Majorization classes of integral matrices

Richard A. Brualdi a, Geir Dahl b,∗

a Department of Mathematics, University of Wisconsin, Madison, WI 53706, United States
b Center of Mathematics for Applications, Departments of Mathematics and Informatics, University of Oslo, P.O. Box 1053, Blindern, NO-0316 Oslo, Norway

ARTICLE INFO

Article history:
Received 29 June 2010
Accepted 21 November 2010
Available online 22 December 2010
Submitted by J.A. Dias da Silva

AMS classification:
15B36
15A39

Keywords:
Integral matrices
Majorization
Interchanges

ABSTRACT

The class \(\mathcal{A}(R, S) \) of \((0, 1)\)-matrices with given row and column sum vectors \(R \) and \(S \) is well studied. Here we introduce and investigate the more general class \(\mathcal{A}(B|S) \) of integral matrices with given column sum vector \(S \) and with rows that satisfy majorization constraints: each row is majorized by a given vector (a row in \(B \)). A characterization of nonemptiness of this class was recently given. We present algorithms for constructing a matrix in \(\mathcal{A}(B|S) \), and study several properties of such classes. For instance, we show connectedness using certain transformations that generalize interchanges for \((0, 1)\)-matrices.

© 2010 Elsevier Inc. All rights reserved.

1. Introduction

A real vector \(x = (x_1, x_2, \ldots, x_n) \) is called monotone when \(x_1 \geq x_2 \geq \cdots \geq x_n \). The \(i \)th largest component in \(x \) is denoted by \(x_{[i]} \). For vectors \(x, y \in \mathbb{R}^n \) we say that \(x \) is majorized by \(y \), and write \(x \preceq y \), whenever \(\sum_{j=1}^k x_{[j]} \leq \sum_{j=1}^k y_{[j]} \) for \(k = 1, 2, \ldots, n \) with equality for \(k = n \). We say that \(x \) is strictly majorized by \(y \) if \(x \preceq y \) and \(x \) is not a permutation of \(y \) (so \(\sum_{j=1}^k x_{[j]} < \sum_{j=1}^k y_{[j]} \) for some \(k \)). The book [5] is a comprehensive study of majorization theory and its applications. Majorization is also discussed in detail in [1], in particular in connection with several matrix classes.

Let \(B \) be a \(m \times n \) nonnegative integral matrix whose rows \(b^{(1)}, b^{(2)}, \ldots, b^{(m)} \) are monotone, and let \(S \) be a monotone nonnegative integral vector in \(\mathbb{Z}^n \). Let \(\mathcal{A}(B|S) \) be the class of all \(m \times n \) nonnegative integral matrices \(A = [a_{ij}] \) with column sum vector \(S \) and row vectors \(a^{(1)}, a^{(2)}, \ldots, a^{(m)} \) satisfying...
The following result was shown in [3].

Theorem 1.1 [3]. The class $\mathcal{A}(B|S)$ is nonempty if and only if

\[S \preceq \sum_{i=1}^{m} b^{(i)}. \]

Let $R = (r_1, r_2, \ldots, r_m)$ be a monotone nonnegative integral vector. Let $\mathcal{A}(R, S)$ be the class of all $m \times n$ $(0, 1)$-matrices with row sum vector R and column sum vector S. The Gale–Ryser theorem (see e.g. [1]) asserts that $\mathcal{A}(R, S)$ is nonempty if and only if $S \preceq R^*$. As demonstrated in [3], this theorem is a consequence of Theorem 1.1 when the $b^{(i)}$ are taken to be $(0, 1)$-vectors.

Another special case is when each $b^{(i)}$ has only a single nonzero entry, say r_i. Then $\mathcal{A}(B|S)$ consists of all nonnegative, integral matrices with row sum vector R and column sum vector S (see [1]). This class is nonempty if and only if $\sum_i r_i = \sum_j s_j$ and a matrix in the class may be found using the North-West Corner rule.

We will hereafter assume that the row sums of B are monotone. This can be done without loss of generality (by a suitable row permutation applied to the class). The entries of an $m \times n$ matrix A are denoted by a_{ij}, and its rows are denoted by $a^{(1)}, \ldots, a^{(m)}$.

The purpose of this paper is to investigate the class $\mathcal{A}(B|S)$. Section 2 presents an algorithm for finding a matrix in $\mathcal{A}(B|S)$ whenever the class is nonempty. It is also shown how this algorithm leads to the construction of a canonical matrix. In Section 3 we study the matrix B in $\mathcal{A}(B|S)$ and show that a certain minimal B exists for the given class. Several further properties, like connectedness, are established in Section 4.

2. Construction of a matrix in $\mathcal{A}(B|S)$

In this section we consider an algorithmic question: how can we find/compute a matrix in a given class $\mathcal{A}(B|S)$. We introduce an algorithm for this which is based on the notion of a transfer.

Let $v = (v_1, v_2, \ldots, v_n)$ be an integral vector and assume that $v_i > v_j$ for some pair i, j. Define the vector $v' = (v'_1, v'_2, \ldots, v'_n)$ by $v'_i = v_i - 1$, $v'_j = v_j + 1$ and $v'_k = v_k$ for $k \neq i, j$. We say that v' is obtained from v by a transfer from i to j. In this case it is easy to verify that $v' \preceq v$. A transfer is a special case of a T-transform which is central operation in majorization theory [5,1]. The following result is due to Muirhead ([6], see also [5]) and characterizes majorization for integral vectors in terms of transfers.

Lemma 2.1. Let $u, v \in \mathbb{R}^n$ be integral vectors. Then $u \preceq v$ if and only if u can be obtained from v by successive applications of a finite number of transfers.

Actually, in this lemma, $d = \sum_{j=1}^{n} (v_j - u_j)^+$ transfers suffice.

Theorem 2.2. Assume that the class $\mathcal{A}(B|S)$ is nonempty and let T be a nonnegative integral vector satisfying $T \preceq S$.

Then $\mathcal{A}(B|T)$ is nonempty. In particular, if T is obtained from S by a transfer from j to k and $A \in \mathcal{A}(B|S)$, then there is a matrix $A' \in \mathcal{A}(B|T)$ which is obtained from A by a transfer from j to k applied to one of the rows of A.

Proof. Assume that $\mathcal{A}(B|S)$ is nonempty and let $A = [a_{ij}] \in \mathcal{A}(B|S)$. Also, let T be obtained from S by a transfer from j to k. Since

\[\sum_{i=1}^{m} a_{ij} = s_j > s_k = \sum_{i=1}^{m} a_{ik} \]
there must exist an \(i \leq m \) such that \(a_{ij} > a_{ik} \). But then we can make a transfer from \(j \) to \(k \) in \(a^{(i)} \), the \(i \)th row in \(A \). Let \(\hat{a}_i^{(i)} \) be the resulting vector and \(\hat{A} \) the resulting matrix. Then
\[
\hat{a}_i^{(i)} \leq a^{(i)} \leq b^{(i)}.
\]

Then, clearly, the column sum vector of \(\hat{A} \) is \(T \) and this shows that \(\hat{A} \in \mathcal{A}(B|T) \), so this class is nonempty.

Now, more generally, if a nonnegative integral vector \(T \) satisfies \(T \preceq S \), then, by Lemma 2.1 we can find a sequence of nonnegative integral vectors \(v^{(0)}, v^{(1)}, \ldots, v^{(p)} \) such that \(v^{(h+1)} \) is obtained from \(v^{(h)} \) by a transfer, for each \(h \). This implies that
\[
T = v^{(p)} \preceq v^{(p-1)} \preceq \cdots \preceq v^{(0)} = S.
\]

So, by the first part of the proof, we can find corresponding matrices \(A^{(0)}, A^{(1)}, \ldots, A^{(p)} \) such that \(A^{(h)} \in \mathcal{A}(B|v^{(h)}) \) for \(h = 0, 1, \ldots, p \), and \(A^{(0)} = A \). In particular, \(A^{(p)} \in \mathcal{A}(B|T) \) so this class is nonempty, as desired. □

We remark that this proof extends the idea used in a proof by Krause [4] of the Gale–Ryser theorem. The above mentioned fact (see [3]) that the class \(\mathcal{A}(B|S) \) is nonempty if and only if \(S \preceq \sum_{i=1}^m b^{(i)} \) also follows from Theorem 2.2: just let \(T \preceq S := \sum_{i=1}^m b^{(i)} \), then the class \(\mathcal{A}(B|S) \) is clearly nonempty so the theorem implies that \(\mathcal{A}(B|T) \) is nonempty.

Recall that the rows \(b^{(1)}, b^{(2)}, \ldots, b^{(m)} \) of the given matrix \(B \) are assumed monotone. Thus the column sum vector of \(B \) is
\[
R^* := b^{(1)} + b^{(2)} + \cdots + b^{(m)},
\]
and (1) becomes \(S \preceq R^* \). We now obtain the following algorithm for finding a matrix in the class \(\mathcal{A}(B|S) \) (when \(S \preceq R^* \)).

Algorithm 1:

1. (Initialize) Let \(A = B \).
2. (Select two columns) If \(A \) has column sum vector \(S \), stop. Otherwise one may select two column indices \(j \) and \(k \) such \(\sum_{i=1}^m a_{ij} > s_j \geq s_k > \sum_{i=1}^m a_{ik} \).
3. (Select a row) Select a row \(i \) of \(A \) with \(a_{ij} > a_{ik} \).
4. (Update A) Update \(A \) by making a transfer from \(j \) to \(k \) in row \(i \). Go back to Step 2.

It follows from Theorem 2.2 and its proof that this algorithm constructs a matrix \(A \) in \(\mathcal{A}(B|S) \) if this class is nonempty, i.e., whenever the majorization (1) holds.

Note also that there is a flexibility in Algorithm 1: there may be several choices for column pairs \(j, k \) and row \(i \), in Steps 2 and 3, respectively. By specifying rules for such choices one may obtain different versions of Algorithm 1. We now consider the following rule:

- In Step 2: choose \(j \) and \(k \) such that \(k \) is maximal with \(\sum_{i=1}^m a_{ik} < s_k \), and, for this \(k \), choose \(j \) maximal with \(\sum_{i=1}^m a_{ij} > s_j \).
- In Step 3: choose \(i \) maximal such that \(a_{ij} > a_{ik} \).

We call the resulting algorithm Algorithm 1*. Since Algorithm 1* is a special case of Algorithm 1, it follows from Theorem 2.2 that Algorithm 1* finds a matrix in the class \(\mathcal{A}(B|S) \) whenever the class is nonempty. The (unique) matrix found by Algorithm 1* will be denoted by \(A^* \) and we call it the canonical matrix in its class.
Example. Consider the matrix
\[
B = \begin{bmatrix}
6 & 5 & 5 & 3 & 2 & 1 \\
5 & 4 & 4 & 2 & 1 & 0 \\
3 & 3 & 2 & 1 & 0 & 0 \\
3 & 2 & 1 & 0 & 0 & 0 \\
2 & 2 & 1 & 0 & 0 & 0 \\
2 & 1 & 1 & 0 & 0 & 0 \\
\end{bmatrix}
\]
and let
\[
S = (14, 12, 10, 10, 8, 8).
\]
Then \(R^* = (21, 17, 14, 6, 3, 1)\), and one checks that \(S \preceq R^*\). We now use Algorithm 1* to construct the canonical matrix \(A^*\). First we have some iterations with \(k = 6\) and \(j = 3\):
\[
B \Rightarrow \begin{bmatrix}
6 & 5 & 5 & 3 & 2 & 1 \\
5 & 4 & 4 & 2 & 1 & 0 \\
3 & 3 & 2 & 1 & 0 & 0 \\
3 & 2 & 1 & 0 & 0 & 0 \\
2 & 2 & 1 & 0 & 0 & 0 \\
2 & 1 & 0 & 0 & 0 & 1 \\
\end{bmatrix}
\Rightarrow \cdots \Rightarrow \begin{bmatrix}
6 & 5 & 5 & 3 & 2 & 1 \\
5 & 4 & 4 & 2 & 1 & 0 \\
3 & 3 & 1 & 1 & 0 & 0 \\
3 & 2 & 1 & 0 & 0 & 0 \\
2 & 2 & 1 & 0 & 0 & 0 \\
2 & 1 & 0 & 0 & 0 & 1 \\
\end{bmatrix}.
\]
Then the result after some iterations with \(k = 6\) and \(j = 2\) is
\[
\begin{bmatrix}
6 & 5 & 5 & 3 & 2 & 1 \\
5 & 4 & 4 & 2 & 1 & 0 \\
3 & 2 & 1 & 1 & 0 & 2 \\
3 & 1 & 0 & 0 & 0 & 2 \\
2 & 1 & 0 & 0 & 0 & 2 \\
2 & 1 & 0 & 0 & 0 & 1 \\
\end{bmatrix}
\]
so the last column now has the desired column sum 8. Then one proceeds with transfers to column 5 to get the desired column sum, then one treats column 4, etc. The final result is the canonical matrix
\[
A^* = \begin{bmatrix}
6 & 5 & 5 & 3 & 2 & 1 \\
5 & 4 & 4 & 2 & 1 & 0 \\
3 & 2 & 1 & 1 & 0 & 2 \\
3 & 1 & 0 & 0 & 0 & 2 \\
2 & 1 & 0 & 0 & 0 & 2 \\
2 & 1 & 0 & 0 & 0 & 1 \\
\end{bmatrix}.
\]

3. Double-transfers and a minimal matrix

Consider a nonempty class \(\mathcal{A}(B\|S)\). The matrix \(B\) here may not be unique in the sense that there may be another matrix \(B'\) such that \(\mathcal{A}(B\|S) = \mathcal{A}(B'\|S)\). The goal in this section is to find a matrix \(B\) which is minimal in a certain sense for its class.
First we introduce an “interchange” operation for these matrix classes. Let \(A \in \mathcal{A}(B|S) \), so that \(a^{(i)} \leq b^{(i)} \) for each \(i \leq m \). If \(A \) has a \(2 \times 2 \) submatrix

\[
E = \begin{bmatrix} x & y \\ u & v \end{bmatrix},
\]

where \(x, v \geq t \), then we can do an "interchange" to replace it with

\[
\begin{bmatrix} x - t & y + t \\ u + t & v - t \end{bmatrix}
\]
to get a new matrix \(A' \). We call this operation a \((t)\)-double-transfer. A \(t\)-double transfer is majorization preserving if the resulting matrix \(A' \) lies in the same class \(\mathcal{A}(B|S) \). If \(x \geq y + t \) and \(v \geq u + t \), then the \(t\)-double-transfer is majorization preserving, and it can be accomplished by a sequence of \(t \) majorization preserving 1-double-transfers. The new row \(i \) is then majorized by the old row \(i \), for each \(i \), and the column sums are preserved. (A similar operation works if the original submatrix is \(E \) with permuted columns.)

By a construction based on double-transfers one may prove the following result.

Theorem 3.1. For each fixed \(i \) and \(k \) with \(1 \leq i \leq m \) and \(1 \leq k \leq n \), there exists a matrix \(A \in \mathcal{A}(B|S) \) such that

(i) \(a^{(i)} \) is monotone, and

(ii) \(\sum_{j=1}^{k} a_{ij} = \gamma_{ik} \) where \(\gamma_{ik} \) is the maximum of \(\sum_{j \in J} a'_{ij} \) taken over all \(A' \in \mathcal{A}(B|S) \) and \(J \subseteq \{1, 2, \ldots, n\} \) with \(|J| = k \).

Proof. Fix \(i \) and \(k \). Let \(A \in \mathcal{A}(B|S) \) and \(J \subseteq \{1, 2, \ldots, n\} \) with \(|J| = k \) be such that \(\sum_{j \in J} a_{ij} = \gamma_{ik} \). If the \(i \)th row \(a^{(i)} \) is monotone, we are done. Otherwise, there exist \(j < l \) such that \(a_{ij} < a_{il} \). Let \(\Delta = a_{il} - a_{ij} > 0 \). Since \(s_j = \sum_{i=1}^{m} a_{ij} \geq \sum_{i=1}^{m} a_{il} = s_l \), it follows that \(\sum_{i' \neq i} a_{i'j} \geq \sum_{i' \neq i} a_{i'1} + \Delta \). Therefore we can apply a number of double-transfers on \(A \), in total \(\Delta \) such transforms, using columns \(j \) and \(l \), and row \(i \) and certain other rows, and thereby obtain a new matrix \(A' = [a'_{ij}] \in \mathcal{A}(B|S) \) satisfying

\[
a'_{ij} = a_{ij} \quad \text{and} \quad a'_{il} = a_{il}.
\]

Thus, the effect on the \(i \)th row is that coordinates in column \(j \) and \(l \) are permuted. Therefore the \(i \)th row \(a^{(i)} \) of \(A' \) is a permutation of \(a^{(i)} \), which implies that \(\sum_{j' \subseteq J'} a'_{ij'} = \gamma_{ik} \) for some \(j' \subseteq \{1, 2, \ldots, n\} \) with \(|J'| = k \). (The index set \(J' \) is obtained from \(J \) by, possibly, exchanging \(j \) and \(l \).) We may repeat this process until we have a matrix \(A \) with monotone \(i \)th row and, as argued, both properties (i) and (ii) hold. \(\square \)

Let now \(B \) and \(B' \) be two real \(m \times n \) matrices with rows \(b^{(1)}, \ldots, b^{(m)} \) and \(b'^{(1)}, \ldots, b'^{(m)} \), respectively. We say that \(B' \) is row-majorized by \(B \), and write \(B' \leq B \), if \(b'^{(i)} \leq b^{(i)} \) \((i = 1, 2, \ldots, m)\); see [5,2] for related notions of matrix majorization. Let \(S \) be a nonnegative and monotone vector and assume that the class \(\mathcal{A}(B|S) \) is nonempty. We say that \(B \) is minimal with respect to \(S \), provided there does not exist a \(B' \neq B \) satisfying

\[
B' \leq B \quad \text{and} \quad \mathcal{A}(B'|S) = \mathcal{A}(B|S).
\]
The next result shows the existence of a minimal matrix with respect to \(S \).

Theorem 3.2. Consider a nonempty class \(\mathcal{A}(B|S) \). Then there is a unique \(B^* = [b^*_{ij}] \) with \(\mathcal{A}(B^*|S) = \mathcal{A}(B|S) \) and such that \(B^* \) is minimal with respect to \(S \). The entries in \(B^* \) are given by

\[
b^*_{ij} = \gamma_{ij} - \gamma_{ij-1} \quad (i \leq m, \ j \leq n)
\]
where \(\gamma_{ij} \) are the maxima defined in Theorem 3.1 and \(\gamma_{00} := 0 \).
Proof. Assume \(A(B|S) \neq \emptyset \), and define \(A_0 := A(B|S) \). Define the \(m \times n \) matrix \(B^* = [b_{ij}^*] \) by
\[
b_{ij}^* = \gamma_i - \gamma_{ij-1} \quad (i \leq m, j \leq n)
\]
where \(\gamma_i \) are the maxima defined in Theorem 3.1 and \(\gamma_0 := 0 \).

Claim 1. \(B^* \) has the desired properties.

Proof of Claim 1. Consider the given matrix \(B \). Since \(a^{(1)} \leq b^{(1)} \) for each \(A \in A(B|S) \), \(\gamma_{11} \leq b_{11} \). If this inequality is strict, \(\gamma_{11} < b_{11} \), we can find a monotone vector \(b' \), obtained from \(b^{(1)} \) by a transfer from 1 to some \(j > 1 \) (followed, possibly, be a permutation to make \(b' \) monotone) such that \(a^{(1)} \leq b' \) for each \(A \in A(B|S) \). Let \(B' \) be the matrix obtained from \(B \) by replacing its first row by this new vector \(b' \). Then, by construction, \(A(B'|S) = A(B|S) \), \(B' \leq B \) and \(B' \neq B \). We now replace the matrix \(B \) by \(B' \) and repeat these steps and modify \(B \) until \(b_{11} = \gamma_{11} \). By Theorem 3.1 we then have that each matrix \(\hat{B} \) with \(A(\hat{B}|S) = A_0 \) satisfies \(b_{11} \geq b_{11} \).

We continue similarly for \(k = 2, 3, \ldots, n \) (and \(i = 1 \)). For each such \(k \), by the majorization, we have \(\gamma_{1k} \leq \sum_{j=1}^k b_{1j} \) and if the inequality is strict we make a transfer from \(k \) to some \(j > k \) in the \(i \)th row of \(B \) (followed by a monotone reordering). Repeat this until \(B \) satisfies \(\gamma_{1k} = \sum_{j=1}^k b_{1j} \). Then we go on similarly with the second row, etc. Eventually, we obtain a matrix \(B \) satisfying (i) \(b_{ik} = \gamma_{ik} - \gamma_{ij-1} \) \((i \leq m, k \leq n)\), so \(B = B^* \). (ii) \(A(B^*|S) = A_0 \) and (iii) each \(B' \) with \(A(B'|S) = A_0 \) must satisfy \(B^* \leq B' \). Moreover, uniqueness of \(B^* \) with these properties follows from Theorem 3.1. \(\square \)

Example. Let
\[
B = \begin{bmatrix} 2 & 0 \\ 1 & 1 \end{bmatrix} \quad \text{and} \quad S = (2, 2),
\]
where \(B \) is not minimal with respect to \(S \) but
\[
B^* = \begin{bmatrix} 1 & 1 \\ 1 & 1 \end{bmatrix}
\]
is.

4. Connectedness and other properties

We first investigate when the class \(A(B|S) \) contains a unique matrix.

Theorem 4.1. If \(S = \sum_{i=1}^m b^{(i)} \), then the class \(A(B|S) \) contains a unique matrix which is the maximal matrix \(\overline{A} = B \). The converse also holds provided that \(B = B^* \) is the minimal matrix as given in Theorem 3.2.

Proof. Assume that \(S = \sum_{i=1}^m b^{(i)} \). Let \(A \in A(B|S) \). Then, for each \(i \leq m \), the \(i \)th row of \(A \) is majorized by \(b^{(i)} \), the \(i \)th row of \(B \). This implies that \(a_{i1} \leq b_{11} \) (actually, the largest entry in the \(i \)th row of \(A \) is at most \(b_{11} \)), and since \(\sum_{i=1}^m a_{i1} = s_1 = \sum_{i=1}^m b_{11} \), all these inequalities must hold with equality, i.e.,
\[
(\ast) \quad a_{i1} = b_{11} \quad (i \leq m).
\]

Next, also from the majorizations for the rows of \(A \), we get \(a_{i1} + a_{i2} \leq b_{11} + b_{i2} \) for each \(i \leq m \). But \(\sum_{i=1}^m (a_{i1} + a_{i2}) = s_1 + s_2 = \sum_{i=1}^m (b_{11} + b_{i2}) \), so the equality \(a_{i1} + a_{i2} = b_{11} + b_{i2} \) holds for each \(i \). Combining this with (\ast) we conclude
\[
a_{i2} = b_{i2} \quad (i \leq m).
\]
Repeating this majorization argument, it follows that each column of \(A \) equals the corresponding column of \(B \), so \(A = B \). Thus \(A(B|S) \) contains a unique matrix, which is \(B \).
To prove the second statement in the theorem, suppose \(B = B^* \) is the minimal matrix as given in Theorem 3.2 and that the class contains a unique matrix \(A \). By the proof of Theorem 3.2, the entries in column 1 of \(B \) are the maximum possible entries possible in those positions for matrices in the class.

Suppose that column 1 of \(A \) did not coincide with column 1 of \(B \). Then, e.g. \(a_{11} < b_{11} \). But by Theorem 3.1 and the minimality of \(B \), there is some matrix in the class whose first row contains a value equal to \(b_{11} \). This matrix is different from \(A \). So column 1 of \(A \) equals column 1 of \(B \). An induction argument, using Theorem 3.1 and the minimality of \(B \), now shows that the \(k \)th column of \(A \) equals the \(k \)th column of \(B \), for each \(k \). Therefore \(A \) and \(B \) have the same column sum vectors, so \(S = \sum_{i=1}^{n} b^{(i)} \).

We say that a vector \(a = (a_1, a_2, \ldots, a_n) \) is semi-monotone if

\[
 a_j \geq \max_{k>j} a_k - 1 \quad (1 \leq j < n).
\]

For instance, \(a = (6, 4, 5, 3, 1, 2, 0) \) is semi-monotone. A given class \(\mathcal{A}(B|S) \) may, or may not, contain a matrix with all rows monotone. However, the following theorem shows that a matrix with semi-monotone rows always exists.

Theorem 4.2. Each nonempty class \(\mathcal{A}(B|S) \) contains a matrix \(A \) in which each row is semi-monotone.

Proof. Let, as usual, the given column sum vector be \(S = (s_1, s_2, \ldots, s_n) \). Let \(A \in \mathcal{A}(B|S) \). If each row of \(A \) is semi-monotone, we are done. Otherwise, select a row \(a^{(i)} \) of \(A \) which is not semi-monotone. So there are indices \(j < k \) such that

\[
 (**) \quad a_{ij} \leq a_{ik} - 2
\]

Then, as the column sum vector of \(A \) is \(S \) and \(S \) is monotone, there must exist \(l \neq i \) such that \(a_{lj} > a_{lk} \). Let \(C \) be the matrix obtained from \(A \) by a double-transfer involving rows \(i, l \) and columns \(j, k \), so \(C \) is given by

\[
 c_{ij} = a_{ij} + 1, \quad c_{ik} = a_{ik} - 1
\]

\[
 c_{lj} = a_{lj} - 1, \quad c_{lk} = a_{lk} + 1
\]

while all other entries are equal in \(C \) and \(A \). Then \(C \in \mathcal{A}(B|S) \). Moreover, \(C \preceq A \), i.e., each row in \(C \) is majorized by the corresponding row in \(A \), and the \(i \)th row \(c^{(i)} \) in \(C \) is strictly majorized by \(a^{(i)} \). We now replace \(A \) by \(C \) and repeat this process until, eventually, there are no indices \(i, j \) and \(k \) such that (**) holds. This process must terminate with some matrix \(A \in \mathcal{A}(B|S) \) since in each iteration a new row is strictly majorized by the old row. But when we terminate, \(a_{ij} \geq a_{ik} - 1 \) for each \(i \) and \(j < k \), so each row in \(A \) is semi-monotone as desired. □

The following example illustrates Theorem 4.2 and its constructive proof.

Example. Let \(m = 4, n = 5, S = (18, 17, 16, 16, 10) \) and \(B \) is given by \(b^{(i)} = (7, 5, 5, 5, 1) \) for each \(i \). The following matrix lies in \(\mathcal{A}(B|S) \)

\[
 A_0 = \begin{bmatrix}
 5 & 5 & 5 & 5 & 3 \\
 5 & 4 & 5 & 4 & 3 \\
 5 & 4 & 5 & 4 & 3 \\
 3 & 4 & 1 & 3 & 1
 \end{bmatrix}
\]

Here the last row is not semi-monotone, so we use a double-transfer with rows 2 and 4 and columns 3 and 4, and obtain the matrix.
\[A = \begin{bmatrix}
5 & 5 & 5 & 5 & 3 \\
5 & 4 & 4 & 5 & 3 \\
5 & 4 & 5 & 4 & 3 \\
3 & 4 & 2 & 2 & 1
\end{bmatrix} \]

which has semi-monotone rows.

We now turn to connectedness of the class \(A(B|S) \). As a motivation, recall that the class \(A(R,S) \) (of \((0,1)\)-matrices with given row sum vector \(R \) and column sum vector \(S \)) is connected using interchanges. This leads to the question whether a similar result holds for \(A(B|S) \) using the operation of double-transfer. Let us consider an example first.

Example. Let \(m = n = 3, S = (13, 13, 13) \) and

\[B = \begin{bmatrix}
8 & 3 & 2 \\
8 & 3 & 2 \\
8 & 3 & 2
\end{bmatrix}, \quad A_1 = \begin{bmatrix}
3 & 2 & 8 \\
8 & 3 & 2 \\
2 & 8 & 3
\end{bmatrix}, \quad A_2 = \begin{bmatrix}
2 & 3 & 8 \\
8 & 2 & 3 \\
3 & 8 & 2
\end{bmatrix}. \]

Then \(A_1, A_2 \in A(B|S) \). Consider the following double-transfers where rows and column involved are indicated after the matrix to which it is applied

\[A_1 = \begin{bmatrix}
3 & 2 & 8 \\
8 & 3 & 2 \\
2 & 8 & 3
\end{bmatrix} \quad \text{(1, 3; 2, 3)} \quad \rightarrow \quad \begin{bmatrix}
3 & 5 & 5 \\
8 & 3 & 2 \\
2 & 5 & 6
\end{bmatrix} \quad \text{(1, 2; 1, 2)} \quad \rightarrow \quad \begin{bmatrix}
5 & 3 & 5 \\
6 & 5 & 2 \\
2 & 5 & 6
\end{bmatrix} \quad \text{(1, 2; 2, 3)} \\
\rightarrow \begin{bmatrix}
5 & 4 & 4 \\
6 & 4 & 3 \\
2 & 5 & 6
\end{bmatrix} \quad \text{(2, 3; 1, 3)} \quad \rightarrow \quad \begin{bmatrix}
5 & 4 & 4 \\
4 & 4 & 5 \\
4 & 5 & 4
\end{bmatrix} \quad \text{= C.} \\
\rightarrow \begin{bmatrix}
5 & 4 & 4 \\
2 & 5 & 6 \\
3 & 8 & 2
\end{bmatrix} \quad \text{(1, 3; 2, 3)} \quad \rightarrow \quad \begin{bmatrix}
5 & 4 & 4 \\
5 & 2 & 6 \\
3 & 8 & 2
\end{bmatrix} \quad \text{(2, 3; 2, 3)} \quad \rightarrow \quad \begin{bmatrix}
5 & 3 & 5 \\
5 & 4 & 4 \\
3 & 6 & 4
\end{bmatrix} \quad \text{(1, 3; 2, 3)} \\
\rightarrow \begin{bmatrix}
5 & 4 & 4 \\
5 & 4 & 4 \\
3 & 5 & 5
\end{bmatrix} \quad \text{(2, 3; 1, 2)} \quad \rightarrow \quad \begin{bmatrix}
5 & 4 & 4 \\
4 & 5 & 4 \\
4 & 4 & 5
\end{bmatrix} \quad \text{= C.} \]

Moreover:

\[A_2 = \begin{bmatrix}
2 & 3 & 8 \\
8 & 2 & 3 \\
3 & 8 & 2
\end{bmatrix} \quad \text{(1, 2; 1, 3)} \quad \rightarrow \quad \begin{bmatrix}
5 & 3 & 5 \\
5 & 2 & 6 \\
3 & 8 & 2
\end{bmatrix} \quad \text{(2, 3; 2, 3)} \quad \rightarrow \quad \begin{bmatrix}
5 & 3 & 5 \\
5 & 4 & 4 \\
3 & 6 & 4
\end{bmatrix} \quad \text{(1, 3; 2, 3)} \\
\rightarrow \begin{bmatrix}
5 & 4 & 4 \\
5 & 4 & 4 \\
3 & 5 & 5
\end{bmatrix} \quad \text{(2, 3; 1, 2)} \quad \rightarrow \quad \begin{bmatrix}
5 & 4 & 4 \\
4 & 5 & 4 \\
4 & 4 & 5
\end{bmatrix} \quad \text{= C.} \]

So \(A_1 \) and \(A_2 \) are connected using double-transfers.

The following theorem shows that each class \(A(B|S) \) is connected when we use double-transfers.

Theorem 4.3. Let \(A_1 \) and \(A_2 \) be two matrices in the same (nonempty) class \(A(B|S) \). Then \(A_1 \) can be transformed into \(A_2 \) by a finite sequence of double-transfers in such a way that each intermediate matrix also lies in \(A(B|S) \).
Proof. We use induction on the number of rows. Assume that the theorem holds for classes with at most $m-1$ rows, and consider a class $\mathcal{A}(B|S)$ with m rows. Assume that $B = B^*$ is minimal, see Theorem 3.2. Let $A_1, A_2 \in \mathcal{A}(B|S)$. Then, by the proof of Theorem 3.1, each of A_1 and A_2 can be transformed by double-transfers into matrices C_1 and C_2, respectively, where the first row of C_1 and of C_2 is $b^{(1)}$, i.e., the first row of B.

Now, delete the first row of C_1 and C_2 to get C_1' and C_2' and C_1' and C_2' belong to the same class $\mathcal{A}(B'|S')$, since the first rows of C_1 and C_2 are identical. Here S' may not be monotone, but by a suitable column permutation we get a monotone column sum vector, and there is a bijection between these two matrix classes.

By induction, C_1' and C_2' are connected using double-transfers, which implies that C_1 and C_2 are connected using double-transfers (simply by adding the first row and keeping it fixed). This shows that A_1 and A_2 are connected using double-transfers as desired. □

Consider a nonempty class $\mathcal{A}(B|S)$. For each $i \leq m$, $j \leq n$ define

$$L_{ij} = \min\{a_{ij} : A \in \mathcal{A}(B|S)\} \quad \text{and} \quad M_{ij} = \max\{a_{ij} : A \in \mathcal{A}(B|S)\}$$

(2) as the smallest and largest possible entry in position (i, j) of a matrix in $\mathcal{A}(B|S)$.

Corollary 4.4. Assume $\mathcal{A}(B|S)$ is nonempty and let $i \leq m$, $j \leq n$. Then for each integer p with $L_{ij} \leq p \leq M_{ij}$ there exists a matrix $A \in \mathcal{A}(B|S)$ satisfying $a_{ij} = p$.

Proof. By definition of L_{ij} and M_{ij} there are matrices $A_1 = [a_{kl}^1]$ and $A_2 = [a_{kl}^2]$, both in $\mathcal{A}(B|S)$, such that $a_{ij}^1 = L_{ij}$ and $a_{ij}^2 = M_{ij}$.

By Theorem 4.3 there is a sequence of matrices

$$A_1 = V^1, V^2, \ldots, V^N = A_2$$

such that $V^s \in \mathcal{A}(B|S)$ ($s \leq N$) and where V^s is obtained from V^{s-1} by a double-transfer ($2 \leq s \leq N$). Note that we may here assume that only t-double transfers with $t = 1$ are used, as such a transform with $t > 1$ may be replaced by t 1-double transfers (and each intermediate matrix will then lie in the same class; see the beginning of Section 3).

But in each 1-double transfer any entry is changed by at most 1, and it follows that each integer between L_{ij} and M_{ij} will be attained in position (i, j) while we traverse the sequence of the V^s’s. □

Let $L = [L_{ij}]$ and $M = [M_{ij}]$ be the $m \times n$ matrices with entries L_{ij} resp. M_{ij} as defined in (2). We now turn to a monotonicity result concerning these matrices. A matrix C is said to be column-monotone if each column in C is a monotone vector, i.e., $c(1) \geq c(2) \geq \cdots \geq c(m)$. We shall need the following result from [3].

Theorem 4.5 [3]. Let $b, c \in \mathbb{Z}^n$ be nonnegative, monotone integral vectors, and let $z \in \mathbb{Z}^n$ be a nonnegative and integral vector. Then $z \leq b + c$ if and only if z may be decomposed as $z = z^1 + z^2$ where z^1, z^2 are integral and satisfy $z^1 \leq b$ and $z^2 \leq c$.

We now state our result concerning the matrices L and M.

Theorem 4.6. Consider a nonempty class $\mathcal{A}(B|S)$ where B is column-monotone. Then both matrices L and M are column-monotone.

Proof. Fix $1 \leq i < k \leq m$ and $1 \leq j \leq n$. Choose $A \in \mathcal{A}(B|S)$ such that $a_{ij} = M_{kj}$. Since $b^{(i)} \geq b^{(k)}$, we have $b := b^{(k)} = b + c$ for some $c \geq 0$. Let x and y be the ith resp. kth row of A. So $x \leq b^{(i)}$ and $y \leq b^{(k)}$. Since $x \leq b + c$, by Theorem 4.5, x may be decomposed as $x = x^1 + x^2$ where x^1 and x^2 are nonnegative integral vectors satisfying $x^1 \leq b$ and $x^2 \leq c$. Now, let $A' = [a'_{pq}]$ be the matrix obtained from A by replacing row i by $y + x^2$ and row k by x^1. Again by Theorem 4.5, $a''(i) = y + x^2 \leq b + c$ and $a''(k) = x^1 \leq b$. Thus, A' satisfies the majorization constraints $A' \succeq B$. Moreover,
\[a^{(i)} + a^{(k)} = y + x^2 + x^1 = a^{(i)} + a^{(k)}. \]

Therefore the column sum vector of \(A' \) is \(S \), so \(A' \in \mathcal{A}(B|S) \). But
\[a_{ij} = y_j + x^2_{jj} \geq y_j = a_{kj} = M_{kj}. \]

It follows that \(M_{ij} \geq M_{kj} \). Since \(i < k \) was arbitrary, this proves that the \(j \)th column of \(M \) is monotone \((j \leq n)\), so \(M \) is column-monotone. The proof of \(L \) being column-monotone is very similar so we omit the details. \(\square \)

We now consider an interesting situation where the matrix \(B \) has a special form. Let the \(i \)th row of \(B \) be
\[b_{j}^{(i)} = (k_i + 1, \ldots, k_i + 1, k_i, \ldots, k_i) \in \mathbb{R}^n, \]
where the first \(p_i \) components are equal to \(k_i + 1 \), for some integer \(k_i \geq 0 \) \((i \leq m)\). Define \(\tau = n \sum_i k_i + \sum_i p_i \) which is the sum of all entries in \(B \). (Recall that \(e \) denotes an all ones vector, and \(J \) is an all ones matrix.) Let \(D \) be the diagonal matrix with diagonal entries \(k_1, k_2, \ldots, k_m \).

Theorem 4.7. Let \(B \) and \(D \) be as above, and let \(S \in \mathbb{R}^m \) be a monotone, integral, nonnegative vector with \(\sum_{j=1}^m s_j = \tau \). Define \(R = (p_1, p_2, \ldots, p_m) \in \mathbb{R}^m \) and \(S' = S - (\sum_i k_i)e \). Then \(\mathcal{A}(B|S) \) is nonempty if and only if
\[S' \preceq R^*. \quad (3) \]
Moreover, whenever (3) holds, there is one-to-one correspondence \(f \) between \(\mathcal{A}(B|S) \) and the \((0, 1)\)-matrix class \(\mathcal{A}(R, S') \) given by
\[f : A \rightarrow Z = A - DJ \quad (A \in \mathcal{A}(B|S)). \]
In particular, \(\mathcal{A}(B|S) \) is connected using double-transfers.

Proof. Note that, for each \(i \leq m \), \(b_{j}^{(i)} \) is minimal in the majorization ordering, therefore, the following three statements are equivalent: (a) \(x \preceq b_{j}^{(i)} \), (b) \(x \) is a permutation of \(b_{j}^{(i)} \), and (c) \(x = k_ie + z \) for some \((0, 1)\)-vector \(z \) with \(\sum_{j=1}^n z_j = p_i \). It follows from this that:

- \(A \in \mathcal{A}(B|S) \) if and only if \(A = DJ + Z \) for some \((0, 1)\)-matrix \(Z \) with \(i \)th row sum equal to \(p_i \) and \(j \)th column sum equal to \(s_j - \sum_i k_i = s_j' \) \((i \leq m, j \leq n)\).

But the last statement means that \(A = DJ + Z \) for an \(Z \in \mathcal{A}(R, S') \). This proves the desired bijection between \(\mathcal{A}(B|S) \) and \(\mathcal{A}(R, S') \).

Furthermore, by this bijection, \(\mathcal{A}(B|S) \) is nonempty if and only if \(\mathcal{A}(R, S') \) is nonempty. By the Gale–Ryser theorem the latter is true if and only if \(S' \preceq R^* \) which gives (3).

Finally, the class \(\mathcal{A}(R, S') \) is connected using interchanges (see [1]). Moreover, interchanges in \(\mathcal{A}(R, S') \) correspond to double-transfers in \(\mathcal{A}(B|S) \) (due to the mentioned bijection), and this proves the last statement in the theorem. \(\square \)

We remark that if, in the situation above, \(p_i = p \) \((i \leq m)\), then the majorization condition (3) simplifies into the inequalities \(s_1 \leq \sum_i k_i + m, s_n \geq \sum_i k_i \).

Finally, we consider the class \(\mathcal{A}(B|S) \) in the special case where all the rows in \(B \) are equal, say \(b_{j}^{(i)} = b \) \((i \leq m)\). For a matrix \(A = [a_{ij}] \) let \(a_{ij}^{(j)} \) denote its \(j \)th column. The following result shows that \(\mathcal{A}(B|S) \) contains a matrix where each column is as evenly distributed as possible.

Theorem 4.8. Let \(B \) be given by \(b_{j}^{(i)} = b \) \((i \leq m)\). Then \(\mathcal{A}(B|S) \) is nonempty if and only if \(S \preceq mb \). When the class is nonempty, it contains a matrix \(\hat{A} = [\hat{a}_{ij}] \) satisfying
\[\hat{a}_{ij}^{(j)} \leq a_{ij}^{(j)} \quad (j \leq n) \]
for each \(A \in \mathcal{A}(B|S) \). Moreover,
\[\hat{a}_{1}^{(1)} \geq \hat{a}_{2}^{(2)} \cdots \geq \hat{a}_{m}^{(m)}. \]
Proof. The first statement follows from Theorem 1.1. Let, as usual, \(S = (s_1, s_2, \ldots, s_n) \). For \(j \leq n \) define \(\alpha_j, \beta_j \in \mathbb{Z} \) uniquely by \(s_j = m\alpha_j + \beta_j \) where \(0 \leq \beta_j < m \), so \(\alpha_j = \lfloor s_j/m \rfloor \). Let the matrix \(\tilde{A} = [\tilde{a}_{ij}] \) be defined by \(\tilde{a}_{ij} = \alpha_j \) \((i \leq m, j \leq n)\). Moreover, let \(Z \) be the \(m \times n \) \((0, 1)\)-matrix whose support (positions of the ones) is
\[
\bigcup_{j=1}^{n} \left\{ (i,j) : \sum_{l=1}^{j-1} \beta_l < i \leq \sum_{l=1}^{j} \beta_l \right\},
\]
where indices \(1 \leq i \leq m \) are calculated modulo \(m \). Finally, let \(\hat{A} = \tilde{A} + Z \). Note that
\[
\sum_{i=1}^{m} \tilde{a}_{ij} = m\alpha_j + \beta_j = s_j \quad (j \leq n)
\]
so \(\hat{A} \) has column sum vector \(S \).

Claim. Each row in \(\hat{A} \) is majorized by \(b \).

Proof of Claim: Since \(S \preceq mb \) and both \(S \) and \(b \) are monotone, \((1/m) \sum_{j=1}^{p} s_j \leq \sum_{j=1}^{p} b_j \) \((p \leq n)\). Therefore
\[
\sum_{j=1}^{p} \alpha_j + \frac{1}{m} \sum_{j=1}^{p} \beta_j \leq \sum_{j=1}^{p} b_j \quad (p \leq n)
\]
and by integer rounding (as \(b \) is integral)
\[
\sum_{j=1}^{p} \alpha_j + \left\lfloor \frac{1}{m} \sum_{j=1}^{p} \beta_j \right\rfloor \leq \sum_{j=1}^{p} b_j \quad (p \leq n).
\]
(4)

Let \(x = (x_1, x_2, \ldots, x_n) \) be the first row in \(\hat{A} \), and note that
\[
\sum_{j=1}^{p} x_j = \sum_{j=1}^{p} \alpha_j + \left\lfloor \frac{1}{m} \sum_{j=1}^{p} \beta_j \right\rfloor \quad (p \leq n).
\]

Note that \(x \) is semi-monotone. It now follows from (4) and the monotonicity of \(b \) and \(S \) that
\[
\sum_{j=1}^{p} x_{[j]} \leq \sum_{j=1}^{p} b_j \quad (p \leq n).
\]

Moreover, \(\sum_{j=1}^{n} x_j = \sum_{j=1}^{n} b_j \). This shows that \(x \preceq b \). Also, \(\tilde{a}^{(i+1)} \preceq \tilde{a}^{(i)} \) \((1 \leq i < m)\)
as \(\tilde{a}^{(i+1)} \) may be obtained from \(\tilde{a}^{(i)} \) by a number of transfers. Thus, each row in \(\hat{A} \) is majorized by \(b \), and the Claim follows.

So, \(\hat{A} \in \mathcal{A}(B|S) \). Finally, in each column \(\tilde{a}^{[j]} \) of \(\hat{A} \) the entries differ by at most one, which means that \(\tilde{a}^{[j]} \) is majorized by every nonnegative integral vector with sum \(s_j \). This completes the proof. \(\square \)

Example. Let \(m = 4, n = 5, b = (7, 4, 2, 1, 1) \) and \(S = (22, 15, 10, 8, 5) \). Then the construction in the proof of Theorem 4.8 gives the matrix
\[
\hat{A} = \begin{bmatrix}
6 & 4 & 2 & 2 & 1 \\
6 & 3 & 3 & 2 & 1 \\
5 & 4 & 3 & 2 & 1 \\
5 & 4 & 2 & 2 & 2
\end{bmatrix} \in \mathcal{A}(B|S).
\]

Note that \(\tilde{a}^{(1)} \succeq \tilde{a}^{(2)} \succeq \tilde{a}^{(3)} \succeq \tilde{a}^{(4)} \).
References