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I. INTRODUCTION

Kaltenborn [1] has shown that every bounded linear functional on the space
of functions which are quasi-continuous in an interval [a, ] may be written
as a generalized Stieltjes integral together with another term, and has given
the conditions which must hold in order that such a functional can be written
as a mean Stieltjes integral. More recently, Lane [2] has shown that every
bounded and stationary linear transformation on the set of functions defined
over the real line and quasi-continuous in each interval can be written as the
sum of two mean Stieltjes integrals. In this paper it will be shown that there
exists a proper subspace of the space of functions which are quasi-continuous
in an interval [a, ] such that

(i) every bounded linear functional on the space may be written as a
mean Stieltjes integral (Theorem 3.1), and

(ii) every bounded linear transformation on the space may be represented
by a mean Stieltjes integral (Theorem 4.1).

In addition the necessary and sufficient conditions for an integral to
represent a completely continuous transformation are given (Theorems 5.1
and 5.2) and it is shown that a mean Stieltjes integral representation for the
adjoint of a completely continuous transformation exists (Theorem 5.3).
These theorems are generalizations of the well known results of Riesz [3, 4],
and Radon [5] (see also [6]) on the classical Stieltjes integral representations
of functionals and transformations on the space of continuous functions. It
will be noted that in some respects the proofs here are quite similar to the
equivalent proofs for the space of continuous functions. However there are
also rather sharp differences (see Lemma 2.1, Remark 3.1 and Remark 5.2
for example) which arise from the inherent differences between the mean
Stieltjes integral and the more usual types of Stieltjes integrals.
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II. DEFINITIONS AND A PRELIMINARY LEMMA

In this paper we shall be concerned with those real-valued functions in an
interval [a, b] which are continuous at a and left continuous at each number ¢,
a < t < b. The set of all such functions will be denoted by Q, . Since O,
is a subset of the set of all functions which are quasi-continuous in [a, 8], it
follows that if f is in Q; then f is bounded in [a, b]. The norm of a function
f (denoted by || f[|) is then taken to be sup | f(¢) |. Since convergence in the
norm in Q; implies uniform convergence in the ordinary sense in [q, b] it
follows that O, is a Banach space.

DerFinNiTION 2.1. Suppose that s is a number such that @ < s < b. The
statement that 7, is a test function means that 7, is in O, , and if ¢ is in
{a, b] then
a<tLs

="
T s<t<b.

DeriNniTiON 2.2. The statement that « is a generating function means
that « is a function on the square a < < b, and that

(i) ofa,s)=0, a<<s<<h,

(ii) «fb,s)is in Q, ,
(iii) for each number ¢, a < t < b, oft, 5) + ot +, ) is in Q, , and

(iv) for each number s in the interval [a, b], «(¢, 5) is of bounded variation
in [a, b]. Moreover, there exists a positive number M such that

Viaolt,s) <M
for every s in [a, b]. The smallest such number M will be denoted by V.

ReEmMARK 2.1. TItis clear that the sum or difference of generating functions
is also a generating function,

Remark 2.2, Throughout the body of this paper, integral is taken to
mean the mean Stieltjes integral as defined by Lane [7].

LemMA 2.1.  Suppoese 7 is of bounded variation in the interval {a, b). Then
f:fdn = 0 for every fin Q, , if and only if v is constant in [a, b].

Proor. A. The sufficiency of this condition follows in a trivial fashion
from definition 2.1 of ref. 7.
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B. Conversely, suppose that % is of bounded variation in [q, 5] and
f Jfdn = 0 for every f in O, . Then if 7, is a test function it follows that

[ 7y =) = @) = 0, @)
and

[ rdn=— 1@+ 30@) + s ] =0, a<s<b.

Therefore for any s in (4, ),

[7(s +) — n(a)] = [n(a) — n(s)] - 22)

From the definition of right limit it follows that if s is in («, ) and ¢ is a posi-
tive number there exists a positive number 8 such that if ¢ is in the segment
(s, s + 8) then | n(s +) — 5(t) | < e. The points of continuity of » are dense
in [a, 8]; hence, in any segment (s, s + 8) contained in [a, #] there exists a
number ¢ at which 7 is continuous. By Eq. (2.2), 7(¢) = »(a) if ¢ is a point of
continuity, and it follows that | 9(s -+ ) — n(a) | < e, ory(s +) = n(a). But
this means that if s is in (a, d), 7(s) = 5(a), by Eq. (2.2). Since 5(b) = n(a)
from Eq. (2.1) it follows that » is constant in the interval [a, 8]. This completes
the proof.

III. 'THE REPRESENTATION OF A BOUNDED LINEAR FUNCTIONAL ON Q;

TuEOREM 3.1. Suppose a is a function of bounded variation in the interval
[a, b] and that o(a) = 0. Then there exists a bounded linear functional, A, on
Q; such that Af = j' fdo for each fin Qy; and || A || < Vie. Conversely, if B
is any bounded linear Sfunctional on Q; , there exists a function, 8, of bounded
vartation in [a, b, with B(a) = 0, such that

Bf:f:fdﬂ, and VB <3| B].

Furthermore B is unique.

Proor, A. The proof of the first assertion of the theorem follows
immediately from Theorem 2.1 of ref. 7.

B. Suppose then, that B is a linear functional on Q; , and that 7, is a test
function. Consider that function g, defined in [a, 8] by

gla) =0
2(s) = Br,, a<s<bh.
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This function is of bounded variation in [a, 4] and F2g < || B[, as may be
shown by a procedure analogous to that given in [6, p. 109], for a functional
on the space of continuous functions. Suppose we define a function 4 in
[a, b] by

ha) =0,  h(b) = g(b)

h(s) = g(s +), a<s < b.

It can be shown by writing g as the difference of monotonic increasing
functions and considering the induced decomposition of A, that A is of
bounded variation in [, 8] and V2h < V2g. Consequently the function
B = 2g — h is of bounded variation in [a, b] and V8 < 3| BY. It follows
that if f is in O, then [? fdB exists.

If 7, is a test function in [a, b] and s <C b, then

, rdf = — J Bdr, = L [B(s +) + B()] = £(5) -

Slmllarly, for 7, one has that j 7ydB = g(b), or if 7 is any test function then
f vdf = Br. Suppose then that J is any step function in Q; . From the
definition of O , it follows that j jmay be written as a finite linear combination
of test functions; hence Bj = f jdB. Finally, let f be any element in Q, .

Then by an obvious extension of Lemma 4.1b of [7] it follows that f can be
written as the limit of a uniformly convergent sequence of step functions,
Ji»i=1,2,3, -, each of which is in Q, , and f is also the limit in the norm
of this sequence. Therefore, since B is bounded and linear,

b
Bf = Lim Bj, = Lim | j.dg,
and from Lemma 4.1a of [7] one can conclude that
b
Bf = [ fdg .

The uniqueness of this representation is an immediate consequence of Lemma
2.1. This completes the proof.

Remark 3.1. It is easy to show that the inequality in Theorem 3.1
relating the variation of 8 to || B|| cannot be improved. Let the interval
[a, 8] be [0, 1]. Consider the function % given in [0, 1] by

7(s) =0, 0<s< %—

7(3) = —
n(s)=1, %<s<b.
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Clearly 7 is of bounded variation in [0, 1], with ¥V = 3. If now H is the
functional generated by 5, and f is any element of Q, , one has that

1 1= | [ 7| = 1 £ G DI <IA-

Therefore the bound of H is one, and Vin =3 || H ||.

Theorem 3.1 implies that the conjugate space, QF, of Q; is the space of
all functions « in the interval [a, 5] which vanish at @ and are of bounded
variation in [a, b]. The norm of a function « in QF is then given by

b
fdal
lo]ly = sup ——ro.
tosee IFN
It then follows from Theorem 3.1 that V2« < 3| «]|,. Therefore if a

sequence of elements of Q% is convergent in the norm it must be uniformly
convergent in [a, b] in the usual sense.

IV. THEe REPRESENTATION OF A BOUNDED LINEAR TRANSFORMATION ON O .

THEOREM 4.1. If « is a generating function there exists a bounded linear
transformation, SZ, on Q; such that if s is in [a, b), and f is in Q then

Af) =0 dat,s),

with || o || < V. Conversely if & is a bounded linear transformation on Oy,
then & admits a representation of this type for some generating function 8, with
Vs << 3|| @ ||. Furthermore B is unique.

Proor. A. Ifais a generating function in [a, 5] then for each number s
in [a, 8], oft, s) is of bounded variation in # in [, b], and j' f(t) doft, s)
exists for any f in Q; . Moreover, if s is in [a, ] then

b
[ foaes|<ifive.
Suppose now that 7, is a test function. Since
b
[ ) dott, ) = 3otk ) + ok +, 9], k<8,
t=qa

[" ey datt, ) = ot 5, k=2,

t=a
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it follows that j mt) do(t, s) is in Q; . Therefore if j is a step function inQ,
then f 7(t) da(ta s) is in Q, , since j may be written as a finite linear com-
bination of test functions. Finally let f be any element of Q; and suppose
that { j; , ja» ***s Ju» ***} is a sequence of step function which converge in the
norm to f. Then, if s is in [a, b],

[ Uiy = fen date )| < i = F1 Vs

g=1,2,3, -, and it follows that the sequence { _fh ]q(t) do(t, 5)Jpy con-
verges uniformly to j J@) doft, 5) in [a, 5}, and this integral is in Q, .

Since the integral is linear it follows that the mean Stieltjes integral with
respect to a generating function « defines a bounded linear transformation .7,
and || & || < V.

B. Conversely, suppose that & is a bounded linear transformation. Then
from Theorem 3.1 by the same argument as given in [5], and [6, p. 220], it
follows that there exists a function 8 defined in the square a < § < b which
has the following properties:

() Bl@s)=0, a<s<bh

(i) if & is in [a, b], B(t, k) is of bounded variation in [a, b], and for
every s in [a, b], Vi_B(t, ) < 3 || #||;

(iif) if fisin Q; and s is in [a, b] then
36 = _fe) dee,s).

It follows from Theorem 3.1 that there is only one such function 8. Finally,
suppose that 7, is a test function, then

Brifs) = LBk, s) + Bk +,9)], k<b a<s<b,
and
g‘rb(s) = B(b7 S), a < s < b.

Therefore 8 is a generating function. This completes the proof.

V. CompPLETELY CONTINUOUS TRANSFORMATIONS ON O,

DeriniTION S.1. Suppose that 8 is a generating function in [a, #]. Then
if £ is in the interval [a, b], the function B(¢, k) is in Q% . The statement that B
is in Q; in the sense of the norm of O} means that given any positive num-
ber e it is true that

(i) there exists a positive number 8§ such that if 0 << s — a < §, then
H B(t’ S) - B(ta a) IlA < €, and
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(ii) if @ <k < b there exists a positive number & such that if
0<k—s<?, then ||B(t,s) — Bt R) || 4 < e

THEOREM 5.1.  Suppose that 7 is a completely continuous linear transfor-
mation on Q; and that « is the generating function for o7. Then o is in Q; in
the sense of the norm of Q% .

Proor. The proof will be omitted since it differs only slightly from the
proof given in [6, p. 221] for the corresponding case in the space of continu-
ous functions.

THEOREM 5.2. Suppose that # is a bounded linear transformation on Q;
and that B is the generating function for B. If B is in Q; in the sense of the norm
of OF then given any positive number ¢ there exists a bounded linear transforma-
tion of finite range, €, such that || B — € || < e

Proor. Since 8 is in Q; in the sense of the norm of Qf it follows by the
usual argument that given any positive number e, there exists a subdivision,
{S05 8152, ***, Sq}, of the interval [a, 8] such that

(i) if s < s <5y then || B( 5) — Bt s1) |4 < ¢/3, and
(i) if s, <s<<s8pq, i=1,2, -+, ¢q, then [| B, s) — B, s:41) |4 < €/3.
Let {hy , by, -+, by} be a set of functions defined in [a, b] by

1 a<s<s
) = o 5 <s<b’ .1
and
a<s < Sy, S <<s<b

hk(s)z (1) ’ k=2’ 3!'”’q'

Sk_l <SS <Sk

Then each of these functions is in Q; , and the function, y, defined in the
square a < § < b by

Y(s, t) = 2 hils) Bt 2)

is a generating function. Moreover the linear transformation, %, generated
by y is clearly of finite range. From the definition of y it follows that if s is in
the interval [a, b] then

18t 5) — ¥(t, )[4 <e/3, and VI [B(ts) —y(t,5)] <e.

Therefore the bound of the transformation (# — %) is less than e. This
completes the proof.
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CoroLLARY 5.2a. If B is the generating function for a bounded linear trans-
formation & and B is in Q, in the sense of the norm of OF then % is a completelv
continuous linear transformation.

CoroLLARY 5.2b. Suppose & is a completely continuous linear transforma-
tion on Q; . Then there exists a sequence, {%,}, of transformations of finite range
on Q, convergent in the bound to B. Furthermore if B is the generating function
for B and y; is the generating function for €,,j = 1,2, 3, -+, then the sequence
{,} is uniformly convergent to B in the square a <. [ < b; and for each t in the
interval [a, b], B(t, s)is in QO .

The proofs of these corollaries are omitted since they follow in a trivial
fashion from Theorems 5.2 and 5.1.

THEOREM 5.3. Suppose that s/ is a completely continuous linear trans-
formation on Q, and that o is the generating function for . If o7 * denotes the
adjoint transformation to o then if 0is in Q¥ , o7 *0(t) is given by _[:_a oft, 5) db(s)
Jor each number t in the interval [a, b].

Proor. If &/ is a transformation of finite range the theorem follows
immediately from the properties of the mean Stieltjes integral, If o7 is not of
finite range then it is the limit in the bound of a sequence {#,} where each
of the &;,j=1,2,3, -+, is alinear transformation of finite range and ./ * is
then the limit in the bound of the sequence {#Z}}. If A; denotes the generating
function for #;, j=1,2,3, -, and if 8 is in QF then the sequence
{ J':_n Aj(t, 5) d6(s)} converges uniformly to 27*6 in [a, b]. Moreover, since

[ "b [a(t‘ S) - )\]'(t7 S)] de(s) < 3 H o _gi ” I/l?oy _I = l, 2) 33 Y

it follows that

O f bg

5=

oft, s)di(s) for a<<t<b
This completes the proof.

REMARK 5.2. One is tempted to think that Theorem 5.3 should be valid
for an arbitrary bounded linear transformation on Q, , since this is so for the
space of continuous functions, It is, unfortunately, quite easy to construct
a counter example to this conjecture. Consider the identity transformation .#.
The generating function, {, for .# is given by

0 s=a, t=a

s=a, a<t<hb
0 a<s<bh a<gt<s
1 a<<s<b s<t<Lbh.

i(t, 5) =



460 DYER

If Theorem 5.3 could be extended then it would have to be true that

0(t) = fb

5=

1(t, 5) db(s), a<<t<hbh,

for any 8 in Q% . If 8 is taken to be

40 ety t £ (a + b)/2
o) = |, t = (a+ b)2 ’
then

[, a86) = Rlict ) — i, 3 40

{0 a<<t<b t#£(a+b)2.
—3% t=(a+b)2

Thus we have a contradiction.

VI. CoNcLUDING REMARKS

O, is not the only subspace of the space of quasi-continuous functions in
which a mean Stieltjes integral representation of a linear transformation can
be constructed. For example, a similar development could be given for the
space of all real valued functions in an interval [a, 5] which are right con-
tinuous at each number ¢, @ <t < b, and are continuous at b; the norm
being defined in the usual way. However, attempts to do this for any sub-
space containing both left continuous and right continuous step functions
will fail, as a consideration of the requirements on the generating function
for the identity transformation will readily show.
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