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I. INTL~o~UCTION 

Kaltenborn [l] has shown that every bounded linear functional on the space 
of functions which are quasi-continuous in an interval [a, b] may be written 
as a generalized Stieltjes integral together with another term, and has given 

the conditions which must hold in order that such a functional can be written 
as a mean Stieltjes integral. More recently, Lane [2] has shown that every 
bounded and stationary linear transformation on the set of functions defined 

over the real line and quasi-continuous in each interval can be written as the 

sum of two mean Stieltjes integrals. In this paper it will be shown that there 

exists a proper subspace of the space of functions which are quasi-continuous 

in an interval [a, b] such that 

(i) every bounded linear functional on the space may be written as a 

mean Stieltjes integral (Theorem 3.1), and 

(ii) every bounded linear transformation on the space may be represented 
by a mean Stieltjes integral (Theorem 4.1). 

In addition the necessary and sufficient conditions for an integral to 

represent a completely continuous transformation are given (Theorems 5.1 
and 5.2) and it is shown that a mean Stieltjes integral representation for the 
adjoint of a completely continuous transformation exists (Theorem 5.3). 
These theorems are generalizations of the well known results of Riesz [3,4], 
and Radon [S] (see also 161) on the classical Stieltjes integral representations 
of functionals and transformations on the space of continuous functions. It 
will be noted that in some respects the proofs here are quite similar to the 
equivalent proofs for the space of continuous functions. However there are 
also rather sharp differences (see Lemma 2.1, Remark 3.1 and Remark 5.2 
for example) which arise from the inherent differences between the mean 
Stieltjes integral and the more usual types of Stieltjes integrals. 
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II. DEFINITIONS AND A PRELIMINARY LEMMA 

In this paper we shall be concerned with those real-valued functions in an 
interval [a, b] which are continuous at a and left continuous at each number t, 
a < t < b. The set of all such functions will be denoted by Qr.. Since QL 

is a subset of the set of all functions which are quasi-continuous in [a, b], it 

follows ! hat if f is in QL thenf is bounded in [a, b]. The norm of a function 
f (denoted by [ 1 f [I) is then taken to be sup (f(t) (. Since convergence in the 

norm in QL implies uniform convergence in the ordinary sense in [a, 61 it 

follows that Qr is a Banach space. 

DEFINITION 2.1. Suppose that s is a number such that a -C s < b. The 

statement that T# is a test function means that 7s is in Qt , and if t is in 

[u, b] then 

r,(r) = I 

1, u<t<s 

0 s<t<b. 

DFFINITION 2.2. The statement that 01 is a generating function means 

that CY is a function on the square a < t < b, and that 

(i) OL(U, s) = 0, a < s < b, 

(ii) ol(b, s) is in QL , 

(iii) for each number t, Q < t < b, a(t, s) + a(t +, s) is in QL , and 

(iv) for each number s in the interval [u, b], a(t, s) is of bounded variation 
in [a, b]. Moreover, there exists a positive number M such that 

for every s in [a, b]. The smallest such number M will be denoted by V, . 

REMARK 2.1. It is clear that the sum or difference of generating functions 

is also a generating function. 

BEMARK 2.2. Throughout the body of this paper, integral is taken to 
mean the mean Stieltjes integral as defined by Lane [7]. 

LEMMA 2.1. Suppose r) is of bounded vuriution in the interval [a, b]. Then 

ffdq = Ofor BUY f in QL , if and only $7 is constant in [a, b]. 

PROOF. A. The sufficiency of this condition follows in a trivial fashion 
from definition 2.1 of ref. 7. 
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B. Conversely, suppose that 17 is of bounded variation in [a, b] and 
Jl fdv = 0 for every f in QL . Then if 78 is a test function it follows that 

s 
b Tbdv = q(b) - q(U) = 0, (2.1) n 

and 

J -b Tsdrl = - ~(4 + 8 h(s) + 4s +)] = o, a<s<b. 
a 

Therefore for any s in (a, b), 

MS +) - d41 = M4 - rl(41 * 2.2) 

From the definition of right limit it follows that ifs is in (a, b) and E is a posi- 
tive number there exists a positive number 8 such that if t is in the segment 
(s, s + 8) then 1 ~(s +) - r](t) ( < E. The points of continuity of r] are dense 
in [a, b]; hence, in any segment (s, s + 6) contained in [a, 61 there exists a 
number t at which r] is continuous. By Eq. (2.2), q(t) = ~(a) if t is a point of 
continuity, and it follows that 1 ~(s + ) - ?(a) 1 < 6, or ~(s +) = ~(a). But 
this means that if s is in (a, b), v(s) = ~(a), by Eq. (2.2). Since T(b) = q(a) 
from Eq. (2.1) it follows that 17 is constant in the interval [a, b]. This completes 
the proof. 

III. THE REPRESENTATION OF A BOUNDED LINEAR FUNCTIONAL ON QL 

THEOREM 3.1. Suppose CII is a function of bounded variation in the interval 
[a, b] and that al(u) = 0. Then there exists u bounded linear functional, A, on 
QL such that Af = Jb fd 01 or each f in QL; and 1) A ( ( < V$Y. Conversely, ;f B f 
is any bounded linear functional on QL , there exists a function, 8, of bounded 
variation in [a, b], with j?(a) = 0, such that 

Bf = lbfdfi , and V,“P < 3 II B II - 
a 

Furthermore ,6 is unique. 

PROOF. A. The proof of the first assertion of the theorem follows 
immediately from Theorem 2.1 of ref. 7. 

B. Suppose then, that B is a linear functional on QL , and that 7s is a test 
function. Consider that function g, defined in [a, b] by 

A4 = 0 
g(s) = BT~ , u<s<b. 
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This function is of bounded variation in [a, b] and G’ig < / 1 B 1 j, as may be 
shown by a procedure analogous to that given in [6, p. 1091, for a functional 
on the space of continuous functions. Suppose we define a function h in 
[a, b] by 

h(u) = 0 ) h(b) = g(b) 

h(s) = g(s +) 7 a<s<b. 

It can be shown by writing g as the difference of monotonic increasing 
functions and considering the induced decomposition of h, that h is of 
bounded variation in [a, b] and Vih < Vig. Consequently the function 
/3 = 2g - h is of bounded variation in [a, b] and Vi/3 < 3 (1 B ( 1. It follows 
that iff is in Qr. then jifd/3 exists. 

If TV is a test function in [a, b] and s < b. then 

I 
.b 

T,& = - -b W, = 3 [PCs +) + &)I = g(s) . - a J a 

Similarly, for 71, one has that J” 
s” -rdfl = BT. 

Tbd/3 = g(b), or if 7 is any test function then 
S u 

dknition of QL , 
p pose then th% j is any step function in Qr.. From the 
it follows thatj may be written as a finite linear combination 

of test functions; hence Bj = s”jdj3. Finally, let f be any element in Q, . 
Then by an obvious extension of*Lemma 4.1 b of [7] it follows that f can be 
written as the limit of a uniformly convergent sequence of step functions, 
ji, i = 1, 2, 3, .*a, each of which is in QL , and f is also the limit in the norm 
of this sequence. Therefore, since B is bounded and linear, 

and from Lemma 4.la of [7] one can conclude that 

Bf= cbfdj3. 
- n 

The uniqueness of this representation is an immediate consequence of Lemma 
2.1. This completes the proof. 

REMARK 3.1. It is easy to show that the inequality in Theorem 3.1 
relating the variation of p to I] B 11 cannot be improved. Let the interval 
[a, b] be [0, 11. Consider the function 7 given in [0, l] by 
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Clearly 77 is of bounded variation in [0, I], with V&I = 3. If now N is the 
functional generated by T), and f is any element of QL , one has that 

Therefore the bound of H is one, and V& = 3 ) ) H 1 I. 
Theorem 3.1 implies that the conjugate space, Qi, of QL is the space of 

all functions (Y in the interval [a, b] which vanish at a and are of bounded 
variation in [a, b]. The norm of a function Q! in Qz is then given by 

ll I bfda 

II a IL4 =;iP 
L I;f II * 

It then follows from Theorem 3.1 that V,“a < 3 I( o! JJA . Therefore if a 
sequence of elements of Qz is convergent in the norm it must be uniformly 
convergent in [a, b] in the usual sense. 

IV. THE REPRESENTATION OF A BOUNDED LINEAR TRANSFORMATION ON QL . 

THEOREM 4.1. If ar is a generating function there exists a bounded linear 
transformation, A?, on QL such that ifs is in [a, b], and f is in QL theta 

~fb> = j-” f(t) W, 4 , t=a 

with I I d ( I < V, . Conversely ;f B is a bounded linear transformation on QL , 
then 9? admits a representation of this type for some generating function 8, with 
V, < 3 11 W / 1. Furthermore j? is unique. 

PROOF. A. If OL is a generating function in [a, b] then for each number s 
in [a, b], ar(t, s) is of bounded variation in t in [a,‘b], and JIBaf(t) dor(t, s) 
exists for any f in QL . Moreover, if s is in [a, b] then 

Suppose now that rk is a test function. Since 

J 

b 

t=a ?c@) dc@, s) = + [Q, 4 + 4 +, 4. k <b, 

s 

b 

t=a 4) Wt, 4 = 4,s), k = b, 
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it follows that $” -rk(t) daft, s) is in Qt . Therefore if j is a step function in QL 
then J” j(t) dolrt’: s) is in QL , since j may be written as a finite linear com- 
binatik?of test functions. Finally let f be any element of QL and suppose 
that{jl,j2, -**,jn, ***I is a sequence of step function which converge in the 
norm to f. Then, ifs is in [a, b], 

q = 1,2,3, -*a, and it follows that the sequence {c=, j,(t) dor(t, s)}r=r con- 
verges uniformly to $” f(t) da(t, ) s in [a, b], and this integral is in QL . 
Since the integral is lfilar it follows that the mean Stieltjes integral with 
respect to a generating function OL defines a bounded linear transformation &, 
and 11~11 < va. 

B. Conversely, suppose that L% is a bounded linear transformation. Then 
from Theorem 3.1 by the same argument as given in [5], and [6, p. 2201, it 
follows that there exists a function /3 defined in the square a < j < b which 
has the following properties: 

(i) /3(a, s) = 0, a < s G b; 

(ii) if k is in [a, b], /3(s(t, K) is of bounded variation in [a, b], and for 
every s in [a, 4, %,P(t, s> < 3 I I ~8 I I; 

(iii) if f is in QL and s is in [a, b] then 

It follows from Theorem 3.1 that there is only one such function /3. Finally, 
suppose that TV is a test function, then 

~4s) = & VW, s> + iv + 3 41, k <b, a<s<b, 
and 

gTb(s) = B(b, S>, a<s<b. 

Therefore /3 is a generating function. This completes the proof. 

V. COMPLETELY CONTINUOUS TRANSFORMATIONS ONQ= 

DEFINITION 5.1. Suppose that /3 is a generating function in [a, b]. Then 
if k is in the interval [a, b], the function fi(t, k) is in 8:: . The statement that fi 
is in QL in the sense of the norm of Qz means that given any positive num- 
ber l it is true that 

(i) there exists a positive number 6 such that if 0 < s - a < 8, then 
II~(~,~)-~B(t,a)Il~<~,and 
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(ii) if a < K ,< b there exists a positive number 6’ such that if 
0 < k - s < a’, then (1 #?(t, s) - ,5(t, K) ) IA < E. 

THEOREM 5.1. Suppose that A?’ is a completely continuozls linear transfor- 
mation on QL and that ar is the generating function for &. Then a: is in QL in 
the sense of the norm of Qz . 

PROOF. The proof will be omitted since it differs only slightly from the 
proof given in [6, p. 2211 for the corresponding case in the space of continu- 
ous functions. 

THEOREM 5.2. Suppose that 9 is a bounded linear transformation on QL 
and that /3 is the generating function for 99. If B is in QL in the sense of the norm 
of QE then given any positive number E there exists a bounded linear transform- 
tion ofJinite range, V, such that ) ( ~49 - V 11 < E. 

PROOF. Since /3 is in QL in the sense of the norm of QE it follows by the 
usual argument that given any positive number E, there exists a subdivision, 
{so 9 Sl , $? , *-*, sp}, of the interval [a, b] such that 

(i) if s,, < s < s, then 11 ,?I(& s) - P((t, sr) IIA < e/3, and 

(ii) if s~<s<s~+~, i=l,2;..,q, then ~~jl(t,s)--/3(t,~~+~)J(~<~/3. 

Let {h, , h, , **a, h,} be a set of functions defined in [a, b] by 

and 

Then each of these functions is in QL , and the function, y, defined in the 
square a ,< j < b by 

y(s, t) = $ US) /% 4 
P=l 

is a generating function. Moreover the linear transformation, VP, generated 
by y is clearly of finite range. From the definition of y it follows that ifs is in 
the interval [a, b] then 

II /WV s) - At, 4 IL4 -=c E/39 and cL#@, s) - At, s)l < E. 

Therefore the bound of the transformation (9 - U) is less than E. This 
completes the proof. 
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COROLLARY 5.2a. If /3 is the generating function for a bounded linear trans- 
formation 9 and fl is in QL in the sense of the norm of Qz then W is a completely 
continuous linear transformation. 

COROLLARY 5.2b. Suppose @ is a completely continuous linear transforma- 
tion on QL . Then there exists a sequence, {?Zn}, of transformations of finite range 
on QL convergent in the bound to B. Furthermore if fl is the generating function 
for 8 and yj is the generating function for V, , j = 1, 2, 3, *a., then the sequence 
(y,} is uniformly convergent to p in the square a < f < b; and for each t in the 
interval [a, b], /3(t, s) is in QL . 

The proofs of these corollaries are omitted since they follow in a trivial 
fashion from Theorems 5.2 and 5.1. 

THEOREM 5.3. Suppose that & is a completely continuous linear trans- 
formation on Qt and that a is the generating function for A?. If &* denotes the 
adjoint transformation to ~4 then if0 is inQz , &*8(t) isgiven byJIzO ar(t, s) de(s) 
for each number t in the interval [a, b]. 

PROOF. If z&’ is a transformation of finite range the theorem follows 
immediately from the properties of the mean Stieltjes integral. If A? is not of 
finite range then it is the limit in the bound of a sequence (2,) where each 
of the Yj , j = 1, 2, 3, **a, is a linear transformation of finite range and d* is 
then the limit in the bound of the sequence {6p,*>. If hj denotes the generating 
function for .Ppj, j = 1, 2, 3, a--, and if 0 is in QE then the sequence 

i .fsb_n ndtt s, de(s)l converges uniformly to &*19 in [a, b]. Moreover, since 

1 j-;=, Mt, 4 - ut, 91 dW 1 Q 3 II .a? -2j II 0, j = 1, 2, 3, ..., 

it follows that 

@‘*e(t) = 1” a(t, s) de(s) for a < t < b. 
s=n 

This completes the proof. 

REMARK 5.2. One is tempted to think that Theorem 5.3 should be valid 
for an arbitrary bounded linear transformation on QL , since this is so for the 
space of continuous functions. It is, unfortunately, quite easy to construct 
a counter example to this conjecture. Consider the identity transformation .Y. 
The generating function, i, for 9 is given by 

0 s = a, t=a 

i(t, s) = i 
s = a, a<t<b 
a<s<b, a<t<s 

1 a<s<b, s<t<b. 
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If Theorem 5.3 could be extended then it would have to be true that 

e(t) = 1” i(t, s) de(s), a<t<b, 
S==S 

for any 6 in Q; . If 0 is taken to be 

w> = 1; a<t<b, t f (a + W/2 
t = (a + b)/2 , 

then 

s 

b 
i(t, S) de(S) = 8 [i(t, + -) - i(t, Jj +)] 

s-a 

I 

0 a < t < b, = t # (a + b)/2. 

ik t = (a + b)/2 

Thus we have a contradiction. 

VI. CONCLUDING REMARKS 

QL is not the only subspace of the space of quasi-continuous functions in 
which a mean Stieltjes integral representation of a linear transformation can 
be constructed. For example, a similar development could be given for the 
space of all real valued functions in an interval [a, b] which are right con- 
tinuous at each number t, a Q t < b, and are continuous at 6; the norm 
being defined in the usual way. However, attempts to do this for any sub- 
space containing both left continuous and right continuous step functions 
will fail, as a consideration of the requirements on the generating function 
for the identity transformation will readily show. 
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