 11l of [2] and weakly globally optimal in the sense of Definition 2.60 of Chapter IlI
of [2]. We will also show thatU (x) is weakly asymptotically stable with weak Lyapunov
functionV in the sense of Section 15, Chapter 3 of [8]. These definitions mean that, for all
xo € £2, there exists at least one solutiory; #) to the differential inclusionx € f(x) +
g(x)U(x), x(0) = xq (i.e. a solutionx (¢; i) satisfyingii(¢) € U(x(¢)) for a.e.t > 0) with
the following properties:

e x(z;u) is an admissable solution, i&(.) € Ag,

e x(z; ) is asymptotically stable,

e the minimum value of the cost functional sug, J (u, xo, T) overu € Ag, is achieved
alongx(t; it).

It will be shown that, in fact, that these properties are satisfied by any choice of feedback
termii(t) € U(x(z)), whereU (x) is the subset of/ (x) defined by

U =r"t)gh ()Y (x). (15)

Note thatii(r) € U (x(¢)) is the control corresponding to some choice of minimising argu-
menty(x(t)) for —S(x(z),.) on M. Note also that the stronger notion of full optimality,
which means that every choice of feedback term fi@iw) is optimal, does not hold for
this problem.

We start by showing that a poirte £2 at whichY (x) is multi-valued can only occur
as the initial point on a controlled trajectaryr; it) with u(.) € U (x(.)). It follows that the
feedbackl (x) is single valued along controlled trajectories, with the possible exception
of the initial point. This requires the following technical lemma.

Lemma 3.1. Let xg € £2 and yg € Y (x0). Then there exists a open neighbourhood U of
(x0, yo) on M such that 7z (U) is an open neighbourhood of xg in state space.

Proof. If 7|y is nonsingular atxg, yo) then M is locally a graph over state space in a
small neighbourhood aofxg, yo) and so the result is immediate. Suppose thensthgtis
singular at(xg, yo). Since(xg, yo) is @ minimising point for—S(xp, .) over M, it follows
from Theorem 5.27 of [13] thatxo, yo) is a nonfolded singularity. This means (see De-
finition 5.18 ibid) that given any sequengg — xg in R”, there exists a corresponding
sequencey, in R” such that(x,, y,) € M for all n and (x,, y,) — (x0, yo) asn — oo.
Sincern (x,,, y») = x, the result again follows. O

Proposition 3.2. Let xo € £2 besuchthat ¥ (xg) ismulti-valued. Let 5o € ¥ (xo). Let y () =
(x(1), y(t)) be the integral curve for (6) which lies on M and satisfies x(O) = xp and
y(0) = yo. Then for all r > 0, Y (x(1) = {y(®)} whilefor all t <O, y(¢) ¢ Y (x(1)).

Remark 3.3. The above proposition says that)ifr) is the adjoint half of the Hamil-
tonian trajectoryy (r) on M and y(0) = 3y is one of multiple minimising arguments
for —S(x(0),.) over M, then for allt > 0, y(¢z) is the unique minimising argument for
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—S(x(t),.) overM, while for allz < 0, y(z) does not minimise-S(x(¢), .). Now forz > 0,

7 (y (¢)) coincides with a controlled trajectory(z; i) with x(0) = xg andii(z) € U(x (1)).

It follows that U (x (7)) is single valued along this trajectory, except at the initial point
Thus the controlled trajectory(z; #) is uniquely defined apart from at the initial point
where one can choose between a number of trajectories.

Proof. Let A be an index set for the branches Mf lying over xo on which the min-
imising arguments forS(xp,.) occur. LetA = 0 be the index of the branch contain-
ing the point(xg, y0). SO we can write¥ (xg) = {y,: A € A} where (xg, y,) € M and
—S(x0, Y1) = —S(xg, yo) for all » € A, this being the minimum value of S(xo,.)
over all (xo, y) € M. Consider the integral curve(r) = (x(z), y(r)) lying on M with
y(0) = (x0, yo). The projectionz (y(r)) of this curve in state space has tange) =
£ (x0) + g(x0)r~L(x0)g” (x0)30 at xo. This corresponds to an initial choice of feedback
termiip = r~1(x0)g” (x0)Jo from the multi-valued sel (xg). However, note that(z) is
uniquely and well-defined independentiof) since it is the state space projection of an
integral curve for the Hamiltonian dynamics ah. By the above lemma, for eache A
there is a neighbourhodd, of (xg, y5) on M such thatr (U,) is a neighbourhood ofp.
So, fort in a small interval around 0, there is a trajectory of poit&), y, (¢)) lying on
the branch oM indexed by which projects onto the curvgz) in state space and satisfies
y1.(0) = 3.

Now for ¢ > 0, the value ofS along the trajectoryx(z), y, (¢)) on M is given by

t

S(x(@®), y.(1) =fyx(5)5€(8)ds + S(x0, 2)- (16)
0

Since S(xg, y1) = S(xo, yo) for all A € A, the minimum value of-S(x(¢), y,(¢)) over
A € A occurs at that which maximises; (0)x(0) over allx € A. Now

¥1(0)x(0) = 91 f (x0) + $1g(x0)r ~*(x0)g” (x0)Jo.

Since(xg, y1) € M, we haveH (xg, y,) = 0 and so from (5),

100 = —%ﬁxgr_lgT}A’x + %wz +Jagr g’ Jo
s sorerteT G — 5o + Lioer—TeT 04 Lini2 17
=—50% = J0)gr™"g" (Gx = Jo) + 5 Jogr 78" Jo+ A% 17)
This has a unique maximum at= 0. Now the integral curver(r) = (x(¢), y(¢)) is, by
definition, the trajectory of pointé: (7), yo(¢)) lying overx(¢) on the branch oM indexed
by A = 0. So for some small interval of> 0, y(¢) is the unique minimising argument for
—S(x(1),.)overM,i.e. f’(x(t)) ={y()} for ¢ € (0, §1) for somes; > 0.
Note, it is sufficient to consider only those branches containing minimising argu-
ments for—S(xg, .) in the above optimisation, i.e. to only minimiseS(x(¢), y,(t)) over
A € A. To see this letxo, y,) € M be such thaty,, ¢ Y (x0) and suppose that the cor-
responding branch with index contains a trajectory of points:(¢), y,.(¢)) lying over
x(t) with y, (0) = y,. Then repeating the argument in (16)xo, y.) < S(xo, Yo), while
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H (x0, y,) =0, so the calculation in (17) can also be repeated to showyth@. (0) <
y0(0)x(0).

Fort < 0, the value of§ along the trajectoryx (¢), v, (t)) on M is given by the following
relationship:

0
S(xo0. 32) Z/yA(S)X(S)ds + S(x(0), (). (18)

t

Since S(xg, y2) = S(xo, yo) for all L € A, the minimum value of-S(x(¢), y,(¢)) over

A € A occurs at that which minimisesy, (0)x(0) over allA € A. The above calculation
(17) shows that, provided as in this case that there is at least one elemétoinin
addition toyg, then the minimum value of; (0)x (0) does not occur on the branch indexed
by » = 0. So for some small interval af< 0, y(z) is not the minimising argument for
—S(x(),.)overM,i.e.y() ¢ f’(x(t)) for t € (—62, 0) for somes, > 0.

To extend the above result to al- 0, there are two possibilities to be excluded. The
first possibility, which we will denotex), is that there exists somg> §1 such thaty(z1) €
Y (x(t1)) but Y (x(¢1)) is multi-valued. This situation cannot occur because it produces an
integral curvey () which passes through a poifi(z1), y(71)) at which¥ (x (1)) is multi-
valued, but which also satisfieqr) € ?(x(t)) for t+ < 1. This contradicts the previous
paragraph.

The second possibility, which we will denotex), is that there exists somg> §1 such
thaty(zp) ¢ f/(x(tz)). For this to occur, there must exist someavith > > 1 > §1 at which
the minimising argument for-S(x(¢), .) along the trajectory (t) jumps from the branch
with indexa = 0 to some other branch with index= 11 say. Continuing with the notation
used earlier in the proof, l€k(¢1), y(z1)) denote the point lying over(r1) on thex =0
branch. Let(x(t1), yx,(r1)) denote the point on the = 1, branch. Then we claim that
bothy(r1) andy;, (r1) are in?(x(tl)) and we have already shown, i) {that this situation
cannot occur.

To prove the claim that both(r1) and y,,(t1) are in ?(x(tl)), lett, — 11 be a se-
guence converging tg with ¢, < r1 for all n. Eachy(z,) € Y (x(t,)), SO—S(x(t,), y(ty)) =
V(x(t,)). Now V is locally Lipschitz continuous, so

V(x(tn)) = V(x(tD).
Also, S is smooth and thus continuous &h and(x(¢,), y(¢,)) — (x(t1), y(t1)) on M, so

—S(x(tn), y(tn)) = —S(x(12), y(12)).

It follows that—S(X(Il), y(l‘l)) = V(X(Il)) and soy(tl) c ?(X(l‘l)). A similar argument
with #,, — 11 and 1z, > t; for all m shows that—S(x(t1), yx,(r1)) = V(x(r1)) and so
., (t1) € Y (x (1)) also.

. Since both the above possibilitieg) (and =) can be excluded, it tpus follows that
Y(x() = {y(@®)} for all r+ > 0. A similar argument shows that(r) ¢ Y (x(¢)) for all
t<0. O

Corollary 3.4. U(x) is a weakly admissable, weakly asymptotically stable multi-valued
feedback in the sense defined above.
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Proof. For any initial pointxg € £2, consider the controlled trajectoxyz; i) with x(0) =
xoandi(t) € U(x(t)). By the previous proposition, the Ei(x (1)) is single valued along

this trajectory, except possibly at the initial poigt Thusx (#; ) is uniquely defined apart
from, possibly, at the initial point where one can choose between a number of trajectories.
Also x(¢; ) is the projection of an integral curye(r) = (x(¢), y(¢)) lying on a branch of

the stable manifold/ for the dynamics (6), the particular choice of branch being deter-
mined by the initial choice of feedback teni0) U (xp). It follows thatx(z; i) — O as

t — 00, establishing weak asymptotic stability for. Alsox(z; i) € 2 forall # > 0, since

by construction2 is forward invariant with respect to the dynamics (6). Thus € A

which establishes weak admissability Ior O

Theorem 3.5. Suppose V (x) > Ofor all 0 # x € £2. Suppose that for all ¢ > 0O, there exists
8§ > 0with |h(x)| > 6 for all x € 2\ B;(0). Then V (x) = V(x) forall x € £2,i.e. Visthe
value function for this problem, and U (x) is weakly (globally) optimal, with any choice of
feedback termi(¢) € U (x (1)) giving riseto an optimal controlled trajectory. In particular,
if U (xq) is multi-valued, then V (x) is the value of the cost functional (2) along any of the
controlled trajectories x(¢; ), x(0) = xo for different initial choices ii(0) € U (x0). Also,
V isaweak Lyapunov function for U, again corresponding to any choice of feedback term
(1) € Ux(1)).

Proof. Note, by the assumptions on the linearised problem at the origin,@it =
—S(0,0) = 0. Also, by hypothesi¥ (x) > 0 for 0# x € £2, and soS(x, y) < 0 for all
(x,y) € M with x #0.

We first show thaV (x) > \7(x) forall x € £2. Letxg € £2 and let

4(0) = r~(x0)g” (x0)F0 € U (x0)

be any initial choice of feedback term. Then, as shown above, the resulting controlled
trajectoryx () = x(¢; ) is asymptotically stable with:(z) € £2 for all z > 0. Further-
more, there exists an integral curyér) = (x(¢), y(t)) lying over x(¢) on M such that
Y(x(t)) = {y(®)} for all + > 0. So by definition,V (xg) = —S(x0, yo) and V (x(¢)) =
—S(x(t), y(@)). Now H(x(t), y(t)) =0forallt > 0 so along the trajector)y(t) we have
y)x(@) = 1(x(@),u(t)), wherel(x,u) = 2(|h(x)|2 + ulr(x)u) and U(x(t)) = {u(®)}.

Then sincelS = y dx, we have

t

—V(x(t)) + V(xg) = / l(x(s), ﬁ(s)) ds. (29)
0

Now x(¢) — 0 ast — oo. So, sinceV (0) =0 andV (x) > 0 forx £ 0,

V (x0) =sup/l(x(s), i(s))ds > inAf Sup/l(x(s), u(s))ds = V (x0). (20)
t ueae t
0 0
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To prove the converse, we apply an argument from [1] which was stated for the case
whereV is a classical solution of (7) but works also in the viscosity setting. Note first that
V is a subsolution of (7), so for ai € DTV,

max{—p(f + gu) —L(x,u)} <O,
So for any admissable contrel=u(.) € Ag, the inequality
—p(f +gu) —1(x,u) <0

holds true at any point(z) along the solution trajectory to= f + gu(z), x(0) = xg. Then
by Theorem 1.14 of [6],

t

=V (x(@®) + V(xo) < /l(x(s), u(s))ds.
0

Now, if 0 is a limit point ofx (¢), take a sequenag with x(#,) — 0 asn — oo. Then, since
V(0)=0andV(x) > 0 forx #£0,

t
Vi(xg) < sup/ l(x(s), u(s)) ds.
'
0

On the other hand, if 0 is not a limit point e{¢), then there exists > 0 and somdg” > 0
such thatx(r) ¢ B (0) for all t > T, from which it follows that|A(x(¢))|? > § for some
8§ >0andallr > T. So in this case also we have

t
Vi(xg) < sup/ l(x(s), u(s)) ds = +o0.
"0
Since this holds for all controlg(.) € Ag,, we have that
t
V(xo) < inf Sl;Jp/l(x(s), u(s))ds = V(x0).
0

Thus V (xg) = V (xo) for all xp € £2. Furthermore, it follows from (20), that the infimum
in (4) is achieved by any choice of feedback tekr) Ux(.) CUx()).SoU(x) is a
weak globally optimal set-valued feedback.

Lastly, note from (19) thaV is monotonic decreasing along trajectorigs) = x (¢; i)
corresponding to ang € U (x). It follows from Theorem 2, Section 15, Chapter 3 of [8]
thatV is a weak Lyapunov function for the set-valued feedbéick). O

Note, the condition o in the above theorem can be removed by restricting the set of
admissable controld ; to those which are asymptotically stable, in addition to remaining
within £2 forall ¢ > 0.
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4, Conclusion

For the above optimal control problem, we have used the conditions which already
guarantee existence of a smooth solution on a re@gof the equilibrium point, to prove
the existence of a viscosity solutidhon a larger regio2. We have further shown that
is the value function for the optimal control problem and constructed a set-valued feedback
from M which achieves the optimal value in a weak sense.
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