
ScienceDirect

Available online at www.sciencedirect.com

 

Available online at www.sciencedirect.com 

ScienceDirect 

Structural Integrity Procedia 00 (2016) 000–000  
www.elsevier.com/locate/procedia 

 

2452-3216 © 2016 The Authors. Published by Elsevier B.V. 
Peer-review under responsibility of the Scientific Committee of PCF 2016.  

XV Portuguese Conference on Fracture, PCF 2016, 10-12 February 2016, Paço de Arcos, Portugal 

Thermo-mechanical modeling of a high pressure turbine blade of an 
airplane gas turbine engine 

P. Brandãoa, V. Infanteb, A.M. Deusc* 
aDepartment of Mechanical Engineering, Instituto Superior Técnico, Universidade de Lisboa, Av. Rovisco Pais, 1, 1049-001 Lisboa, 

Portugal 
bIDMEC, Department of Mechanical Engineering, Instituto Superior Técnico, Universidade de Lisboa, Av. Rovisco Pais, 1, 1049-001 Lisboa, 

Portugal 
cCeFEMA, Department of Mechanical Engineering, Instituto Superior Técnico, Universidade de Lisboa, Av. Rovisco Pais, 1, 1049-001 Lisboa, 

Portugal  

Abstract 

During their operation, modern aircraft engine components are subjected to increasingly demanding operating conditions, 
especially the high pressure turbine (HPT) blades. Such conditions cause these parts to undergo different types of time-dependent 
degradation, one of which is creep. A model using the finite element method (FEM) was developed, in order to be able to predict 
the creep behaviour of HPT blades. Flight data records (FDR) for a specific aircraft, provided by a commercial aviation 
company, were used to obtain thermal and mechanical data for three different flight cycles. In order to create the 3D model 
needed for the FEM analysis, a HPT blade scrap was scanned, and its chemical composition and material properties were 
obtained. The data that was gathered was fed into the FEM model and different simulations were run, first with a simplified 3D 
rectangular block shape, in order to better establish the model, and then with the real 3D mesh obtained from the blade scrap. The 
overall expected behaviour in terms of displacement was observed, in particular at the trailing edge of the blade. Therefore such a 
model can be useful in the goal of predicting turbine blade life, given a set of FDR data. 
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Abstract

To prevent brittle cracks from causing fatal damage to steel structures, it is needed that steels have enough crack arrestability. 
However, the brittle crack propagation/arrest behavior has not been explained theoretically enough from the aspect of energy 
balance and especially the long crack problem has remained as an important unsolved issue for some decades. The authors 
propose a new model based on local fracture stress criterion to solve the long crack problem. The model considers crack closure 
effect by uncracked side ligaments formed due to relaxation of plastic constraint progressing with SIF increasing. A simultaneous 
equation composed of four equations, which formulate local fracture condition, strain hardening, yield point, and dynamic SIF 
considering side ligaments, is solved to simulate a crack propagation in the model. To validate the model, we compared model 
simulations with some experiments. Some of them were conducted under the long crack problem condition and obtained the 
result that they showed good agreements, even under the long crack problem condition. This implies the long crack problem can
be explained from the aspect of side ligament development due to the relaxation of plastic constraint.
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1. Introduction

As brittle fracture may give serious damage to the steel structures like container ships, the concept of “double 
integrity” has been as important as the prevention of crack initiation. A recent guideline on brittle crack arrest design, 
Nippon Kaiji Kyokai (2009) published, requires arrest toughness 𝐾𝐾𝐾𝐾ca is larger than 6000 N/mm3/2 for steel plates 
whose thickness is less than 80mm. 𝐾𝐾𝐾𝐾ca is obtained from crack arrest length and applied stress and evaluated as an 
Arrhenius function of temperature. Although 𝐾𝐾𝐾𝐾ca is usually measured by temperature gradient ESSO tests with the 
standard specimen whose width is 500mm, 𝐾𝐾𝐾𝐾ca in duplex tests with the wide size specimen whose width is 2400mm 
has been reported to be much larger than one obtained in standard size ESSO tests at the same temperature as shown 
in Fig.1. This trend cannot be solved by classical linear fracture mechanics which the concept of 𝐾𝐾𝐾𝐾ca is based on since 
it was first reported by Kanazawa et al.(1973) and called as “the long crack problem”. Although it had been attempted
to study the problem based on energy balance, the fundamental concept to study dynamic crack, there were not any 
explanation which successfully gets the consensus among the researchers. Contrary to them, Machida et al. (1995) and 
Aihara et al.(1996) proposed a numerical model for brittle crack propagation and arrest behavior based on local fracture 
criterion considering the shape of crack front and the formation of side ligaments. The result of the model showed the 
good agreement with experiments in the limited specimen sizes, but did not explain the long crack problem. After that, 
Aihara et al. (2008) reported the deviation of 𝐾𝐾𝐾𝐾ca from estimated curves of standard tests was observed in the extremely 
high applied stress conditions. They proposed the effect of those stress conditions on Kca is equivalent to one observed 
in the long crack problem and relaxation of plastic constraint, which is the loss of plane strain at the crack front, was 
considered in their model. But, this model needed arbitrary parameters which did not have physical meanings. Based 
on above studies, a new model is presented to explain brittle crack propagation/arrest behavior including the long 
crack problem without any parameters which cannot be explained physically.

Fig. 1 Dependence of crack arrest toughness on temperature                           Fig.2 Type of brittle crack arrest tests
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2. Model Formulation

2.1. Overview of the Model

A fundamental concept of a proposed model in our study is shown in Fig.3, whose detail contents are found in 
Shibanuma et al. (2016). We adopted three assumptions to construct the model formulation. The first assumption (1) 
is that a shape of crack front is assumed to be right angle to the direction of crack propagation, which is based on 
observations on fracture surface of past ESSO tests in Aihara et al. (2012). The second assumption (2) is that a cracked 
side ligament is considered as a part of crack and influences the stress intensity factor (SIF). It has been said that side 
ligament decreases the crack driving force as long as it is fractured in the ductile manners by previous studies, such 
as Ogura (1961) and Priest (1998). The last assumption (3) is that the formulation of the crack propagation is only 
evaluated at the crack front in the mid-thickness, which satisfies plane strain condition. This is much effective 
assumption to simplify the formulation and reasonable enough to simulate the crack behavior because the maximum 
crack length of cleavage fracture is generally obtained in the mid-thickness of the plates. Based on local fracture stress 
criterion, the crack continues to propagate as long as the local stress at the crack front 𝜎𝜎𝜎𝜎𝑦𝑦𝑦𝑦𝑦𝑦𝑦𝑦[𝑟𝑟𝑟𝑟c, 0] is equal to the local 
fracture stress σf, which is regarded as a material characteristic value independent on crack velocity and temperature.

Based on the assumptions, the proposed model is composed of 4 equations to solve (a) fracture condition, (b) strain 
hardening, (c) yield point, and (d) dynamic SIF. The calculation proceeds by solving the equations simultaneously 
and the crack is regarded as to be arrested when the simultaneous equation cannot be solved or the uncracked side 
ligaments grow to reach the all the thickness. The detail formulations of four equations will be explained below.

2.2. Fracture condition

Fig.4 shows a schematic of brittle crack propagation in steel plates. The average tensile stress within a process zone 
have to be equal to fracture stress for the dynamic crack to continue to propagate as expressed

𝜎𝜎𝜎𝜎f = 𝜎𝜎𝜎𝜎𝑦𝑦𝑦𝑦𝑦𝑦𝑦𝑦[𝑟𝑟𝑟𝑟c, 0] (1)
The value of 𝜎𝜎𝜎𝜎f is a material constant value and 𝑟𝑟𝑟𝑟c, which is the length of the process zone, is 0.3mm in this study 
considering the past studies such as Aihara et al. (2013). The value of 𝜎𝜎𝜎𝜎f is identified by using one experimental result.

Because there is no asymptotic solution of stress field in the vicinity of dynamic crack tips in elasto-plastic solids, 
the local stress at 𝑟𝑟𝑟𝑟c is evaluated by combining the asymptotic solution for an elastic linear strain hardening materials,   
which was proposed by Machida et al. (1995). This combined equation is

𝜎𝜎𝜎𝜎f = 𝜎𝜎𝜎𝜎𝑦𝑦𝑦𝑦𝑦𝑦𝑦𝑦[𝑟𝑟𝑟𝑟c, 0] = 𝜎𝜎𝜎𝜎Y �
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𝛴𝛴𝛴𝛴𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖[𝜃𝜃𝜃𝜃,𝑉𝑉𝑉𝑉] (2)

Here, 𝜃𝜃𝜃𝜃 = 0 and 𝛴𝛴𝛴𝛴𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖[0,𝑉𝑉𝑉𝑉] = 4 for plane strain condition when 𝑉𝑉𝑉𝑉 is lower than a half of the elastic Rayleigh wave
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Fig.3 A schematic of the proposed model
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Fig.4  Local stress criterion for brittle crack propagation in steel
velocity. 𝑠𝑠𝑠𝑠, the stress singularity in a linear strain hardening solid, is expressed by 𝛼𝛼𝛼𝛼 (= 𝐸𝐸𝐸𝐸t 𝐸𝐸𝐸𝐸⁄ ) and 𝛽𝛽𝛽𝛽 (= 𝑉𝑉𝑉𝑉 𝑉𝑉𝑉𝑉s⁄ ) as 
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The 𝑠𝑠𝑠𝑠 derived from Eq.5 by Amazigo and Hutchinson (1977) are shown in Fig.5 made by Machida et al. (1995).

Fig. 5 Dependence of stress singularity on tangent modulus and crack velocity (Machida et al. (1995))

2.3. Strain hardening

Assuming the power law hardening solid, tangent modulus, 𝐸𝐸𝐸𝐸t, is written in below equation.

𝐸𝐸𝐸𝐸t =
d𝜎𝜎𝜎𝜎e
d𝜀𝜀𝜀𝜀e

= 𝑛𝑛𝑛𝑛𝐸𝐸𝐸𝐸 �
𝜎𝜎𝜎𝜎e
𝜎𝜎𝜎𝜎Y
�
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Strain hardening exponent 𝑛𝑛𝑛𝑛 = 0.2 in this study. 𝜎𝜎𝜎𝜎e can be written as
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𝐸𝐸𝐸𝐸t = 𝑛𝑛𝑛𝑛𝐸𝐸𝐸𝐸 ��
1 − 𝜈𝜈𝜈𝜈2

𝑟𝑟𝑟𝑟c𝐼𝐼𝐼𝐼𝑛𝑛𝑛𝑛
�
𝐾𝐾𝐾𝐾d
𝜎𝜎𝜎𝜎Y
�
2

�
−𝑠𝑠𝑠𝑠[𝛼𝛼𝛼𝛼,𝛽𝛽𝛽𝛽]

𝛴𝛴𝛴𝛴e[0,𝑉𝑉𝑉𝑉]�

−�1𝑛𝑛𝑛𝑛−1�

(6)

2.4. Yield point

Yield point strongly depends on strain rate and temperature as widely known and can be written as
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Eq.7 was reported by Gotoh et al. (1992) and Toyosada et al. (1994)
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2.5. Dynamic stress intensity factor considering uncracked side ligaments

Usually, the dynamic SIF is expressed as 
𝐾𝐾𝐾𝐾d = 𝑓𝑓𝑓𝑓𝐾𝐾𝐾𝐾[𝑉𝑉𝑉𝑉]𝐾𝐾𝐾𝐾 (9)

However, because, as mentioned, uncrack side ligaments are formed near the surfaces behind the propagating brittle
crack front in steel plates and have the effect to decrease crack driving forces, this closure effect has to be considered 
to calculate the dynamic SIF as Eq.10.

𝐾𝐾𝐾𝐾d = 𝑓𝑓𝑓𝑓𝐾𝐾𝐾𝐾[𝑉𝑉𝑉𝑉](𝐾𝐾𝐾𝐾𝜎𝜎𝜎𝜎 − 𝐾𝐾𝐾𝐾sl) (10)
The depth of side ligaments is determined by the size of plastic zone at the crack tip, which is enlarged by the 

relaxation of plastic constraint as proposed by Aihara et al. (2013). Therefore, we considered this relaxation to 
formulate the brittle crack propagation/arrest behaviour to represent actual behaviours in our model. In this model, by 
assuming that the ligaments are elastic perfectly plastic solids and the closure effect is modelled by equivalent crack 
closure stress, the effect is regarded as equal to the yield stress of ligaments. According to Tada et al. (2000) 
considering a pair of point forces 𝑃𝑃𝑃𝑃,in a semi infinite crack in a 3D infinite body like Fig.7, 𝐾𝐾𝐾𝐾sl is expressed as 
integration of SIF by 𝑃𝑃𝑃𝑃 over the uncracked side ligament area, 𝛺𝛺𝛺𝛺sl as Eq.11, which is shown in Fig.7 schematically.

𝐾𝐾𝐾𝐾sl = � 𝐾𝐾𝐾𝐾p[𝑥𝑥𝑥𝑥, 𝑧𝑧𝑧𝑧,𝜎𝜎𝜎𝜎Yd𝛺𝛺𝛺𝛺]
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Fig. 6 Pair of point forces acting on a crack faces              Fig.7 Crack closure stress on fracture surface t by side-ligament

As above, the depth of ligaments, being the surface zone where brittle fracture cannot occur due to decreasing stress 
triaxiality, is proportional to the size of a plastic region, 𝑟𝑟𝑟𝑟p, according to Weiss and Senguputa (1976). We assumed

𝑑𝑑𝑑𝑑sl = 𝑘𝑘𝑘𝑘sl𝑟𝑟𝑟𝑟pd (12)
𝑘𝑘𝑘𝑘sl = 2 referring Weiss and Sengupta, (1976). 𝑟𝑟𝑟𝑟pd, which is 𝑟𝑟𝑟𝑟p in dynamic case, is approximated as 

𝑟𝑟𝑟𝑟pd = 𝑟𝑟𝑟𝑟p[𝐾𝐾𝐾𝐾𝜎𝜎𝜎𝜎]𝑓𝑓𝑓𝑓𝑟𝑟𝑟𝑟[𝑉𝑉𝑉𝑉] =
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To determine 𝑓𝑓𝑓𝑓𝑟𝑟𝑟𝑟[𝑉𝑉𝑉𝑉], which is hard to derive from simple theoretical ways, a series of FE analyses in Abaqus 6.14 
(Dassault System (2014)) for a dynamic crack was conducted by using nodal force release technique to evaluate 𝜀𝜀𝜀𝜀𝑧𝑧𝑧𝑧𝑧𝑧𝑧𝑧.   
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2.5. Dynamic stress intensity factor considering uncracked side ligaments

Usually, the dynamic SIF is expressed as 
𝐾𝐾𝐾𝐾d = 𝑓𝑓𝑓𝑓𝐾𝐾𝐾𝐾[𝑉𝑉𝑉𝑉]𝐾𝐾𝐾𝐾 (9)

However, because, as mentioned, uncrack side ligaments are formed near the surfaces behind the propagating brittle
crack front in steel plates and have the effect to decrease crack driving forces, this closure effect has to be considered 
to calculate the dynamic SIF as Eq.10.

𝐾𝐾𝐾𝐾d = 𝑓𝑓𝑓𝑓𝐾𝐾𝐾𝐾[𝑉𝑉𝑉𝑉](𝐾𝐾𝐾𝐾𝜎𝜎𝜎𝜎 − 𝐾𝐾𝐾𝐾sl) (10)
The depth of side ligaments is determined by the size of plastic zone at the crack tip, which is enlarged by the 

relaxation of plastic constraint as proposed by Aihara et al. (2013). Therefore, we considered this relaxation to 
formulate the brittle crack propagation/arrest behaviour to represent actual behaviours in our model. In this model, by 
assuming that the ligaments are elastic perfectly plastic solids and the closure effect is modelled by equivalent crack 
closure stress, the effect is regarded as equal to the yield stress of ligaments. According to Tada et al. (2000) 
considering a pair of point forces 𝑃𝑃𝑃𝑃,in a semi infinite crack in a 3D infinite body like Fig.7, 𝐾𝐾𝐾𝐾sl is expressed as 
integration of SIF by 𝑃𝑃𝑃𝑃 over the uncracked side ligament area, 𝛺𝛺𝛺𝛺sl as Eq.11, which is shown in Fig.7 schematically.
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As above, the depth of ligaments, being the surface zone where brittle fracture cannot occur due to decreasing stress 
triaxiality, is proportional to the size of a plastic region, 𝑟𝑟𝑟𝑟p, according to Weiss and Senguputa (1976). We assumed

𝑑𝑑𝑑𝑑sl = 𝑘𝑘𝑘𝑘sl𝑟𝑟𝑟𝑟pd (12)
𝑘𝑘𝑘𝑘sl = 2 referring Weiss and Sengupta, (1976). 𝑟𝑟𝑟𝑟pd, which is 𝑟𝑟𝑟𝑟p in dynamic case, is approximated as 
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The analyses were done about various crack velocity with a 3D FE model shown in Fig.9 whose size is large enough 
for the reflected elastic wave not to influence the crack behavior. From these analyses, the value of 𝜀𝜀𝜀𝜀𝑧𝑧𝑧𝑧𝑧𝑧𝑧𝑧 is obtained at 
the distance from the plate surface for each crack velocity. The distance corresponds to 𝑟𝑟𝑟𝑟p in the quasi-static case and 
the ratio of the distance for each 𝑉𝑉𝑉𝑉 to one of the quasi-static case were obtained as Fig.10 and Eq.15.

𝑓𝑓𝑓𝑓𝑟𝑟𝑟𝑟 = �cos �
𝜋𝜋𝜋𝜋
2
𝑉𝑉𝑉𝑉
𝑉𝑉𝑉𝑉R

 ��
23.9

(14)

The side ligament is considered as to be broken in ductile manners when the strain at the end of the ligament reaches
critical strain, which is set to 0.1 in the present model.

As the result, the present model is calculated by solving simultaneous equations composed of Eq.2, Eq.6, Eq.8, and
Eq.10 at each time step and the crack is regarded as being arrested when the equations cannot be solved.

3. Model validation

3.1. Crack arrest tests

To validate the present model temperature gradient ESSO tests using YP36 grade standard width specimen were 
implemented and duplex tests with wide width specimen in the condition of the long crack problem by Sugimoto et 
al. (2012) were referred The mechanical properties and dimensions of specimen are in Table 1 and the test results of 
YP36 and YP45 are shown in Table 2. Although 𝐾𝐾𝐾𝐾ca at both temperature in the YP45 duplex tests is lower than SIF 
when a crack enters the test plate, the crack was arrested after propagating for some length in the test plate. This 
indicates cracks were arrested even in case of SIF > 𝐾𝐾𝐾𝐾ca. The fractions of the experiments are also shown in Fig.10.

Table 1 Mechanical properties and specimen dimensions of the used steels

Yield stress:        
[MPa]

368 354

𝜎𝜎𝜎𝜎Y0 Plate width
 [mm]

500

Thickness 
[mm]

30

vE (-40°C) 
[J] 

Yield stress:        
[MPa]

454 280

𝜎𝜎𝜎𝜎Y0 Thickness 
[mm]

75

vE (-40°C) 
[J] 

Width for wide duplex test [mm]

Crack ranning plate Test plate

1,600 800

YP36 YP45

Table 2 Experimental conditions and results

Test type
Temperature

Temperature
gradient

-120.7 0.30

-84.7

-98.1

-85.9

-92.0

0.30

0.33

0.31

0.30

Top of plate
      [°C]

Gradient
           [°C/mm]

93

162

187

300

310

Arrested 
crack length

[mm]

Arrestted 
temperature

[°C]

335.3

257.2

297.5

325.5

313.7 1.6

13

0.4

-7.5

-18.6

Applied 
stress
[MPa]

YP36

Test 
Type

Duplex 

Applied 
stress
[MPa]

257

257

Temperature
[°C]

-11

-18

Arrest
 Toughness
[N/mm  3/2]

7000

6100

 Arrestted
crack 
length
[mm]

1650

1900

YP45

(a)  93MPa

(b)  162MPa

(c)  187MPa

(d)  300MPa

(e)  310MPa

Brittle fracture surface Crack arrest

Uncracked side-ligament

Crack propagation direction

Crack running plate Test plate
Crack arrest

(a) 𝐾𝐾𝐾𝐾ca = 7,000N/mm3/2𝑇𝑇𝑇𝑇 = −11°C( )

𝐾𝐾𝐾𝐾ca = 6,100N/mm3/2(b) 𝑇𝑇𝑇𝑇 = −18°C ( )

Brittle fracture surface

Uncracked side-ligament

Crack running plate Test plate

Crack arrest (1st arrest)

2nd arrest

Brittle fracture surface

Uncracked side-ligament

YP45YP36
Fig.10 Fracture surface of YP36 and YP45 tests



2604 Kazuki Shibanuma et al. / Procedia Structural Integrity 2 (2016) 2598–2605
Author name / Structural Integrity Procedia 00 (2016) 000–000 7

3.2. Model simulation

Arrest toughness of YP36 steel was simulated by the model. The fracture stress was identified as 4370MPa so as 
to bring a simulation result in the condition that applied stress is 187MPa in line with the experimental result. All 
simulations on YP36 were done using this value of fracture stress. The prediction results by the model simulations in 
Fig.11 as Arrhenius plot show a good agreement with experimental data even on the deviation from Arrhenius equation 
under excessively high applied stress, which is assumed to be equivalent conditions to the long crack problem. Fig.12
shows predicted side ligament formation in the model simulations, which is much similar to the actual formation of 
side ligaments in above experiment.

Next, the model simulations of YP45 wide duplex tests were conducted to study crack behaviors in the long crack 
condition. Fracture stress of the steel was identified as 5295MPa by preliminary temperature gradient standard width 
tests as shown in Fig.13 in the same way as the YP36 steel. One of the crack running plate is set to 3707MPa, which 
is low enough not to cause of uncracked side ligament formation.

In the simulations using the above value as fracture stress, cracks were successfully arrested in both experimental 
conditions. The arrested crack lengths in the simulations are 1698mm in (a) and 1881mm in (b) respectively, which 
mostly agreed with the experimental results shown in Table 2. Additionally, in the simulations, the formation of side 
ligaments began just after a crack enter the test plate and rapidly developed during propagating in the plates as in 
Fig.14. According to Fig.10, same behavior of uncracked side ligament formation were observed in the actual tests. 

Although according to conventional theoretical discussion based on linear fracture mechanics, cracks cannot be 
arrested as in the excessively high applied stress tests in YP36 temperature gradient tests and wide width tests in YP45 
duplex tests, which in the long crack problem condition, because SIF is larger than 𝐾𝐾𝐾𝐾ca estimated from Arrhenius 

(a) 𝑇𝑇𝑇𝑇 = −11°C (𝐾𝐾𝐾𝐾ca = 7,000 N mm3 2⁄⁄ )

(b) 𝑇𝑇𝑇𝑇 = −18°C (𝐾𝐾𝐾𝐾ca = 6,100 N mm3 2⁄⁄ )

Fig.14 Simulated formulation of side ligaments in YP45 duplex tests
Fig. 13 Simulation results of dependence of arrest toughness on 
temperature for the YP45 steel by the temperature gradient tests

Fig. 11 Prediction results of dependence of arrest toughness on 
temperature for the YP36 steel by the temperature gradient tests

Fig.12 Simulated formation of side ligament for the YP36 tests
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3.2. Model simulation

Arrest toughness of YP36 steel was simulated by the model. The fracture stress was identified as 4370MPa so as 
to bring a simulation result in the condition that applied stress is 187MPa in line with the experimental result. All 
simulations on YP36 were done using this value of fracture stress. The prediction results by the model simulations in 
Fig.11 as Arrhenius plot show a good agreement with experimental data even on the deviation from Arrhenius equation 
under excessively high applied stress, which is assumed to be equivalent conditions to the long crack problem. Fig.12
shows predicted side ligament formation in the model simulations, which is much similar to the actual formation of 
side ligaments in above experiment.

Next, the model simulations of YP45 wide duplex tests were conducted to study crack behaviors in the long crack 
condition. Fracture stress of the steel was identified as 5295MPa by preliminary temperature gradient standard width 
tests as shown in Fig.13 in the same way as the YP36 steel. One of the crack running plate is set to 3707MPa, which 
is low enough not to cause of uncracked side ligament formation.

In the simulations using the above value as fracture stress, cracks were successfully arrested in both experimental 
conditions. The arrested crack lengths in the simulations are 1698mm in (a) and 1881mm in (b) respectively, which 
mostly agreed with the experimental results shown in Table 2. Additionally, in the simulations, the formation of side 
ligaments began just after a crack enter the test plate and rapidly developed during propagating in the plates as in 
Fig.14. According to Fig.10, same behavior of uncracked side ligament formation were observed in the actual tests. 

Although according to conventional theoretical discussion based on linear fracture mechanics, cracks cannot be 
arrested as in the excessively high applied stress tests in YP36 temperature gradient tests and wide width tests in YP45 
duplex tests, which in the long crack problem condition, because SIF is larger than 𝐾𝐾𝐾𝐾ca estimated from Arrhenius 
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equation, the actual cracks were arrested in the tests, which were implied by the proposed model simulation that they 
can be explained from the aspect of development of uncracked side ligaments due to relaxation of plastic constraint. 

4. Conclusion

The authors proposed a new model to simulate brittle crack propagation/arrest behavior in steel plates. The present 
model is able to predict crack arrestability quantitatively and evaluate circumstantial mechanisms on the behavior. 
Additionally, as discussed in last section, the model simulation show the good agreement even with the tests in the 
long crack problem condition, which implies the problem can be due to growth of side ligament with relaxation of 
plastic constraint incorporated in the model. It is expected that the model could contribute to devising the more 
reasonable crack arrest designs for steel structures.

Acknowledgements

Part of this study was supported by Nippon Kaiji Kyokai (classNK) and JSPS KAKENHI Grant Number 
15H06661.

References

Achenbach, J.D., Kanninen, M.F., Popelar, C.H., 1981. Crack-tip fields for fast crack fracture of an elastic-plastic materials, Journal of the 
Mechanics and Physics of Solids 29, 211-225

Aihara S, Machida S, Yoshinari H, Mabuchi H, 1996. Fracture mechanical modeling of brittle fracture propagation and arrest of steel (2) -
Application to temperature-gradient type test, Bulletin of The Society of Naval Architects of Japan 178, 545-554 

Aihara S, Machida S, Yoshinari H, Tsuchida Y, 1996. Fracture mechanical modeling of brittle fracture propagation and arrest of steel (3) -
Application to duplex type test, Bulletin of The Society of Naval Architects of Japan 179, 389-398

Aihara S, Shibanuma K, Watabe Y, 2013. Development of numerical model for brittle crack propagation/arrest behaviors. Journal of the Japan
Society of Naval Architects and Ocean Engineers 16, 109-120

Amazigo, J.C., Hutchinson, J.W., 1971. Crack-tip, fields in steady-growth with linear strain hardening, Journal of the Mechanics and Physics of 
Solids 25, 81-97

Dassault Systems, 2014. SIMULA Abaqus Analysis User’s Manual Version 6.14
Gotoh K., Toyosada, M., 1994. A simple estimating method of constitutive equation for structural steel as a function of strain rate and 

temperature, Journal of the Society of Naval Architects of Japan 176, 501-507
Hutchinson, J.W., 1968. Singular behavior at the end of a tensile crack in a hardening material, Journal of Mechanics and Physics of Solids 16, 

13-31
Kanazawa T, Machida S, Yajima H, Aoki M, 1973. Study on brittle crack arrester: Consideration on the arrest of very long crack. Selected Papers 

from the Journal of the Society of Naval Architects of Japan 11, 135-147.
Machida S, Yoshinari H, Yasuda M, Aihara S, Mabuchi H, 1995. Fracture mechanical modeling of brittle fracture propagation and arrest of steel 

(1) - A fundamental model, Bulletin of The Society of Naval Architects of Japan 177, 243-257
Nippon Kaiji Kyokai, 2009. Guidelines on brittle crack arrest design
Ogura, N, 1961. A study on the Ductile Arrest of Brittle Cracks, Journal of Zosen Kiokai 110, 443-453
Priest, A.H., 1998. An energy balance in crack propagation and arrest, Engineering Fracture Mechanics 61, 231-251
Shibanuma, K., Yanagimoto, F., Namegawa, T., Suzuki, K., Aihara, S., 2016. Brittle crack propagation/arrest behavior in steel plate –Part I: Model 

formulation, Engineering Fracture Mechanics accpeted
Shibanuma, K., Yanagimoto, F., Namegawa, T., Suzuki, K., Aihara, S., 2016. Brittle crack propagation/arrest behavior in steel plate –Part II: 

Validation and discussion, Engineering Fracture Mechanics accepted
Sugimoto,K., Yajima, H., Aihara, H., Yoshinari, H., Hirota, K., Toyoda, M., Kiyose, T., Noue, T., Handa, T., Kawabata, T.,Tani, T., Usami, A., 

2012. Thickness effect on the brittle crack arrest toughness value 𝐾𝐾𝐾𝐾ca-Brittle Crack Arrest Design for Large Container Ships-6-, Proc. 22th 
Int. Offshore and Polar Eng. Conf., 4, 44-51

Toyosada, M., Gotoh K, 1992. The estimating method of critical CTOD and J integral at arbitrary crosshead speed, Journal of the Society of 
Naval Architects of Japan 172, 663-674

Tada, H., Paris, P.C., Irwin G.R., 2000. The stress analysis of cracks handbook, ASME Press
Weiss, V., Sengupta, M., 1976. Ductility, fracture resistance, and R-curves, ASTM Special Technical Publication, 194-207


