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The mechanistic target of rapamycin (mTOR) is a crucial point of convergence between growth factor signalling,
metabolism, nutrient status and cellular proliferation. The mTOR pathway is heavily implicated in the progres-
sion ofmany cancers and is emerging as an important driver of gastrointestinal (GI)malignancies. Due to its cen-
tral role in adaptingmetabolism to environmental conditions,mTOR signalling is also believed to be critical in the
development of obesity. Recent research has delineated that excessive nutrient intake can promote signalling
through the mTOR pathway and possibly evoke changes to cellular metabolism that could accelerate obesity re-
lated cancers. Acting through its two effector complexes mTORC1 and mTORC2, mTOR dictates the transcription
of genes important in glycolysis, lipogenesis, protein translation and synthesis and has recently been defined as a
central mediator of the Warburg effect in cancer cells. Activation of the mTOR pathway is involved in both the
pathogenesis of GImalignancies and development of resistance to conventional chemotherapy and radiotherapy.
The use of mTOR inhibitors is a promising therapeutic option in many GI malignancies, with greatest clinical ef-
ficacy seen in combination regimens. Recent research has also provided insight into crosstalk betweenmTORand
other pathways which could potentially expand the list of therapeutic targets in themTOR pathway. Herewe re-
view the available strategies for targeting the mTOR pathway in GI cancers. We discuss current clinical trials of
both established and novel mTOR inhibitors, with particular focus on combinations of these drugs with conven-
tional chemotherapy, radiotherapy and targeted therapies.

© 2015 The Authors. Published by Elsevier B.V. This is an open access article under the CC BY-NC-ND license
(http://creativecommons.org/licenses/by-nc-nd/4.0/).
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1. Introduction

The mechanistic target of rapamycin (mTOR) is an evolutionarily
conserved serine/threonine protein kinase belonging to the
phosphatidylinositol-3 kinase (PI3K) related kinase superfamily [1]. It
acts as a cardinal regulator of metabolism, energy homeostasis and nu-
tritional status of the cell as well as coordinating signalling from growth
factors such as mitogens, cytokines and hormones. mTOR exists as the
catalytic core of its two known signalling complexes, mTOR complex 1
(mTORC1) and mTOR complex 2 (mTORC2), which are each comprised
of distinct substrates and carry out different cellular functions [2].
mTORC1 is characterised by its exclusive partner raptor (regulatory-as-
sociated protein of mTOR) [3] whereas mTORC2 is defined by its exclu-
sive partner rictor (rapamycin-insensitive companion of mTOR) [4].

mTORC1 function is inherently dependent on amino acid levels as
depletion of amino acids past a certain threshold renders mTORC1
completely refractory to all other signals and inputs, which prevents
the cell engaging in energy costly anabolic processes when sufficient
nutrients are not available [5]. This prevents the cell engaging in energy
costly anabolic processes when sufficient nutrients are unavailable [6].
Upstream activation of mTORC1 is primarily mediated through activa-
tion of the GTPase Rheb (Ras homolog enriched in brain) by growth fac-
tors (eg. insulin, insulin-like growth factor 1 (IGF-1)) and amino acid
dependent (specifically leucine [7]) translocation of inactive mTORC1
from the cytoplasm to the lysosomal membrane via the Ragulator–Rag
complex [8] (Fig. 1). The main substrates phosphorylated by activation
of mTORC1 are ribosomal protein S6 kinases (S6K) and the eukaryotic
initiation factor 4E (eIF4E) binding proteins 1–3 (4EBP1-3), which
drive cell proliferation, growth and cap-dependent protein synthesis
[9]. mTORC1 signalling also promotes lipid synthesis [10], nucleotide
synthesis [2] and suppresses autophagy [11]. In this respect mTORC1
is often described as a central driver of anabolic processes and an inhib-
itor of catabolic processes [12]. Additionally recent research has defined
the role of mTORC1 signalling in angiogenesis wherebymTORC1 acts as
the integration point of metabolic signals and signalling from vascular
endothelial growth factor A (VEGF-A) [13]. mTORC1 has been shown
to regulateHIF-1a expression and drives VEGF-A expression through ac-
tivation of STAT3, 4E-BP1 and S6K1 all working in conjunction to drive
angiogenesis under hypoxia [14]. mTORC2 has not been as thoroughly
studied as its counterpart mTORC1, however it is known to phosphory-
late Akt, protein kinase C (PKC), and SGK1 (serum and glucocorticoid-
induced protein kinase) [15]. Therefore its role is seen to be more relat-
ed tomodulation of metabolism and cell survival through up regulation
of Akt.While the upstream regulators ofmTORC2 remain to be fully elu-
cidated, it is known to involve association with ribosomes in a PI3K-
dependent manner and phosphorylation of Akt [16].

2. mTOR and obesity

Because themTORpathway is so central to the assimilation of signal-
ling from growth factors, hormones and nutrients with cell growth and
metabolism, there has been substantial research implicating itwith obe-
sity and cancer [17]. Obesity is a state of systemic chronic inflammation
induced by excess adipose tissue accumulation when specific calorific
needs exceed energy expenditure [18] and is one of the leading risk fac-
tors for development of cancer [19,20]. Current evidence suggests a
strong association between incidence of obesity and specific gastroin-
testinal cancers such as colorectal, gastric, pancreatic and esophageal
cancer [21]. It is well established that adipose tissue is an important en-
docrine organ involved in the production of numerous metabolic and
inflammatory mediators such as free fatty acids, chemokines and
adipocytokines [22,23]. Adipose-associated polypeptides such as leptin,
adiponectin, insulin-like growth factors and ghrelin represent potential
mechanisms promoting cancer development [24]. For example
hyperinsulinemia and insulin resistance frequently occurs in most
obese patients and is associated with a worse prognosis in multiple ma-
lignancies [25]. Insulin can stimulate the synthesis of IGF-1 [26], which
exerts multiple mitogenic effects on cancer cells through activation of
numerous signal pathways such as PI3K/Akt, MAPK and STAT3 [18].
These pathways contribute greatly to cancer initiation and progression
and can all converge downstream on mTOR [27–29]. A growing body
of research is showing that the mTOR pathway is heavily implicated in
the initiation and progression of obesity driven gastrointestinal cancers
[30]. Equally, increased signalling through mTOR is being implicated
in the pathogenesis of obesity [17], and the development of insulin re-
sistance in metabolic syndrome [31]. Both hyperaminoacidemia and
postprandial hyperinsulinemia have been shown to increase phosphor-
ylation of S6K and inhibitory insulin substrate-1 [31]. Importantly
mTOR signalling is required for adipogenesis as early studies showed
that rapamycin inhibited both the proliferation and differentiation of
human adipocytes [33]]. Rapamycin was also shown to reduced obesity
induced by a high fat diet in mice through long term inhibition of
mTORC1 [34], however this effect, while beneficial, progresses to im-
paired glucose tolerance and insulin resistance [35].
3. mTOR and obesity related gastrointestinal cancers

3.1. Oesophageal cancer

Oesophageal cancer is rapidly increasing in incidence, particularly
when compared to other malignancies and is characterised by low sur-
vival rates and poor prognosis [36]. Oesophageal adenocarcinoma
(OAC) has one of the strongest associations with obesity, specifically
visceral (abdominal) obesity, in terms of incidence and pathogenesis
[37]. Barrett's oesophagus (BO), a premalignant lesion associated with
the development of OAC, is also associated with obesity and concomi-
tant gastro-oesophageal reflux disease (GORD) [38]. This proposed
mechanism between BO and visceral obesity is believed to be related,
at least in part, to increased acid reflux observed in obese patients
[39]. Chronic exposure to bile acid and gastric reflux initiates the inflam-
matory processes crucial in the progression from BO to OAC, and this
can activate mTOR through stimulation of IKKβ/TSC1 signalling in BO
associated OAC [40]. Treatment of oesophageal cancer cells with
mTOR inhibitors rapamycin and Bay-11-7082 was shown to effectively
inhibit bile acid induced cell transformation and proliferation [40].

In a xenograft mouse model of oesophageal cancer both rapamycin
induced and siRNA induced inhibition ofmTORwere shown to decrease
tumour size and mTOR expression [41]. The use of both agents was
shown to have a greater anti-tumour effect than either agent alone. In
OACpatients, overexpression of phosphorylatedmTOR (p-mTOR) is sig-
nificantly correlated with poorer overall survival [42].



Fig. 1. Schematic representation of the mTOR pathway, it's classical upstream inputs and downstream targets. mTOR exists as two separate signalling complexes which are structurally
distinct. mTOR complex 1, which is defined by raptor, receives signalling inputs from amino acids, ATP, insulin, growth factors and hormones, which all culminate in the initiation of mul-
tiple downstream signalling pathways. mTORC1 phosphorylates a limited number of known substrates, the principle ones being S6K1, 4EBP1, SREBP and GRB10. Activation of these
mTORC1 targets culminates in the up regulation of anabolic processes and the down regulation of catabolic processes and mediates a negative feedback loop towards PI3K via S6K1.
mTORC2, while not as throughly studied as mTORC1, is defined by raptor and is activated by PI3K signalling and acts downstream on Akt.
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In addition to its importance in OAC, mTOR is shown to be involved
in the pathogenesis of oesophageal squamous cell carcinoma (OSCC).
Increased expression and activation of mTOR was shown in a study ex-
aminingmTORexpression inmultiple resected OSCC tumours andOSCC
cell lines [43]. Down regulation of the tumour suppressor PTEN signifi-
cantly correlated with up regulation of mTOR in multiple OSCC cell
lines [44]. A large patient cohort study of single nucleotide polymor-
phisms in mTOR revealed certain mTOR genotypes could increase risk
of OSCC [32]. Interestingly when stratified by patient BMI there was a
greater significant association between three specific mTOR SNPs
(rs2295080, rs1057079, and rs1064261) and risk of OSCC in patients
with a BMI N 25 [45]. Studies such as these underpin the role of mTOR
in the interaction between genetic and environmental risk factors in
obesity related oesophageal cancers [46–49].

3.2. Gastric cancer

Obesity has long been a suspected risk factor for gastric cardia ade-
nocarcinoma (GCC) while has been shown to be unrelated to gastric
non-cardia adenocarcinoma (GNCC) [50,51]. While data is limited
meta-analysis has shown no association between GNCC and obesity
and this was not significant when adjusted according to patient sex
[52]. A recent meta-analysis from the EPIC cohort showed that obesity
as measured by BMI showed no association in terms of risk with GCC
or GNCC, however when adjusted for waist circumference there was a
higher risk of GCC. Therefore further investigation into the role
abdominal obesity and risk of GCC is warranted. There is mounting ev-
idence that the mTOR pathway is deregulated in gastric cancer with
specific genetic mutations in the PI3K/Akt/mTOR pathway frequently
being observed regardless of GC subtype [53]. IHC analysis of GC patient
samples showed that high expression of p-mTOR, specifically in the tu-
mour cell cytoplasm, correlated with tumour stage, metastasis and
overall survival [54]. Related studies have reported similar findings of
mTOR expression in GCC having a positive correlationwith tumourme-
tastasis and invasiveness. One such study determined that mTOR is
highly expressed in GCC tumour cells with relatively little expression
in the surrounding normal gastric tissue [55]. Mouse studies of mTOR
signalling in GC have shown that targeted inhibition of mTOR using
everolimus can inhibit cell proliferation, tumour vascularisation [56]
and local tumour dissemination [57]. Upstream of mTOR, mutations
and amplification of PI3K and Akt respectively are often observed in
GC [58] and over activation of PI3K, Akt and eIF-4Ewere significantly as-
sociated with lymph node metastasis [59].

3.3. Hepatocellular carcinoma

While hepatocellular carcinoma (HCC) can arise from a vast myriad
of carcinogenic factors both obesity and non-alcoholic fatty liver disease
(NAFLD) are established risk factors for the development of HCC [60,61].
Increased levels of both adiponectin and leptin has been observed in pa-
tients with cirrhotic HCC and non-cirrhotic HCC [62] and adiponectin
level has been found to be predictive of overall survival in HCC patients

Image of Fig. 1


Fig. 2. Summary of the emerging role of the mTOR pathway in obesity related gastrointestinal malignancies. While the direct mechanisms by which the mTOR pathway drives the pro-
gression of obesity related GI cancers have yet to be defined, there is substantial emerging evidence the mTOR is heavily implemented in these malignancies.
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[63]. Hypoadiponectinaemia can accelerate the formation of HCC [64]
and concomitantly, adiponectin inhibits phosphorylation of mTOR and
can prevent HCC tumourigenesis in nude mice [65]. Mutations in the
mTOR pathway are seldom seen in HCC with mTOR activation in HCC
principally being due to upstream ligand dependent receptor activation
[66] namely the EGFR, IGF and PTEN signalling pathways [67].

Transcriptomic analysis of patient data sets has similarly revealed
HCC subsets that have upstream over-expression of IGF2 and IGF1R in
addition to mutations in PIK3CA, culminating in deregulated mTOR sig-
nalling [68]. Blockade of mTOR can enhance upstream inhibition of
growth factors involved inHCC such asfibroblast growth factor receptor
(FGFR). Combined inhibition of both FGFR andmTOR, using FGFR inhib-
itor BGJ398 and rapamycin, in an orthotropic model of HCC lead to a
significant inhibition of tumour growth and prevented recruitment of
vascular smooth muscle cells (VSMCs) and hepatic stellate cells
(HSCs) into liver tumours [69].

3.4. Pancreatic cancer

While diabetes is a well established risk factor for pancreatic cancer
(PC), there hasn't been as clear a delineation between obesity and risk of
PC with only a weak association being reported [70] or certainly a non-
linear relationship [71]. However recent research has revealed a link be-
tween pro-inflammatory eicosanoid prostaglandin E2 (PGE2) signalling
and the mTOR pathway in obesity associated pancreatic cancer [72].
PGE2 is an integral effector in the inflammatory milieu seen in obesity
and is over activated in the progression of obesity-associated cancers
[24]. In multiple pancreatic cell lines treatment with PGE2 resulted in
enhanced signalling of the mTOR pathway via increased
phosphorylation of S6K1 [72]. It is becoming increasingly evident that
the mTOR pathway is intricately involved in the progression of PC
with mTOR pathway genes found to be mutated in specific subsets of
PC, as multiple mTOR pathway genes are mutated in specific subsets
of PC [73]. Tissue microarray analysis revealed down-regulation of two
critical upstream regulators of mTOR, TSC2 and PTEN, low expression
of which correlated with poorer disease free and overall survival in PC
patients [74]]. A recent study of metastatic pancreatic ductal adenocar-
cinoma (PDAC) revealed a specific disease subset, whereby loss of PTEN
or TSC1 haploinsufficieny facilitated development of PDAC through
hyper activation of the mTOR pathway [75].

3.5. Colorectal cancer

Colorectal cancer (CRC) is the third most common cancer globally
[36] and its incidence is consistently linked to incidence of obesity [76,
71]. Leptin signalling has been shown to be a driving factor in colon can-
cer cell proliferation and can induce phosphorylation of Akt and mTOR
[77]. Expression of the leptin receptor (Ob-R) was strongly correlated
with activation of the PI3K/Akt/mTOR pathway and downstream phos-
phorylation of mTOR [77]. Conversely activation under low adiponectin
conditionswas found to be a keymechanism in the promotion of prolif-
eration and colorectal carcinogenesis [78].

Genes important to the development of CRC, such asAPC, p53 andK-
ras, lie upstream of mTOR and canmediate their oncogenic signalling in
part through mTOR [79]. APC gene mutations are common in sporadic
CRC andmTORhas been found to have a crucial role in APC-deficient co-
lorectal cancer [80]. Loss of the APC gene is pivotal in the pathogenesis
of CRC and mTORC1 activity is essential for the proliferation of APC

Image of Fig. 2


Table 1
Clinical development of both conventional and novel mTOR inhibitors

Target Compound (company) Malignancy Phase of
development

mTORC1 Everolimus
(Novartis)

Renal cell carcinoma, subependymal giant cell astrocytoma, pancreatic neuroendocrine tumors,
ER+ breast cancer (in combination with exemestane)

Approved

Temsirolimus (Pfizer) Renal cell carcinoma Phase II
PI3K/mTOR BEZ235 (Novartis) Advanced solid tumors, breast cancer, castration-resistant prostate cancer, renal cell carcinoma,

leukemias, pancreatic neuroendocrine tumors, urothelial transitional cell carcinoma
Phase II

GDC-0980 (Genentech) Solid cancers, non-Hodgkin lymphoma, breast cancer, prostate cancer Phase II
PF-05212384 (Pfizer) Advanced solid tumors, colorectal cancer, endometrial neoplasms Phase II
SAR245409 (XL-765; Sanofi/Exelixis) Advanced solid tumors, CLL, indolent non-Hodgkin lymphoma, mantle cell lymphoma, ovarian cancer Phase I
VS-5584 (Verastem, Inc) Advanced solid tumours, Relapsed mesothelioma, Preclinical
PI-103 Xenograft and in-vivo models Phase II

mTORC1/2 AZD2014 (AstraZeneca) Advanced solid tumors, breast cancer, renal cell carcinoma Phase I/II
CC-223 (Celgene) Breast cancer, glioblastoma, hematologic malignancies, liver cancer, NSCLC, neuroendocrine tumors Phase I
AZD8055 (AstraZeneca) Hepatocellular carcinoma, Glioblastoma Mutiforme Phase I
INK128 (National Cancer Institute)
(NCI)

Recurrent Glioblastoma, Metastatic Anaplastic Thyroid Cancer Phase I

MLN0128 (INK128; Intellikine) Advanced solid tumors, hematologic malignancies Phase II
Temsirolimus (Pfizer) Advanced solid tumors, breast cancer, castration-resistant prostate cancer,[53]

renal cell carcinoma, leukemias, pancreatic neuroendocrine tumors, urothelial transitional cell
carcinoma

Phase II

BEZ235 (Novartis) Solid cancers, non-Hodgkin lymphoma, breast cancer, prostate cancer Phase II
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deficient enterocytes [81]. Using multiple genetic mouse models it was
found that APC loss led to increased activity of eukaryotic elongation
factor 2 (eEF2) [82], which is required for intestinal cell proliferation. In-
creased activity of mTORC1 in APC deficientmice could be blockedwith
rapamycin, and this was effective at suppressing tumour development,
and in parallel did not affect normal intestinal proliferation or apoptosis
[81].

Examinations of both the mRNA level and protein level of mTOR in
CRC revealed a significant relationship between high mTOR expression
level and disease stage, lymph node involvement and recurrence [83].
mTOR has also been implemented in CRC metastasis, as elevated
mTOR signalling through RhoA and Rac1 regulated epithelial-mesen-
chymal transition (EMT) and cell motility [84]. CRC metastasis was
completely inhibited in vivo upon inhibition of mTOR1 and mTORC2
[85]. Immunohistochemical analysis ofmTOR and its downstream effec-
tors p70s6K, and 4EBP1 in human CRC samples showed high activity of
the mTOR signalling pathway and that these correlated with depth of
CRC infiltration [85].

While our understanding of the mTOR pathway in GI cancers is still
in its infancy, research in this area has established a strong enough link
to justify targeting mTOR in obesity associated GI cancers (Fig. 2).

4. Targetting the mTOR pathway in clinical trials

4.1. Clinical trials of rapamycin and rapalogs

The discovery of rapamycin (the first mTOR inhibitor) predated the
discovery ofmTOR itself. Originally approved as an immunosuppressant
[86], it was later discovered that rapamycin targeted mTOR and that it
had anti-proliferative effects, which resulted in the drug being investi-
gated as an anti-cancer agent [87]. Rapamycin's unfavourable pharma-
cokinetics limited it's use as a cancer drug which drove the
development of the first generation of rapamycin analogs (rapalogs);
temsirolimus (CCI-779) [88], everolimus (RADD001) [89], and
ridaforolimus (AP23573) [90] (Table 1). Rapamycin acts by irreversibly
binding to the FKBP12-rapamycin domain of mTORC1, halting its kinase
activity, however it's exact mechanism of action has yet to be fully de-
fined [91]. Rapalogs also inhibit mTORC1 in this manner yet do not
strongly inhibit mTORC2 [92]. Rapalogs prevent phosphorylation of
two downstreammTORC1 targets, 4E-BP1 and S6K1, which prevent ini-
tiation of cap-dependentmRNA translation, thus inhibiting cell prolifer-
ation [93] (Fig. 3). Resistance to rapalogs is common due to negative
feedback loops that regulate both mTOR and PI3K/Akt signalling [94,
95]. Rapalog inducedmTORC1 inhibition blocks the S6K-mediated feed-
back loop,whichmitigates hyper activation of PI3K signalling increasing
phosphorylation of Akt [95]. Increased activation of Akt can also occur
via increased signalling through mTORC2, which occurs through PI3K
hyper activation [96]. Recent studies revealed that mTORC1 phosphory-
lates Growth Factor Receptor Bound Protein 10 (Grb10), causing accu-
mulation of Grb10 and inhibition of PI3K and the MAPK pathway [97].
Thus, over-activation of pathways upstream of mTOR due to the sup-
pression of negative feedback counterbalances the antiproliferative ef-
fects of mTORC1 inhibitors. Currently there are over 90 clinical trials
examining the therapeutic potential of rapalogs as either single agents
or in combination with other therapeutics in GI malignancies, the ma-
jority of which are in OAC, GC and CRC (Tables 3, 4 and 5).

Clinical trials with mTORC1 inhibitors, sirolimus and everolimus
have confirmed the use of these agents in a narrow range of malignan-
cies [98,89,99–101], however their broad use has yet to be demonstrat-
ed clinically. There are currently 8 ongoing clinical trials of everolimus
as single agent in gastrointestinal cancers including advanced gastric
cancers and oesophageal cancer (Table 2). Recently however, the
GRANITE-1 study, a phase III randomised, double blind trial of everoli-
mus in advanced gastric cancer, failed to show an improvement in over-
all survival compared to best supportive care (BSC) [102]. Everolimus
reduced the risk of progression by34% and the PFSwas1.7months com-
pared to 1.4 months compared to BSC, indicating that combination of
everolimus with other effective targeted therapies or chemotherapeu-
tics may be a more promising strategy [102].

The adverse events profile for everolimus in gastric cancer was con-
sistent with that observed in other trials evaluating everolimus in other
cancers. Everolimuswas suggested to have clinical activity in a subset of
patients in this study and extensive biomarker analysis of the GRANITE-
1 study is underway in an effort to identify this subset of GC patients
[102].

4.2. Clinical trials of ATP competitive mTOR kinase inhibitors

Following on from the somewhat disappointing clinical efficacy of
rapalogs, ATP-competitive mTOR tyrosine kinase inhibitors (TKIs)
were developed. These compounds inhibit the catalytic site of the
mTORkinase domain, giving them the advantage of targeting the kinase
activity of both mTORC1/2 thus blocking the feedback activation of the
PI3K/Akt signalling pathway [103]. This robust inhibition of mTORC2
dependent activation of Akt limits this form of resistance to mTOR in-
hibitors hopefully enhancing their efficacy. In a preclinical assessment
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of the oralmTORkinase inhibitor OSI-027, this compoundwas shown to
selectively inhibitmTORC1mediated phosphorylation 4E-BP1 and S6K1
as well as mTORC2 specific activation of Akt inmultiple rapamycin sen-
sitive and resistant in-vitro models [104]. Additionally it had superior
efficacy compared to rapamycin in multiple colon cancer xenograft
models [104]. OSI-027 was brought forward to a phase I clinical trial
to assess it's pharmacodynamic profile in a broad range of cancers and
achieved substantial clinical effect [105]. However it was poorly tolerat-
edwith over a third of patients requiring dose reductions [105] andwas
discontinued due to lack of clinical efficacy in phase II trials [106].

One promising mTOR TKI, AZD2014, has shown dramatic anti-
proliferative effects in preclinical studies of breast cancer [107] and
HCC [108]. The first clinical trial of AZD2014 examined pharmacokinet-
ics and pharmacodynamics in 56 patients across a range ofmalignancies
[109]. The Mean Tolerated Dose (MTD) was established and there were
partial clinical responses seen in both pancreatic and brest cancer pa-
tients [109]. Azd2014 has been brought forward to phase II clinical trials
in Gastric adenocarcinoma in combination with paclitaxel
(NCT02449655). Another similarmTOR TKI, INK128, has shown efficacy
in preclinical studies of GI cancers such as PAC [110] and is being exam-
ined in phase I studies across a range of malignancies.

4.3. Clinical trials of dual mTOR/ PI3K inhibitors

As mTOR is heavily linked to the PI3K pathway in terms of cancer
progression and resistance to mTOR inhibitors, this prompted the
Fig. 3. Targeting the mTOR pathway. Specific target domains of
development of dual PI3K/mTOR inhibitors, which target the p110⍺,
β, and γ isoforms of PI3K in addition to the catalytic sites of mTORC1/
2 [90]. This dual targeted approach attempts to completely shut down
the PI3K/Akt/mTOR pathway even in cancers that have over expression
of this pathway [111]. In a recent study of CRC, mTORC2 was shown to
be over-expressed in CRC cells and down-regulation of mTORC2 re-
duced proliferation of colon cancer cells and inhibited the formation of
tumour xenografts in vivo. Combined inhibition of PI3K and mTORC1/
2 by dual mTOR/ PI3K inhibitor NVP-BEZ235 was shown to induce tu-
mour regression in a mouse model of sporadic CRC [112]. Consistent
with this, a more recent study also demonstrated the efficacy of NVP-
BEZ235 and of an additional catalytic mTOR inhibitor, pp242, in
human colon cancer cell line xenografts [113]. In addition to its effect
in CRC, NVP-BEZ235 has recently been shown to highly effective in at-
tenuating growth of pancreatic cancer cells and work synergistically
with gemcitabine to induce potent cytotoxicity in gemcitabine resistant
pancreatic cancer cells [114].

Another highly selective dual mTOR/PI3K inhibitor VS-5584 has
been shown to have significant efficacy in a rapalog resistant colorectal
cancer xenograft model reducing both tumour growth and the number
of functional tumour blood vessels [115]. More pertinent however is the
preferential targeting of cancer stem cells (CSCs) by VS-5584, where
it has been shown to exert a selective effect on CSCs in a broad
range of cell lines, xenograft and patient tumour explant models [116].
VS-5584 has recently been granted orphan status for clinical develop-
ment in mesothelioma and has entered into a Phase I dose escalation
mTOR and PI3K are highlighted at the point of inhibition.

Image of Fig. 3


Table 2
Clinical trials of mTOR inhibitors as single agents in GI cancer

mTOR inhibitor Patients Phase Trial number

Everolimus Gastric cancer III
II

NCT00879333
NCT01482299
NCT00519324
NCT00729482

Oesophageal cancer II NCT00985192
Colorectal cancer II NCT00419159

NCT00390364
NCT00337545

Hepatocellular carcinoma II NCT00516165
Gastrointestinal neuroendocrine tumors II NCT01648465
Pancreatic neuroendocrine tumors II NCT02273752

NCT005 10068
NCT02031536
NCT00409292

Temslrolimus Metastatic pancreatic cancer II NCT00075647
NCT00093782

Sirolimus Pancreatic cancer II NCT00499486

35C.O. Malley, G.P. Pidgeon / BBA Clinical 5 (2016) 29–40
study in advanced non-hematologic malignancies and lymphoma
(NCT01991938).

Several clinical trials are examining the efficacy of dual PI3K/mTOR
inhibitors and while there is some encouraging early trial data, there
is still evidence that some cancers may be intrinsically resistant to
dual inhibition of PI3K/mTOR. A recent screening of multiple cancer
cell lines found that KRAS mutations could confer resistance to dual
PI3K/mTOR inhibitors [117]. This resistance was specifically linked to
changes in the level of phosphorylation of 4E-BP1, and was absent in
wild type KRAS tumours or PIK3CA mutated tumours [117]. Studies
such as this highlight the need for reliable clinical biomarkers to assess
efficacy of mTOR inhibitors.
4.4. Clinical trials ofmTOR inhibitors in GI cancers in combinationwith oth-
er therapeutics

Many mTOR inhibitors have only modest clinical activity and rapid
development of resistance is common. Consequently clinical trials are
largely shifting in favour combiningmTOR inhibitors with conventional
chemotherapy and radiotherapy to improve outcomes and circumvent
resistance. Due to the heterogeneity inmTOR signaling seen acrossmul-
tiple cancer types [59,75] it is critical to assess which subsets of cancer
patientswill benefit fromaddition of anmTOR inhibitor to their existing
Table 3
Clinical trials of mTOR inhibitors in combination with chemotherapy and targeted thera-
pies in Pancreatic cancer.

mTOR
inhibitor

Patients Drug combination Phase Trial Number

Everolimus Pancreatic cancer gemcltabine I/II NCT00560963
BYL719 and exemestane I NCT02077933

Pancreatic
neuroendocrine
tumors

5-FU III NCT02246127
Octreotide acetate with
or without bevacizumab

II NCT01229943

Pasireotide II NCT01374451
NCT00804336
NCT01263353

VEGFR/PDGFR dual
inhibitor X-82

I/II NCT01784861

Temozolomide I/II NCT00576680
Sunitinib II NCT02315625
Octreotide and
metformin

I NCT02294006

Metastatic
pancreatic cancer

Cetuximab and
Capecitabine

I/II NCT01077986

Rapamycin Pancreatic cancer Metformin I/II NCT02048384
Sirolimus Metastatic

pancreatic cancer
Vismodegib I NCT01537107
treatment regimens. Combining PI3K/AKT/mTOR pathway inhibitors
with chemotherapy and radiotherapy could improve efficacy [114,
118–120] and potentially prevent tumour regrowth between doses of
treatment.

4.4.1. Clinical trials combining mTOR inhibitors and conventional therapies
Recent studies have demonstrated that dual PI3K/mTOR inhibitors

can act as radiosensitisers and augment radiation-induced cytotoxicity
in cancer cells. The dual PI3K/mTOR inhibitor BEZ235 was shown to
have a synergistic effect with radiation in CRC cells by attenuating dou-
ble strand break repair and sensitising CRC cells to radiation [121]. The
same synergistic effect was seen in vivo where combination of BEZ235
and radiation decreased tumour size greater than either therapy
alone. The expression of mTOR, eIF4E, and S6 was also significantly de-
creased [121], indicating that combined mTOR targeting and radiother-
apy could be particularly beneficial.

Preliminary clinical data holds promise that mTOR inhibitors can
sensitise cancer cells to conventional chemotherapy. A phase I trial in-
vestigating the combination of everolimus and capecitabine showed en-
couraging results in a broad cohort of cancers, with the combination
regime being safe and tolerable [122]. This study demonstrated clinical
benefit in 39% of patients, with drug related adverse events beingmain-
ly of grade b2, however for future trials itmay be advisable to screen pa-
tients for alterations in the PI3K/AKT/mTOR pathway as this could result
in the greatest clinical benefit.

The combination of an mTOR inhibitor with capecitabine (5-fluoro-
uracil) has demonstrated synergy in preclinical studies and safety in a
phase I trial examining combination of everolimus and capecitabine in
pancreatic cancer. A recent phase II trial further contested the feasibility
and clinical efficacy of this combination in a cohort of pancreatic cancer
patients and an acceptable toxicity profile was observed for 5mg evero-
limus BID and capecitabine 1000 mg/m2 for 14 days every 3 weeks
[123]. Moderate clinical activitywas achieved only in first line pancreat-
ic cancer patients [123].

4.4.2. Clinical trials of mTOR inhibitors and targeted therapies
The use of mTOR inhibitors, to both increase the efficacy and over-

come resistance of targeted therapies, has been supported substantially
by preclinical data. Ongoing phase I and II trials are examining combina-
tions of mTOR inhibitors and multi-targeted TKIs such as imatinib,
neratinib and pazopanib in a broad range of cancers. A phase I trial in
gastrointestinal stromal tumours combining everolimus and imatinib
in 31 patients with imatinib refractory disease showed disease
stabilisation in 8 patients and partial response in 2 patients [124]. This
could indicate that mTOR inhibition may be resensitising certain pa-
tients to imatinib.

A recent phase I study examined the combination of temsirolimus
and neratinib, a pan-human epidermal growth factor (HER) TKI, in 60
patients with advanced solid tumours including colorectal and pancre-
atic cancer. The combination of neratinib and temsirolimus was tolera-
ble across a range of malignancies with the best overall response
including two complete responses, six partial responses and 27 cases
of stable disease [125]. Results from this trial indicate that evaluation
of this combination in GI cancers with significant HER2 and PI3K/
mTOR pathway activation is warranted.

Inhibition of mTOR is known to have a direct anti-angiogenic effect
through regulation of HIF-1⍺ [126]. Therefore combinations mTOR in-
hibitors with anti-angiogenic therapeutics have been put forward as ra-
tionale treatment strategies. A phase II trial combining everolimus with
the anti-VEGFmonoclonal antibody bevacizumab inmetastatic colorec-
tal cancer showed encouraging results with minor responses reported
in 16% of patients and a further 30% achieving disease stability [127].
This combinationwas shown to be tolerable and hadmodest clinical ac-
tivity however recent phase I trials combining mTOR inhibitors with
anti-angiogenic TKIs have shown conflicting results. A phase I study of
the combination of temsirolimus and pazopanib (a pan-VEGF receptor



Table 4
Clinical trials of mTOR inhibitors in combination with chemotherapy and targeted thera-
pies in liver cancers.

mTOR
inhibitor

Patients Drug combination Phase Trial Number

Everolimus Hepatocellular
carcinoma

Doxorubicin II NCT01009801

Metastatic
hepatocellular
carcinoma

Bevacizumab II NCT00775073
Pasireotide II NCT01488487
Sorafenib Tosylate II NCT01005199

Unresectable
fibrolamellar
Hepatocellular
carcinoma

Estrogen Deprivation
Therapy With
Leuprolide
+ Letrozole

II NCT01642186

Temsirolimus Advanced
hepatocellular
carcinoma

Bevacizumab II NCT01010126
Sorafenib II NCT01687673

Sirolimus Unresectable
hepatocellular
carcinoma

Bevacizumab I NCT00467194
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inhibitor) in advanced solid tumours including CRC showed high levels
of grade 3 and higher toxicities as doses far less than the approved dose
of each drug as a single agent [128]. Overlapping mTOR inhibitor and
VEGFR TKI toxicities could account for the unfeasibility of this combina-
tion and further research is required to understand these potential in-
teractions and evaluate alternate treatment strategies to circumvent
these toxicities.

In spite of certain negative trial results, many pharmaceutical com-
panies are moving forward with trials combining mTOR inhibitors
with targeted therapies, as this remains one of the more promising
Table 5
Clinical trials of mTOR inhibitors in combination with chemotherapy and targeted thera-
pies in Oesophageal, Gastric and Colorectal cancers.

mTOR
inhibitor

Patients Drug combination Phase Trial number

Everolimus Colorectal cancer Panitumumab &
Irinotecan

I/II NCT01139138

Cetuximab &
Irinotecan

FOLFOX &
Bevacizumab

I/II
I

I/II

NCT00522665
NCT00478634

NCT01047293

Metastatic colorectal
cancer

Cetuximab
Bevacizumab
Cetuximab
Irinotecan
OSI-906 &
Tivozanib

I
II
II
I
I/II

NCT01637194
NCT00597506
NCT01387880
NCT01154335
NCT01058655

Oesophageal cancer Paclitaxel &
Carboplatin &
Cetuximab

I NCT01490749

Gastric cancer MitomycinC
Paclitaxel

I
III

NCT01042782
NCT01248403

LDE225 I NCT02138929
Paclitaxel
Carboplatin

I/II NCT01514110

Imatinib resistant
gastrointestinal
stromal tumors

Imatinib I/II NCT01275222

Metastatic gastric
cancer

Cisplatin; 5-FU;
Leucovorin &
Capecitabine

II
I/II

NCT00632268
NCT01099527

Fluorouracil &
leucovorin calcium
& oxaliplatin

I/II NCT01231399

Esophageal cancer
Gastric cancer
Colon cancer

TS-1 & Cisplatin I NCT01096199

Temsirolimus Colorectal cancer Irinotecan II NCT00827684
Cetuximab II NCT00593060
avenues to improve clinical efficacy of available therapeutics and over-
come resistance.

5. Novel pathway crosstalk and potential new targets of the mTOR
pathway

Recent studies have uncovered multiple novel upstream regulators
of the mTOR pathway highlighting the extensive crosstalk between
mTOR and signalling pathways such as Hedgehog, WNT, Notch and
Hippo [129]. These “non classical” inputs of the mTOR pathway could
reveal promising novel targeting opportunities in GI cancers where
this crosstalk is driving tumour progression through the mTOR
pathway.

5.1. Hippo pathway

The Hippo pathway controls organ size by promoting apoptosis and
inhibiting proliferation through its main downstream effector Yes-
associated protein 1 (YAP1) [130]. Yap1 controls the transcription of
genes that govern proliferation and induce apoptosis [131]. Coordina-
tion between Hippo and mTOR pathways was hypothesised to occur
given the function of YAP1 in cell proliferation, which cannot be
sustained without coordinate cell growth modulation by mTOR [131].
A recent study has reported a molecular mechanism through which
the Hippo pathway can regulate cell growth by modulating mTORC1
andmTORC2 through the positive control of YAP1 [132]. YAP is respon-
sible for the transcription of the microRNA mir-29, which in turn in-
hibits the translation of PTEN. This down-regulation of PTEN by YAP1
leads to increased PI3K signalling and subsequent increased activation
of mTORC1 andmTORC2. This crosstalk is also implemented in the pro-
gression of HCC through another key activator of the Hippo pathway,
the transcriptional coactivator TAZ. Knockdown of TAZ in HCC cell
lines attenuated cancer cell growth via inactivation of the mTOR path-
way and expression of TAZ mRNA was associated with HCC tumour
size [133].

5.2. Hedgehog pathway

The Hedgehog (HH) pathway is essential for growth and develop-
ment and is implicated in the pathogenesis of multiple GI cancers. Spe-
cifically in oesophageal cancers over activation of the HH pathway
correlateswith lymph-nodemetastasis [134,135]. A recent study has re-
vealed crosstalk between the mTOR and Hedgehog pathways in OAC
whereby S6K1 phosphorylates the HH transcription factor Gli1 inde-
pendent of any upstream signalling from the HH pathway [136]. Gli1
is an established oncogene [137] and could be contributing to the devel-
opment of OAC via the mTOR pathway. Combinations of mTOR inhibi-
tors and HH inhibitors in OAC cells revealed greater growth inhibition
than either therapeutic alone [136]. Equally a novel synthetic lethality
has been identified in rhabdomyosarcoma, whereby combination treat-
ment with GLI1/2 inhibitor GANT61 and PI3K/mTOR inhibitor PI103 re-
duced tumour growth in an in vivo model of rhabdomyosarcoma
through caspase-dependent apoptosis [138].

5.3. Notch pathway

Notch signalling is an integral pathway to cellular proliferation, dif-
ferentiation and development [139]. Binding of the cell surface ligands
delta and jagged to thenotch receptors on an adjacent cell initiates a sig-
nal transduction pathway that culminates in the Notch intracellular do-
main (NCID) translocating to the nucleus and promoting target gene
expression. A recent study in rat hepatoma cells showed that activation
of mTORC1 by notch signalling promoted hepatic lipogenesis via hyper
activation of the key component ofmTORC1, raptor [140]. This hyper ac-
tivation of raptorwas independent of an increase inmRNA levels of rap-
tor and shows that notch signalling is capable of promoting mTORC1
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signalling via increased interaction of mTOR and raptor as well as in-
creased assembly of mTORC1. However further research is required to
define the molecular mechanism by which this hyper activation of
Notch signalling increases mTOR-raptor interactions and where along
this pathway there are potential targets.

6. Moving forward

Research into the role of the mTOR pathway in cancer is rapidly de-
veloping and as a result there has been considerable efforts invested in
bringing mTOR targeting agents to the clinic. While rapalogs have high
specificity for mTOR, their propensity for the development of resistance
means theymay only be suited to combination therapy for themajority
of cancers.

Dual PI3K/mTOR inhibitors appear to have the widest profile of ac-
tivity as these have multiple targets in the mTOR pathway however
the severity of overlapping toxicities that these agents will have with
other tyrosine kinase inhibitors is currently unknown and this may re-
strict their use with other targeted therapies. Available data on
second-generation ATP-competitive mTOR kinase inhibitors demon-
strates that their dual targeting of mTORC1 and mTORC2 could over-
come issues with resistance to rapalogs and have greater single agent
activity. However further genomic profiling of responsive tumours is
necessary to be able to implement this in the most clinically relevant
way.

While significant progress has been made in the development of
new agents to target mTOR, how to best evaluate mTOR inhibitors in
the clinical setting remains to be fully elucidated. Therefore there is a
pressing need to develop biomarkers able to assess the efficacy and pre-
dict the response of mTOR inhibitors in patients. Currently it is possible
to monitor activity of mTOR by analysing the phosphorylation status of
S6K and 4E-BP1 and some clinical trials have successfully used blood
and tumour samples from patients undergoing treatment with mTOR
inhibitors to detect a decrease in S6K and 4E-BP1 phosphorylation
[141]. However these may not be robust enough to become companion
diagnostic tools as 4E-BP1 has been shown to contain rapamycin resis-
tant phosphorylation sites [142]. Development of biomarkers must also
address the discord inmTOR expression between primary andmetasta-
tic tumours, and considerable intratumoural heterogeneity of mTOR
signalling between vascularised and hypoxic regions of tumours.

Furthermore, mTOR inhibitors may bring additional challenges in
the clinical setting due to the complexity of their metabolic effects and
their immunosuppressive potential especially in light of the fact that
rapamycin is approved to prevent allograft rejection. These potential is-
sues need to be clarified in both preclinical and clinical trials as they
could greatly influence the cancer patients' course of treatment.

Recent genomic, proteomic andmetabolomic studies ofmTOR in cell
lines have revealed a wealth of information on novel cross talk between
mTOR signalling and other pathways in GI cancers with Hippo, Hedge-
hog and Notch signalling pathways identified as upstream regulators
ofmTOR pathway [132,136,129]. Further investigation into themultiple
pathways that converge on mTOR will reveal valuable information not
only on the regulation of mTOR but also may provide new novel targets
in this signalling network. Despite the challenges that need to be ad-
dressed in further studies on targeting mTOR, this area of research
holds great promise in terms of potential clinical benefit and will likely
have an important role in the treatment of obesity associated gastroin-
testinal cancers.

Abbreviations

mTOR mechanistic target of rapamycin
GI gastrointestinal
PI3K phosphatidylinositol-3 kinase
raptor regulatory-associated protein of mTOR
rictor rapamycin-insensitive companion of mTOR
Rheb Ras homolog enriched in brain
IGF-1 insulin-like growth factor 1
eIF4E eukaryotic, initiation factor 4E
4EBP1-3 4E binding proteins 1–3
S6K S6 kinases
VEGF-A vascular endothelial growth factor A
STAT3 signal transducer and activator of transcription 3
PKC protein kinase C
SGK1 serum and glucocorticoid-induced protein kinase
Akt protein kinase B
MAPK mitogen-activated protein kinase
OAC oesophageal adenocarcinoma
BO Barrett's oesophagus
GORD gastro-oesophageal reflux disease
IKKβ IκB kinase β
TSC1 tuberous sclerosis 1
p-mTOR phosphorylated mTOR
OSCC oesophageal squamous cell carcinoma
GCC gastric cardia adenocarcinoma
GNCC gastric non-cardia adenocarcinoma
HCC hepatocellular carcinoma
NAFLD non-alcoholic fatty liver disease
EGFR epidermal growth factor receptor
PTEN phosphatase and tensin homolog
PIK3CA phosphatidylinositol-4,5-bisphosphate 3-kinase catalytic

subunit alpha
FGFR fibroblast growth factor receptor
VSMCs vascular smooth muscle cells
HSCs hepatic stellate cells
PGE2 prostaglandin E2
PC pancreatic cancer
PDAC pancreatic ductal adenocarcinoma
CRC Colorectal cancer
Ob-R leptin receptor
eEF2 eukaryotic elongation factor 2
EMT epithelial–mesenchymal transition
Grb10 growth factor receptor bound protein 10
TKIs tyrosine kinase inhibitors
CSCs cancer stem cells
BSC best supportive care
HER human epidermal growth factor
YAP1 Yes-associated protein 1
HH hedgehog
NCID Notch intracellular domain
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