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Abstract

For infinite horizon nonlinear optimal control problems in which the control term enters lin
in the dynamics and quadratically in the cost, well-known conditions on the linearised pro
guarantee existence of a smooth globally optimal feedback solution on a certain region o
space containing the equilibrium point. The method of proof is to demonstrate existence of
ble Lagrangian manifoldM and then construct the solution fromM in the region whereM has a
well-defined projection onto state space. We show that the same conditions also guarantee e
of a nonsmooth viscosity solution and globally optimal set-valued feedback on a much larger
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1. Introduction

This paper addresses a gap in the literature concerning the existence of solut
infinite horizon nonlinear optimal control problems in which the control term enters
early in the dynamics and quadratically in the cost function. We show that the well-k
conditions which guarantee existence of a smooth feedback solution on a certain
containing the equilibrium point, also guarantee existence of a nonsmooth viscosity
tion and set-valued feedback on a much larger region.

This class of problems can be formulated as follows. Letx ∈ R
n, u ∈ R

m, z ∈ R
p and

f , g, h be C2 functions of the appropriate dimensions withh(0) = 0 andh(x) �= 0 for
x �= 0. Consider the dynamical system

ẋ = f (x) + g(x)u, x(0) = ξ,

z = h(x) (1)

and assume that there is an equilibrium atx = 0, i.e.f (0) = 0. Define the set of contro
functions by

Ψ = {
u : [0,∞) → R

m: u(.) ∈ L2[0, T ] for all T < ∞}
.

Given an initial pointξ ∈ R
n, denote byxξ (.;u) or simplyxξ (.) or x(.) the unique solution

to (1) corresponding to the choice of controlu ∈ Ψ . Let r :Rn → R
m×m be aC2 function

such thatr(x) is positive definite for allx and define the following cost function:

J
(
u(.), ξ, T

) =
T∫

0

1

2

(∣∣h(
x(t)

)∣∣2 + u(t)T r
(
x(t)

)
u(t)

)
dt (2)

on solution trajectoriesxξ (.;u) to (1). Given an open set 0∈ Ω ⊂ R
n and an initial point

ξ ∈ Ω , define the set of admissable controls inΩ to be

∆Ω = {
u ∈ Ψ : xξ (t;u) ∈ Ω for all t � 0

}
. (3)

Then the infinite horizon optimal control problem on the setΩ is to maximiseJ with
respect toT > 0 and minimise it with respect tou ∈ ∆Ω . In particular, a solution is said t
exist to this problem on the setΩ if there exists a finite continuous value function

V̂ (ξ) = inf
u∈∆Ω

sup
T >0

J
(
u(.), ξ, T

)
(4)

for all ξ ∈ Ω .
In order for this problem to have a solution, the standard assumption is that the line

tion of the dynamics (1) atx = 0 is stabilisable and detectable. Under this condition, wh
we call assumption (A), it is well known (see, for instance, [16]) that the linearisation o
above problem has a solution on a small neighbourhoodU of x = 0 in state space. Clear
we can takeV̂ (0) = 0 and, if we letP = ∂2V̂ /∂x2|x=0 then onU we haveV̂ (x) = 1

2xT Px,
whereP satisfies the well-known algebraic Riccati equation. An optimal feedback co
exists in the formû(x) = −r−1(0)gT (0)∂V̂ /∂x. The existence of this stationary soluti
is proved directly by showing that the value functions for the corresponding seque

linearised finite horizon problems converges to an explicit limit asT → ∞.
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Under the same assumption (A), existence of a solution to the full nonlinear proble
a larger regionΩ0 containing the equilibrium pointx = 0 was proved in [3,11] over thirt
years ago. This proof is less direct than the argument used in the linear case and
a theorem of global topology to deduce the existence of a certain differential manif
phase space and then constructs the solution from this manifold.

The modern viewpoint on this proof is that of symplectic geometry and is set o
[18,19], where the proof is generalised to solve the nonlinearH∞ control problem with
affine control and disturbance terms. This viewpoint is fundamental to the current
and the basic idea as it applies to the optimal control problem (4) is as follows. We re
reader to standard references such as [12,15,21] for background on symplectic ge
and Lagrangian manifolds. The maximum principle applied to our control problem
the following Hamiltonian:

H(x,y) = max
u∈Rn

{
yT

(
f (x) + g(x)u

) − 1

2

∣∣h(x)
∣∣2 − 1

2
uT r(x)u

}

= 1

2
yT g(x)r(x)−1g(x)T y + yT f (x) − 1

2

∣∣h(x)
∣∣2 (5)

on R
2n phase space, wherey ∈ R

n is the adjoint variable andx ∈ R
n is the state variable

Then assumption (A) implies that the Hamiltonian dynamics

ẋ = ∂H/∂y, ẏ = −∂H/∂x (6)

have a hyperbolic equilibrium point atx = y = 0. The stable manifold theorem then sa
that there exists a global stable manifoldM+ in R

2n for these dynamics. This manifo
is n-dimensional, Lagrangian andH vanishes on it. Also, there exists a simply connec
regionM0 of M+ which contains the pointx = y = 0 and which has a well-defined pr
jection onto a regionΩ0 in state space containing the pointx = 0. If we letπ :R2n → R

n

denote the canonical projection, then this means thatπ |M0 is nonsingular, and soy can be
expressed as a function ofx for (x, y) ∈ M0. If we defineS(x) for x ∈ Ω0 to be the func-
tion satisfyingdS = y dx onM0, with S(0) = 0, thenM0 is the graph{x, ∂S/∂x} in phase
space. It follows thatV̂ (x) defined by (4) exists onΩ0 and equals−S(x). Furthermore,
V̂ (x) is a smooth solution to the Hamilton–Jacobi–Bellman (HJB) equation

H(x,−∂V̂ /∂x) = 0 (7)

onΩ0 and an optimal feedback control exists in the form

û(x) = r−1(x)gT (x)y(x) = −r−1(x)gT (x)∂V̂ /∂x (8)

on Ω0. The functionS is called a generating function forM0, and it can be seen that th
solution to the linearised problem above is given by the generating function for the ta
plane toM0 atx = 0.

The existence of a smooth solution to (7) breaks down at points whereπ |M+ becomes
singular. These correspond to points where asymptotically stable optimal trajecto
state space start to cross one another as we go backwards in time from the equ
point. However, the manifoldM+ exists globally in phase space and, in general, co
a region of state space strictly larger thanΩ0. On this larger region,M+ becomes multi-

valued when thought of as a section of the co-tangent bundle over state space.
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In the next section we show how to construct fromM+ a locally Lipschitz single valued
functionV (x) which gives a viscosity solution to (7) on a regionΩ strictly larger thanΩ0,
and which reduces to the above smooth solution−S(x) on Ω0. This result combines
topological technique for constructing a global Lipschitz function fromM+, with a local
proof of the viscosity property put forward by Marty Day. The existence of this nonsm
solution, on the larger regionΩ , follows, with no extra hypotheses, from the same assu
tion (A) already required for the smooth case. We refer the reader to standard refe
such as [6,9] for background on viscosity solutions.

Then in Section 3, under the additional assumption thatV (x) > 0 for x �= 0, we show
thatV (x) equals the value function̂V (x) defined by (4) onΩ , and that an optimal feedbac
exists in set-valued form which reduces to (8) onΩ0. The main result of this paper is th
proof (in Proposition 3.2) that this feedback is well defined—in particular that any m
valued points can only occur at the start of controlled trajectories. These are the po
nondifferentiability ofV at which controlled trajectories given by the feedback lose glo
optimality as we go backwards in time. Similar results have been proved for finite ho
problems in [4] and, more recently, in [10] for manifolds containing just fold and cusp
singularities.

2. Existence of a nonsmooth solution to the HJB equation

To establish the existence ofV , letΩ be the largest open region in state space contai
0 with the following properties:

(1) Ω is covered byM+, i.e. for everyx ∈ Ω there is some(x, y) ∈ M+,
(2) Ω is forward invariant with respect to the dynamics (6) onM+, i.e. for every(x, y) ∈

M+ with x ∈ Ω , the integral curveγy for (6) with γy(0) = (x, y) satisfiesπ(γy(t)) ∈
Ω for all t � 0.

Note thatΩ will in general be strictly larger thanΩ0. Consider the submanifoldM of
M+ consisting of those(x, y) ∈ M+ with x ∈ Ω . Now, as noted in [18,19],M is simply
connected. So forx ∈ Ω , we can define a smooth functionS(x, y) on phase space whic
satisfiesdS = y dx on M . This function reduces toS(x) over Ω0 and is the generatin
function ofM , i.e. M = {(x, dxS(x, y): x ∈ Ω, dyS(x, y) = 0}. Now defineV to be the
following function onΩ :

V (x) = inf
{−S(x, y): y such that(x, y) ∈ M

}
. (9)

Over the regionΩ0 whereM is just the single branchM0, V clearly equals−S(x) and so
coincides with the above smooth solution to (7). Over the larger regionΩ , we can apply
results in the recent literature to state the following theorem. For background details
following proof see [14].
Theorem 2.1. V (x) is a locally Lipschitz viscosity solution of Eq. (7) for all x ∈ Ω .
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Proof. M is simply connected and Lagrangian isotopic to the zero section of the c
gent bundle overΩ , i.e. to the Lagrangian submanifold ofT ∗Ω = Ω × R

n given byΩ

itself. SoΩ can be lifted to a closed manifoldX and M to a Lagrangian submanifol
of T ∗X satisfying the required exactness and transversality conditions for existenc
global generating function quadratic at infinity—see the results of [5,17,20]. It is fu
shown in these references how to apply a Lusternik–Schnirelman type minimax pro
to construct fromM a global Lipschitz continuous functionV over X. This function is
smooth on a subsetX0 of X of full measure, and is called a graph selector forM because
(x, dV (x)) ∈ M for x ∈ X0. SinceH is convex, it follows thatV has the local expressio
(9) overΩ . We can then apply results of [7] to show that this local functionV is a viscosity
solution of (7) inΩ . �

3. Optimality of the nonsmooth solution to the HJB equation

In the previous section we established the existence of a viscosity solutionV (x) to (7)
for x ∈ Ω . We now show thatV (x) = V̂ (x) for x ∈ Ω .

The first step is to show that the set∆Ω of admissable controls onΩ is nonempty.
Recall that, for(x, y) ∈ M , the maximum in (5) is achieved byu∗(y) = r−1(x)gT (x)y.
Define a potentially multi-valued feedback control for allx ∈ Ω as follows:

û(x) = r−1(x)gT (x)ŷ(x), (10)

where

ŷ(x) ∈ Ŷ (x) = argmin
{−S(x, y): y s.t.(x, y) ∈ M

}
. (11)

It is shown in [7] thatŶ (x) �= ∅ for eachx ∈ Ω .
For x ∈ Ω0, S(x, y) = S(x) and there is only oney ∈ R

n such that(x, y) ∈ M , namely
y = ∂S/∂x. By default, this is the minimising argument for−S(x, .) on M and so (10)
reduces to (8) onΩ0.

For x ∈ Ω \ Ω0, where there exist multipley such that(x, y) ∈ M , there can also
be multiple ŷ(x) ∈ Ŷ (x). We therefore interpret the resulting controlled systemẋ =
f (x) + g(x)û(x) in the sense of Filippov [8], namely as an almost sure differential in
sion ẋ ∈ F(x), whereF(x) is a set-valued extension of the vector fieldf (x) + g(x)û(x)

satisfying certain compactness and continuity conditions. For our purposes these ar
fied by taking

F(x) = f (x) + g(x)U(x), (12)

where

U(x) = r−1(x)gT (x)Y (x) (13)

and

Y(x) = co
{
Ŷ (x)

}
. (14)

Here co denotes convex hull. Note that in general for a Hamiltonian such as (5) wh

convex iny and for dimM � 2, Y(x) is strictly contained in co{y: (x, y) ∈ M}.
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We require some definitions in order to state the results of this section. We will
thatU(x) is a weakly admissable multi-valued feedback in the sense of Definition 2.
Chapter III of [2] and weakly globally optimal in the sense of Definition 2.60 of Chapte
of [2]. We will also show thatU(x) is weakly asymptotically stable with weak Lyapun
functionV in the sense of Section 15, Chapter 3 of [8]. These definitions mean that,
x0 ∈ Ω , there exists at least one solutionx(t; û) to the differential inclusioṅx ∈ f (x) +
g(x)U(x), x(0) = x0 (i.e. a solutionx(t; û) satisfyingû(t) ∈ U(x(t)) for a.e.t > 0) with
the following properties:

• x(t; û) is an admissable solution, i.e.û(.) ∈ ∆Ω ,
• x(t; û) is asymptotically stable,
• the minimum value of the cost functional supT >0 J (u, x0, T ) overu ∈ ∆Ω is achieved

alongx(t; û).

It will be shown that, in fact, that these properties are satisfied by any choice of fee
term û(t) ∈ Û(x(t)), whereÛ (x) is the subset ofU(x) defined by

Û (x) = r−1(x)gT (x)Ŷ (x). (15)

Note thatû(t) ∈ Û(x(t)) is the control corresponding to some choice of minimising a
ment ŷ(x(t)) for −S(x(t), .) on M . Note also that the stronger notion of full optimali
which means that every choice of feedback term fromU(x) is optimal, does not hold fo
this problem.

We start by showing that a pointx ∈ Ω at whichŶ (x) is multi-valued can only occu
as the initial point on a controlled trajectoryx(t; û) with û(.) ∈ Û (x(.)). It follows that the
feedbackÛ (x) is single valued along controlled trajectories, with the possible exce
of the initial point. This requires the following technical lemma.

Lemma 3.1. Let x0 ∈ Ω and y0 ∈ Ŷ (x0). Then there exists a open neighbourhood U of
(x0, y0) on M such that π(U) is an open neighbourhood of x0 in state space.

Proof. If π |M is nonsingular at(x0, y0) thenM is locally a graph over state space in
small neighbourhood of(x0, y0) and so the result is immediate. Suppose then thatπ |M is
singular at(x0, y0). Since(x0, y0) is a minimising point for−S(x0, .) overM , it follows
from Theorem 5.27 of [13] that(x0, y0) is a nonfolded singularity. This means (see D
finition 5.18 ibid) that given any sequencexn → x0 in R

n, there exists a correspondin
sequenceyn in R

n such that(xn, yn) ∈ M for all n and (xn, yn) → (x0, y0) asn → ∞.
Sinceπ(xn, yn) = xn the result again follows. �
Proposition 3.2. Let x0 ∈ Ω be such that Ŷ (x0) is multi-valued. Let ŷ0 ∈ Ŷ (x0). Let γ (t) =
(x(t), y(t)) be the integral curve for (6) which lies on M and satisfies x(0) = x0 and
y(0) = ŷ0. Then for all t > 0, Ŷ (x(t)) = {y(t)} while for all t < 0, y(t) /∈ Ŷ (x(t)).

Remark 3.3. The above proposition says that ify(t) is the adjoint half of the Hamil
tonian trajectoryγ (t) on M and y(0) = ŷ0 is one of multiple minimising argumen

for −S(x(0), .) over M , then for all t > 0, y(t) is the unique minimising argument for
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−S(x(t), .) overM , while for all t < 0,y(t) does not minimise−S(x(t), .). Now for t � 0,
π(γ (t)) coincides with a controlled trajectoryx(t; û) with x(0) = x0 andû(t) ∈ Û (x(t)).
It follows that Û (x(t)) is single valued along this trajectory, except at the initial pointx0.
Thus the controlled trajectoryx(t; û) is uniquely defined apart from at the initial poi
where one can choose between a number of trajectories.

Proof. Let Λ be an index set for the branches ofM lying over x0 on which the min-
imising arguments for−S(x0, .) occur. Letλ = 0 be the index of the branch contai
ing the point(x0, ŷ0). So we can writeŶ (x0) = {ŷλ: λ ∈ Λ} where (x0, ŷλ) ∈ M and
−S(x0, ŷλ) = −S(x0, ŷ0) for all λ ∈ Λ, this being the minimum value of−S(x0, .)

over all (x0, y) ∈ M . Consider the integral curveγ (t) = (x(t), y(t)) lying on M with
γ (0) = (x0, ŷ0). The projectionπ(γ (t)) of this curve in state space has tangentẋ(0) =
f (x0) + g(x0)r

−1(x0)g
T (x0)ŷ0 at x0. This corresponds to an initial choice of feedba

term û0 = r−1(x0)g
T (x0)ŷ0 from the multi-valued set̂U(x0). However, note thatx(t) is

uniquely and well-defined independent ofû(t) since it is the state space projection of
integral curve for the Hamiltonian dynamics onM . By the above lemma, for eachλ ∈ Λ

there is a neighbourhoodUλ of (x0, ŷλ) on M such thatπ(Uλ) is a neighbourhood ofx0.
So, for t in a small interval around 0, there is a trajectory of points(x(t), yλ(t)) lying on
the branch ofM indexed byλ which projects onto the curvex(t) in state space and satisfi
yλ(0) = ŷλ.

Now for t > 0, the value ofS along the trajectory(x(t), yλ(t)) onM is given by

S
(
x(t), yλ(t)

) =
t∫

0

yλ(s)ẋ(s) ds + S(x0, ŷλ). (16)

SinceS(x0, ŷλ) = S(x0, ŷ0) for all λ ∈ Λ, the minimum value of−S(x(t), yλ(t)) over
λ ∈ Λ occurs at thatλ which maximisesyλ(0)ẋ(0) over allλ ∈ Λ. Now

yλ(0)ẋ(0) = ŷλf (x0) + ŷλg(x0)r
−1(x0)g

T (x0)ŷ0.

Since(x0, ŷλ) ∈ M , we haveH(x0, ŷλ) = 0 and so from (5),

yλ(0)ẋ(0) = −1

2
ŷλgr−1gT ŷλ + 1

2
|h|2 + ŷλgr−1gT ŷ0

= −1

2
(ŷλ − ŷ0)gr−1gT (ŷλ − ŷ0) + 1

2
ŷ0gr−1gT ŷ0 + 1

2
|h|2. (17)

This has a unique maximum atλ = 0. Now the integral curveγ (t) = (x(t), y(t)) is, by
definition, the trajectory of points(x(t), y0(t)) lying overx(t) on the branch ofM indexed
by λ = 0. So for some small interval oft > 0, y(t) is the unique minimising argument fo
−S(x(t), .) overM , i.e. Ŷ (x(t)) = {y(t)} for t ∈ (0, δ1) for someδ1 > 0.

Note, it is sufficient to consider only those branches containing minimising a
ments for−S(x0, .) in the above optimisation, i.e. to only minimise−S(x(t), yλ(t)) over
λ ∈ Λ. To see this let(x0, yµ) ∈ M be such thatyµ /∈ Ŷ (x0) and suppose that the co
responding branch with indexµ contains a trajectory of points(x(t), yµ(t)) lying over

x(t) with yµ(0) = yµ. Then repeating the argument in (16),S(x0, yµ) < S(x0, ŷ0), while
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H(x0, yµ) = 0, so the calculation in (17) can also be repeated to show thatyµ(0)ẋ(0) <

y0(0)ẋ(0).
For t < 0, the value ofS along the trajectory(x(t), yλ(t)) onM is given by the following

relationship:

S(x0, ŷλ) =
0∫

t

yλ(s)ẋ(s) ds + S
(
x(t), yλ(t)

)
. (18)

SinceS(x0, ŷλ) = S(x0, ŷ0) for all λ ∈ Λ, the minimum value of−S(x(t), yλ(t)) over
λ ∈ Λ occurs at thatλ which minimisesyλ(0)ẋ(0) over allλ ∈ Λ. The above calculatio
(17) shows that, provided as in this case that there is at least one element inŶ (x0) in
addition toŷ0, then the minimum value ofyλ(0)ẋ(0) does not occur on the branch index
by λ = 0. So for some small interval oft < 0, y(t) is not the minimising argument fo
−S(x(t), .) overM , i.e.y(t) /∈ Ŷ (x(t)) for t ∈ (−δ2,0) for someδ2 > 0.

To extend the above result to allt > 0, there are two possibilities to be excluded. T
first possibility, which we will denote (∗), is that there exists somet1 � δ1 such thaty(t1) ∈
Ŷ (x(t1)) but Ŷ (x(t1)) is multi-valued. This situation cannot occur because it produce
integral curveγ (t) which passes through a point(x(t1), y(t1)) at whichŶ (x(t1)) is multi-
valued, but which also satisfiesy(t) ∈ Ŷ (x(t)) for t < t1. This contradicts the previou
paragraph.

The second possibility, which we will denote (∗∗), is that there exists somet2 > δ1 such
thaty(t2) /∈ Ŷ (x(t2)). For this to occur, there must exist somet1 with t2 > t1 � δ1 at which
the minimising argument for−S(x(t), .) along the trajectoryx(t) jumps from the branch
with indexλ = 0 to some other branch with indexλ = λ1 say. Continuing with the notatio
used earlier in the proof, let(x(t1), y(t1)) denote the point lying overx(t1) on theλ = 0
branch. Let(x(t1), yλ1(t1)) denote the point on theλ = λ1 branch. Then we claim tha
bothy(t1) andyλ1(t1) are inŶ (x(t1)) and we have already shown, in (∗), that this situation
cannot occur.

To prove the claim that bothy(t1) and yλ1(t1) are in Ŷ (x(t1)), let tn → t1 be a se-
quence converging tot1 with tn < t1 for all n. Eachy(tn) ∈ Ŷ (x(tn)), so−S(x(tn), y(tn)) =
V (x(tn)). Now V is locally Lipschitz continuous, so

V
(
x(tn)

) → V
(
x(t1)

)
.

Also, S is smooth and thus continuous onM , and(x(tn), y(tn)) → (x(t1), y(t1)) onM , so

−S
(
x(tn), y(tn)

) → −S
(
x(t1), y(t1)

)
.

It follows that −S(x(t1), y(t1)) = V (x(t1)) and soy(t1) ∈ Ŷ (x(t1)). A similar argument
with tm → t1 and tm > t1 for all m shows that−S(x(t1), yλ1(t1)) = V (x(t1)) and so
yλ1(t1) ∈ Ŷ (x(t1)) also.

Since both the above possibilities (∗) and (∗∗) can be excluded, it thus follows th
Ŷ (x(t)) = {y(t)} for all t > 0. A similar argument shows thaty(t) /∈ Ŷ (x(t)) for all
t < 0. �
Corollary 3.4. U(x) is a weakly admissable, weakly asymptotically stable multi-valued

feedback in the sense defined above.
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Proof. For any initial pointx0 ∈ Ω , consider the controlled trajectoryx(t; û) with x(0) =
x0 andû(t) ∈ Û (x(t)). By the previous proposition, the setÛ (x(t)) is single valued along
this trajectory, except possibly at the initial pointx0. Thusx(t; û) is uniquely defined apar
from, possibly, at the initial point where one can choose between a number of trajec
Also x(t; û) is the projection of an integral curveγ (t) = (x(t), y(t)) lying on a branch of
the stable manifoldM for the dynamics (6), the particular choice of branch being de
mined by the initial choice of feedback term̂u(0) ∈ Û (x0). It follows thatx(t; û) → 0 as
t → ∞, establishing weak asymptotic stability forU . Also x(t; û) ∈ Ω for all t � 0, since
by constructionΩ is forward invariant with respect to the dynamics (6). Thusû(.) ∈ ∆Ω

which establishes weak admissability forU . �
Theorem 3.5. Suppose V (x) > 0 for all 0 �= x ∈ Ω . Suppose that for all ε > 0, there exists
δ > 0 with |h(x)| � δ for all x ∈ Ω \ Bε(0). Then V (x) = V̂ (x) for all x ∈ Ω , i.e. V is the
value function for this problem, and U(x) is weakly (globally) optimal, with any choice of
feedback term û(t) ∈ Û (x(t)) giving rise to an optimal controlled trajectory. In particular,
if Û (x0) is multi-valued, then V (x0) is the value of the cost functional (2) along any of the
controlled trajectories x(t; û), x(0) = x0 for different initial choices û(0) ∈ Û (x0). Also,
V is a weak Lyapunov function for U , again corresponding to any choice of feedback term
û(t) ∈ Û (x(t)).

Proof. Note, by the assumptions on the linearised problem at the origin, thatV (0) =
−S(0,0) = 0. Also, by hypothesisV (x) > 0 for 0 �= x ∈ Ω , and soS(x, y) < 0 for all
(x, y) ∈ M with x �= 0.

We first show thatV (x) � V̂ (x) for all x ∈ Ω . Let x0 ∈ Ω and let

û(0) = r−1(x0)g
T (x0)ŷ0 ∈ Û (x0)

be any initial choice of feedback term. Then, as shown above, the resulting con
trajectoryx(t) = x(t; û) is asymptotically stable withx(t) ∈ Ω for all t � 0. Further-
more, there exists an integral curveγ (t) = (x(t), y(t)) lying over x(t) on M such that
Ŷ (x(t)) = {y(t)} for all t > 0. So by definition,V (x0) = −S(x0, ŷ0) and V (x(t)) =
−S(x(t), y(t)). Now H(x(t), y(t)) = 0 for all t > 0 so along the trajectoryx(t), we have
y(t)ẋ(t) = l(x(t), û(t)), where l(x, u) = 1

2(|h(x)|2 + uT r(x)u) and Û (x(t)) = {û(t)}.
Then sincedS = y dx, we have

−V
(
x(t)

) + V (x0) =
t∫

0

l
(
x(s), û(s)

)
ds. (19)

Now x(t) → 0 ast → ∞. So, sinceV (0) = 0 andV (x) > 0 for x �= 0,

V (x0) = sup

t∫
l
(
x(s), û(s)

)
ds � inf sup

t∫
l
(
x(s), u(s)

)
ds = V̂ (x0). (20)
t
0

u∈∆Ω t
0
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To prove the converse, we apply an argument from [1] which was stated for the
whereV is a classical solution of (7) but works also in the viscosity setting. Note first
V is a subsolution of (7), so for allp ∈ D+V ,

max
u

{−p(f + gu) − l(x, u)
}

� 0.

So for any admissable controlu = u(.) ∈ ∆Ω , the inequality

−p(f + gu) − l(x, u) � 0

holds true at any pointx(t) along the solution trajectory tȯx = f +gu(t), x(0) = x0. Then
by Theorem I.14 of [6],

−V
(
x(t)

) + V (x0) �
t∫

0

l
(
x(s), u(s)

)
ds.

Now, if 0 is a limit point ofx(t), take a sequencetn with x(tn) → 0 asn → ∞. Then, since
V (0) = 0 andV (x) > 0 for x �= 0,

V (x0) � sup
t

t∫
0

l
(
x(s), u(s)

)
ds.

On the other hand, if 0 is not a limit point ofx(t), then there existsε > 0 and someT > 0
such thatx(t) /∈ Bε(0) for all t > T , from which it follows that|h(x(t))|2 � δ for some
δ > 0 and allt > T . So in this case also we have

V (x0) � sup
t

t∫
0

l
(
x(s), u(s)

)
ds = +∞.

Since this holds for all controlsu(.) ∈ ∆Ω , we have that

V (x0) � inf
u∈∆Ω

sup
t

t∫
0

l
(
x(s), u(s)

)
ds = V̂ (x0).

ThusV (x0) = V̂ (x0) for all x0 ∈ Ω . Furthermore, it follows from (20), that the infimu
in (4) is achieved by any choice of feedback termû(.) ∈ Û (x(.)) ⊆ U(x(.)). SoU(x) is a
weak globally optimal set-valued feedback.

Lastly, note from (19) thatV is monotonic decreasing along trajectoriesx(t) = x(t; û)

corresponding to anŷu ∈ Û(x). It follows from Theorem 2, Section 15, Chapter 3 of
thatV is a weak Lyapunov function for the set-valued feedbackU(x). �

Note, the condition onh in the above theorem can be removed by restricting the s
admissable controls∆Ω to those which are asymptotically stable, in addition to remain

within Ω for all t � 0.
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4. Conclusion

For the above optimal control problem, we have used the conditions which al
guarantee existence of a smooth solution on a regionΩ0 of the equilibrium point, to prove
the existence of a viscosity solutionV on a larger regionΩ . We have further shown thatV

is the value function for the optimal control problem and constructed a set-valued fee
from M which achieves the optimal value in a weak sense.
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