
C o m p u t a t i o n a l
G e o m e t r y

Theory and Applications
ELSEVIER Computational Geometry 9 (1998) 145-158

A note on parallel algorithms for optimal h-v drawings of binary
trees

Panagiotis T. Metaxas a,l, Grammati E. Pantziou b,2, Antonis Symvonis c,.

a Department of Computer Science, Wellesley College, Wellesley, MA 02181-8289, USA
b Computer Technology Institute, P.O. Box 1122, 26110 Patras, Greece

c Basser Department of Computer Science, University of Sydney, Sydney NSW 2006, Australia

Communicated by R. Tamassia; submitted 25 January 1995; accepted 21 April 1996

Abstract

In this paper we present a method to obtain optimal h-v drawings in parallel. Based on parallel tree contraction,
our method computes optimal (with respect to a class of cost functions of the enclosing rectangle) drawings in
O(log 2 n) parallel time by using a polynomial number of EREW processors. The number of processors reduces
substantially when we study minimum area drawings. Our work places the problem of obtaining optimal size h-v
drawings in NC, presenting the first algorithm with polylogarithmic time complexity. © 1998 Elsevier Science
B.V.

Keywords: h-v drawing; Parallel algorithm; Parallel tree contraction; Tree layout

1. In troduct ion

Drawing trees in a way that facilitates the understanding of the properties of the object being drawn
is part of extensive research in the areas of visualisation, computational geometry and documentation
systems. In particular, rooted trees have been used to represent family trees, hierarchical structures
and search trees. (For a survey of graph drawing algorithms, including algorithms for drawing trees,
see [5].) In this paper we study h-v drawings of binary trees, h-v drawings were previously examined
by Eades, Lin and Lin [7] and Crescenzi, Di Battista and Piperno [4]. Our results extend to inclusion
drawings [6], and to slicing floorplanning [3,10].

The drawing of a rooted binary tree using the h-v drawing convention is a planar grid drawing
in which tree nodes are represented as points (of integer coordinates) in the plane and tree edges as

* Corresponding author. E-mail: symvonis@cs.su.oz.au.
E-mail: pmetaxas @ lucy.wellesley.edu.

2 The work of this author was partially supported by the ESPRIT Basic Research Project GEPPCOM (contract No. 9072).
E-mail: pantziou@cti.gr.

0925-7721/98/$19.00 © 1998 Elsevier Science B.V. All rights reserved.
PII S0925-7721 (96)0001 8- 1

146 PT. Metaxas et al. / Computational Geometry 9 (1998) 145-158

(a) (b) (c) (d)

Fig. 1. A binary tree and three of its h-v drawings.

non-overlapping vertical or horizontal line segments. Moreover, each node is placed immediately to
the fight (same Y-coordinate) or immediately below (same X-coordinate) its parent and the drawings
of subtrees rooted at nodes with the same parent are non-overlapping. Fig. 1 shows three different h-v
drawings of the same tree.

As it is evident, different h-v drawings of the same tree can be of different quality. The quality (or
cost) is a function of the drawing. The most commonly used cost function is the area of the enclosing
rectangle of the drawing. Other cost functions can be defined. Eades et al. [7] showed how to compute
i n 0(/2 2) time an optimal h-v drawing of a tree with n nodes with respect to a cost function ~(w, h)
which is nondecreasing in both parameters w and h, where w and h are the width and the height of
the enclosing rectangle of the drawing, respectively.

In this paper, we present a parallel method that derives optimal h-v drawings of binary trees. Our
method determines an optimal h-v drawing of a tree of r~ nodes in O(log 2 n) parallel time using
O(n6/ log n) EREW processors. Even though the number of processors is high, our method places
the problem of obtaining optimal h-v drawings as well as other related problems in NC. By realizing
that h-v drawings can be easily converted to upward drawings, our method can be used for deriving
(non-optimal) upward drawings of binary trees in parallel. In the case that we want to minimise the
area of the drawing, by using the fact that for a tree with n nodes there exist upwards layouts of area
n(log n + 1) [4], the required number of processors reduces to O(n 4 log n).

The rest of the paper is organised as follows. In Section 2, we give the necessary terminology. In
Section 3, we present our parallel algorithm for deriving optimal drawings for binary trees using the
h-v convention. Minimum area h-v drawings are also considered. We conclude in Section 4 with open
problems and by discussing the application of our method to related problems. A preliminary version
of this paper has appeared in [9].

2. Preliminaries

Consider a binary tree T = (If, E) (i.e., a weakly connected directed graph in which all nodes but
the root are of in-degree 1 and of out-degree 0, 1 or 2). We use the notation ITI to denote the number
of nodes of tree T. The subtree rooted at v, denoted Tv, consists of v, all of v's descendants and
the edges between them. A partial tree is a connected subgraph of a rooted tree. Note the difference
between a subtree and a partial tree.

A drawing Zl of a graph G = (V,E) maps each node v C V to a point Pv = (xv,y~) on the
plane and each edge (u, v) E E to a simple Jordan curve with endpoints P~, and Pv. If all edges are

P.T. Metaxas et al. / Computational Geometry 9 (1998) 145-158 147

mapped to straight-line segments, we have a straight-line drawing. Moreover, if all edges are line
segments parallel to the X or Y axis, the drawing is called an orthogonal straight-line drawing (or a
rectilinear drawing). If all the nodes of G are mapped to points with integer coordinates, we have a
grid drawing. When edges intersect only at common endpoints, the drawing is called planar. In this
paper, we study orthogonal straight-line planar grid drawings of rooted binary trees (for simplicity,
referred as drawings).

Given a graph G = (V, E) and a drawing A of G on the plane, the drawing of any subgraph H of
G resulting from A is called a partial drawing of H (with respect to A).

The enclosing rectangle of a drawing is the smallest rectangle with sides parallel to the axes
which contains all points of the drawing. Let Xmax = maxvcv{Xv}, Xmin = minvcv{x~}, Ymax =
maxvev {y~ }, Ymin = min~cv {y~ }. Xma×, Xmin, Ymax and Ymin completely define the enclosing rectan-
gle of a drawing. Two rectangles are overlapping if they share at least a point of the plane. Otherwise,
they are non-overlapping. The width of a drawing is equal to Xmax - Xmin while its height is equal
to Ymax - Ymin. A drawing is reduced if:
(1) for all integers i such that Xmin <~ i ~< Xmax there exists node v E V with x~ = i, and
(2) for all integers i such that Ymin ~< i ~< Ymax there exists node v E V with y~ = i.
In the rest of the paper we assume only reduced drawings.

The enclosing rectangle of a drawing can be completely described by its width, height and the
coordinates of one of its comers, say the left-top one. During the description of our algorithm, we
assume that the left-top comer of the enclosing rectangle has coordinates (0, 0). By fixing a point of
reference, it is sufficient to describe a rectangle R by a pair of two integers, its width and height, i.e.,
R = (w, h), w ~> 0, h ~> 0. Two rectangles are called equal if they have identical width and height.
Given two rectangles R1 = (wl, hi) and R2 = (w2, h2) we say that rectangle R1 dominates (or fits
in) R2 if

~/)1 ~ /122 and hi ~< h2.

Given a set S of rectangles, an atom is an element of S which is dominated by no other rectangle in
S. Any set of atoms that are sorted in increasing order with respect to their widths, are also sorted in
decreasing order with respect to their heights.

With each drawing we associate a cost. Our objective is to derive drawings of minimum cost. In this
paper, the cost function ~ : N 2 --* N is defined on the enclosing rectangle of the drawing. Our results
hold for any function that is nondecreasing in both parameters, i.e., ~ (x l , Yl)) ~)(X2, Y2) whenever
X 1) X 2 and Yl ~> Y2. Let R = (width, height). The following are commonly used cost functions that
are non-decreasing in both parameters:
(1) area(R) = width, height,
(2) perimeter(R) = 2(width + height),
(3) minimum_enclosing_square(R) = max(width, height),

= f height, if width ~< w,
(4) height_for_a_given_width (R, ~u) / oc, otherwise.

An h-v drawing of a binary tree is an orthogonal straight-line planar grid drawing which also satisfies
the following restrictions:
(1) Any tree node v is drawn at the left-top comer of the enclosing rectangle in the partial drawing

of the subtree rooted at v.

148 P.T. Metaxas et al. / Computat ional Geometry 9 (1998) 145-158

ai bi ci di

i :

ai bi fl
' ', i

e ~:: i iii iii iiiiiiii
Fig. 2. Examples of minimum size h-v drawings.

(2) The enclosing rectangles of the partial drawings of the subtrees rooted at sibling nodes are non-
overlapping.
The problem of minimum size h-v drawing of a binary tree T is the problem of determining an h-v

drawing of T of minimum cost with respect to some cost function ~p. Fig. 2 shows two h-v drawings
of the same tree. The left drawing of Fig. 2 is of minimum area while the right drawing is of minimum
enclosing square. Both drawings are of minimum perimeter.

3. The parallel algorithm for h-v drawings

The algorithm for finding a minimum size h-v drawing of a binary tree T = (V, E) is based on
the parallel tree contraction technique (see, e.g., [1]). Within a logarithmic number of phases, the
parallel tree-contraction algorithm contracts a tree T to its root by processing a logarithmic number
of intermediate binary trees T(i) = (V(i) ,E(i)) , i = 0, 1 , . . . k, with k = O(log ITI). Note that
the algorithm starts off with T(0) = T, and proceeds by contracting tree T(i - 1) to tree T(i) of
]T(i)I ~< elT(i - 1)1 nodes, 0 < c < 1. At the end, T(k) contains only one node.

During the ith phase of the algorithm, the tree T(i) is obtained from T(i - 1) by applying a local
operation, called shunt, to a subset of the leaves of T(i - 1). The shunt operation is composed of two
steps. In the first step, a subset of the tree leaves are removed (an operation called pruning, see Fig. 3)
and their parent (or sibling) nodes are updated to reflect this fact. In the second step, each of these
parents is removed (by an operation called shortcuning), and its child is updated. The shunt operation
simultaneously removes roughly half of the tree nodes, so e is roughly 1/2. To use the tree contraction

e °

I •

Pmning~.._

T(i-I)

Sho~cu~ing

Fig. 3. Application of the shunt operation to leaf l.

o e

o ~

T(i)

P.T. Metaxas et al. / Computational Geometry 9 (1998) 145-158 149

technique, one has to describe the updates that take place during the shunt operation. Before we do
that, we give some notation and describe the information associated with each node of the tree.

3.1. Data structures

If u E V(i) then let T~ be the partial tree of T contracted to u after applying the shunt operation
to siblings of u during the first i phases of the parallel tree-contraction algorithm. With each node
u in V(i) we associate a tuple L~, containing the following information. The root ru of the partial
tree T~ that has been contracted to u, and a set Ru that keeps information for all drawings of T~.
Each element of R,, corresponds to a specific reduced partial drawing re and consists of three tuples,
re = ((Wu, Hu), (Au, Bu), (xu, Yu)). The first tuple, (W~,, Hu), describes the width and the height of
the enclosing rectangle of re. The second tuple, (Au, Bu), describes the width Au and the height B,, of
the largest rectangle (having u at its top left comer) that can be included in the partial drawing re such
that the enclosing rectangle (W,~, H~) of 7r remains unchanged and rr is still a valid h-v drawing of T~.
We refer to (Au, Bu) as the empty rectangle corresponding to Ru. Finally, the third tuple, (x~, y~,), is the
location of u in re, where (0, 0) is the coordinate of the top left comer of any partial drawing. Note that
u is a leaf in the partial tree T~. For each u C V = Vo, we initialise Lu = (u; ((0, 0), (0, 0), (0, 0))).

Suppose that at some phase of the parallel tree-contraction algorithm we want to include the partial
drawing re of a partial tree rooted at a node v in a partial drawing re' of another partial tree whose v
is a leaf. Then, we need to know the position of v in re' as well as how much the inclusion of re in
ret will change the rectangle corresponding to re~. Thus, all the parameters associated above with each
node of each T(i), i = 0 , . . . , log IT I, are necessary for the parallel tree-contraction approach to work.

3.2. The shunt updates

Let 1 be a leaf in tree T(i - 1), s be l's sibling, f be l's parent and p be f ' s parent. Let also
L f = (rf; RI}, where

R f = { ((W) , H }) , (A } , B }) , (xlf, y })) , . . . , ((W } , H }) , (A} ,B}) , (x},yif)) },

Ls = (rs; Rs), where

((W~,H~) A 1 l 1 Rs { 1 1 = (~,B 1) ((Was H j A j

and Lt = (rl;Rz), where

W 1 H 1 , . . . , W. k , , ,) , (. , .) , (. , .)) ((

be the information associated with f , s and l, respectively. Recall that Rz, R I and R~ keep information
for all partial drawings of Tl i - ' , T~ -1 and T~ -1, respectively. Note that rl and r~ are the children of f

in the tree T = T(0), and that T~. z = Tz ~-1 because 1 is a leaf of T(i - 1). Note also that since we deal
with the drawing of subtree T~ t , we do not have to record any information about an empty rectangle.
Thus, the notation ((Wz, Ill), (, "), (', ")).

During the ith phase of the tree contraction algorithm, we apply the shunt operation to a set of
leaves of V(i - 1). The shunt operation to a leaf l of V(i - 1) consists of two stages, namely, a
pruning and a shortcutting stage (Fig. 3).

150 P.T. Metaxas et al. / Computational Geometry 9 (1998) 145-158

3.2.1. The pruning stage
In the pruning stage, we use the tuples Lt and Ls to construct the tuple L f, = (f ; Rf,) containing

information about all partial drawings of the partial tree which is rooted at f and includes the subtree
Tr~ and the partial tree T~ -1 .

Let % = ((Ws, Hs), (As, Bs), (xs, Ys)) be an element of the set Rs and rrl = ((Wl, Hi), (', "), (., .))
be an element of the set Rl. There are essentially four ways to arrange Trz and T~- 1. For each one, we

i x f ' f ' compute the new drawing. In what follows, the superscripts in (s , ys) are used to avoid confusion

with (xs, Ys). (x~', y{') are the coordinates of s in the drawing of the partial tree rooted at f and
including the subtree T~ and T~ -1, while (xs, ys) are the coordinates of s in the partial drawing of

/ - - I .

Case 1. The situation in this case is described in Fig. 4(a). The produced partial drawing ((Wf, , Hf ,) ,
X f! f ' (AI,, By,), (s , ys)) is defined by

W f , : = W l + W s + l ,

Af , := As,

f' x s : = x s + W l + l ,

Hf , := max(Hi + 1, Hs),

Bf, := Bs + max(0, Hi + 1 - Hs),

f, Ys := Ys.

f ! ! The correctness of the computed values for Wf, , HI, , A f,, xs , y f can be readily verified from
Fig. 4(a). For B f,, note that we simply extent the height of the empty rectangle up to the bounds of
the enclosing rectangle.
Case 2. The situation in this case is described in Fig. 4(b). The produced partial drawing ((Wf, , Hf ,) ,

i x f ' f ' (A f, , B f,), t s , Ys)) is defined by

Wf, := Wz + Ws + l,

Af , := As,

f ' X s :=- Xs ,

H I, := max(Hs + 1, Hi),

Bf, := Bs + max(0, Hz - Hs - 1),

f, Ys := ys + 1.

Case 3. The situation in this case is described in Fig. 4(c). The produced partial drawing ((Wf, , He,),

(A f , ,B f ,) , (x f ' , y{ ')) is defined by

Wf, := max(Ws + 1, WI),

Af , := As + max(0, WI - Ws - 1),

f, x s : = x s + l ,

HS,:=Hs+Hz+I,

Bf, := Bs,

f, Ys := Ys.

Case 4. The situation in this case is described in Fig. 4(d). The produced partial drawing ((Wf,, Hf,) ,

(A f , ,B f ,) , (x f ' ,y{ ')) is defined by

Wf, := max(Wt + 1, Ws),

A f, := As + max(0, Wt + 1 - Ws),

f, X s := Xs ,

Hf, := HI + H~ + I,

BI, := B,,

f ' y~ := #~ + H z + 1.

P.T. Metaxas et al. /Computational Geometry 9 (1998) 145-158 151

f

I
I

A
" r

s

i l

s

s 0

s 0

f

1 I r s

Sill

(a) (b)

f

r I

(e) (0

s

so

(c)

(d)

Fig. 4. The cases which occur when combining the subtree Tr~ together with the partial tree T2 -1 during the pruning phase
of the shunt operation.

Note that in all of the above cases the size of the empty rectangle is extended up to the bounds of
the enclosing rectangle. It is possible that the sibling s of leaf 1 does not exist. This can happen when
tree T is not a regular binary tree. This leads to the following additional cases.
Case 5. The situation in this case is described in Fig. 4(e). The produced drawing ((Wf, ,Hf,) ,
(., .), (., .)) of subtree T~ s is defined by

Wf, := WI, Hf, := HI + I.

Case 6. The situation in this case is described in Fig. 4(f). The produced drawing ((Wf,,HI,),
(., .), (., .)) of subtree Tr s is defined by

W f , : = W s + l , Hf , :=Hs .

3.2.2. The shortcutting stage
In the shortcutting stage, the tuples L f, and Lf are used to construct the new tuple for L~. The

root of the new Ls will be rf. To determine an element 7r of the new set Rs we combine drawings

"fff' ~- ((Wf,, Hf,), (Af,, Bf,), (x f', yf')) o f Rf , with drawing 71 -f = ((W f , Hf), (Af, Bf), (xf, yf))
of Rf. In simple words, we embed rrf' into rcf.

152 P.T. Metaxas et al. / Computational Geometry 9 (1998) 145-158

The new element 7r = ((Ws, Hs), (As, Bs), (xs, Ys)) of Rs produced by embedding 71 - f l into 7l " f is
computed as follows:

Ws := W f + max(0, Wf, - A f),

As := Af , + max(0, A f - Wy,),

f, Xs : z X f "-~ X s ,

Hs := H f + max(0, H f , - Bf) ,

Bs := Bf , + max(O, B f - Hf ,) ,
y,

Ys : = Y f + Ys •

(1)

The correctness of the computed values for Ws and Hs can be readily verified. For As and Bs, note that
in the case where Af > Wff and/or By > Hf,, As equals Af, + Af - W f f and/or Bs = Bf, + B f - Hf,.
I.e., the empty rectangle of 7r is extended to be as large as the difference between the sizes of the
enclosing rectangle of 7r f ' and the empty rectangle of 7rf allows.

3.3. Analysis

In the pruning stage, we use the tuples Lz = (rt;Rz) and Ls = (rs;Rs) to construct tuple
Lf , = (f; Rf,) . Since each element of Rz and Rs is of the form ((W, H), (A, B), (x, y)), where
0 ~< W, H, A,/3, x, y ~< n, each of Rl and Rs contains O(n 6) partial drawings. In order to consider
all of their combinations in constant time, we need O(n 12) processors. Of course, not all of these
combinations result into distinct partial drawings. This is because the resulting set R) also contains

O(n 6) partial drawings. So, we do have to eliminate duplicates. Eliminating duplicates in O(log n)
time can be achieved by using standard techniques such as sorting, pointer doubling and list ranking.

The analysis of the shortcutting stage is identical. By noting that O(n) leaves of T(i - 1) can
participate in a shunt update, we conclude that each phase of the parallel tree contraction algorithm
requires O(n 13) processors and terminates after O(log n) time.

By realising, as the next lemma shows, that it is enough to keep only one partial drawing out of
those that differ only in the coordinates of the interface to below, i.e., they have the same enclosing
and empty rectangle, the required number of processors reduces to O(n9).

1 2 (s , y l)) and 7r~ = ((W~,H~), Lemma 3.1. Consider two drawings 7r s = ((Ws, Hs), (As, Bs), X 1
(As, Bs), X 2 2 (s, Ys)) of Rs that differ only in the coordinates o f s in the drawing. Also assume a
drawing 7rl = ((Wl, Hz), (., .), (., .)) of R1 and a drawing 7rf = ((Wf , H f), (A f , By), (x f , y f)) of R f .

1 ~ 1 2 t Let 7% be the drawing obtained by combining 7r s, 7r 1 and 7"ff during phase i. Let 7r s be the drawing
2 11 2 I obtained by combining 7r s, 7rz and 7¢f during phase i. Then, 7r s and 7r s have the same enclosing and

empty rectangles.

Proof. Simply observe that the rules for computing the enclosing and empty rectangles during the
pruning and shortcutting stages of each phase, do not use the coordinates of s. []

Theorem 3.2. A minimum size h-v drawing of a binary tree with n nodes can be computed in O(log 2 n)
parallel time using O(n9/ log n) EREW processors.

Proof. In the pruning stage, there are at most four possible ways to arrange the subtrees Tr~ and T~ -I .
All of them have been considered and the corresponding partial drawings have been obtained. For the
shortcutting stage, there is only one way to embed TrY' into 7rf. At the end of the tree contraction, the

P.T. Metaxas et al. / Computational Geometry 9 (1998) 145-158 153

root of the tree has a list of n drawings (atoms). We evaluate the cost function ~ for each drawing
and we select the one of minimum cost (size). Thus, the algorithm correctly computes a minimum
size h-v drawing.

We have to execute O(log n) stages of the tree contraction algorithm each requiring O(log n) time
and O(n 9) processors. By employing Brent's lemma [2], it is possible to reduce the number of required
processors to 0(?29/ log n) . []

3.3.1. Reducing the number of processors
In this section we show how to further reduce the number of processors required for the parallel

algorithm to O(n6/ log n). This is achieved by providing a better upper bound for the number of
partial drawings which must be maintained at each node of the tree during the course of the tree
contraction algorithm. In doing so, we introduce the prevail operation which might find applications
to other layout algorithms.

Let 7r I 1 1 (A 1 /31) 772 W2 2 /32 2 2 ((W~,H~), (x~,y~)) and ((~,H. 2) (A~, ~), be partial = , u, ~,, = , (x~,y~)) two
drawings of T~.

Definition 3.3. We say that (partial) drawing 771 dominates (or fits in) (partial) drawing 772 if the
enclosing rectangle of 771 fits in the enclosing rectangle of 772.

Definition 3.4. Partial drawing 771 prevails partial drawing 71-2 with respect to integer A > 0 if 77 1 fits
in 772 and at least one of the following conditions is satisfied:
(a) (A~, B 2) fits in 1 l (Au, B~,),
(b) A 2 ~ < A ~ a n d / 3 2 > B ~ > A ,
(c) A ~ > A ~ > / A a n d B 2~<B~,
(d) AZ~>A l / > A a n d B 2 > B ~ > / A .

The situations described by the above conditions are described graphically in Fig. 5. In this paper,
when using the notion of prevail, A is the size (i.e., the number of nodes) of a partial tree.

Definition 3.5. Let u E V(i), T~ be the partial tree of T contracted to u during the first i phases of
the parallel tree contraction algorithm, T~ be the subtree of T rooted at u and R be a set of partial
drawings of T~. A partial drawing 77 in R is called useful if no other partial drawing in R prevails 77
with respect to the size]Tul of tree Tu.

Lemma 3.6. Let u E V(i), T i be the partial tree o f T contracted to u during the first i phases of the
parallel tree contraction algorithm and Tu be the subtree o f t rooted at u. Then the number of useful
partial drawings in L~ is O(min(lT~], IT~[). IT,/[2).

Proof. Let 771 l l A1 B 1 l 772 2 2 u), (xu, ((WL U 2 2 /32 = (u, y~)) and u), (A~, ~), be = t w o

partial drawings in Ru such that 771 fits in 7r 2 and A 2 > A~ ~> [Tu] and B 2 > B~/> {T~,]. Then, based
on the definition of the prevail operation, 77J prevails 7r 2 and 7r 2 is eliminated. 772 is also eliminated in the
case where A 2 ~< A 1 and/32 <~ B~. This means that for partial drawings that have empty rectangles
with width and/or height greater than]T~[, the width and/or the height of the empty rectangle is
irrelevant for the prevail operation. Thus, given a partial drawing 7c = ((Wu, H~), (A~, B~), (xu, yu))

154 P.T. Metaxas et al. / Computational Geometry 9 (1998) 145-158

I
B
v

I

B v

A 1

J #
i v

:',2
v

(a)

A 1 v
A v

k

i .

(c)

B I

v

I
B
v

v

B 2
v

t

(b)

1
Av

k

IB2

t i

.......................
)~I Av

k

• .

(d)

Fig. 5. The situations described by conditions (a), (b), (c) and (d) in Definition 3.4.

that has A~ and/or B~ greater than ITu], we may replace it in Ru by a partial drawing 7{ whose Au
and/or Bu parameters are equal to IT,]. Let R~ be the new set of partial drawings.

Notice that in R~, we cannot have two partial drawings with the same enclosing rectangle such
that the empty rectangle of the one dominates that of the other. The maximum size of each side of an
empty rectangle can be at most]T~]. But, we only need rectangles big enough to fit the drawing of
T~, i.e., we need empty rectangles with side size at most IT~]. Thus, the interesting partial drawings
are the ones with empty rectangles whose side size is at most min(IT~l , [T~]). Note that the maximum
number of different empty rectangles such that no empty rectangle is dominated by another one is
O(min(IT~,[, [T~[)) and the number of different enclosing rectangles is O([T~12). This results to a total
of O(min(lTu], [T~[). [T~[2) useful partial drawings. []

In order to reduce the number of processors required for the parallel algorithm, we apply the
prevail operation after each pruning and shortcutting stage. The parallel implementation of the prevail
operation consists of two major steps. In the first step, each drawing ((Wf, , H f,), (A f, , B f,), ~(xfts,vs ~ f'))

with Af, > ITsl and/or By, > IT~I is substituted by the drawing ((Wf,, Hf,), (A, B), (x f' , y{')) where
m = ITs l and/or B = IT I. In the second step, basic parallel algorithmic techniques are employed (e.g.,
sorting, pointer doubling and list ranking) and the drawings which are prevailed by other drawings
are eliminated. Both steps terminate after O(log n) time.

The following two lemmata show that we can safely eliminate prevailed partial drawings after each
pruning and each shortcutting stage. By "safely", we mean that there is no valid drawing which can
be created only through the involvement of an eliminated partial drawing.

PT. Metaxas et al. / Computational Geometry. 9 (1998) 145-158 155

L e m m a 3.7. We can safely eliminate prevailed elements from Rs after the end of each shortcutting
stage.

Proof . Let 7r I W l H 1 1 /31 71-2 2 2 ((W;, H~), (A~, B z = ((~, s) , (As , ~) , (' , ')) and = s) , (' , ')) be two partial
drawings of R~ such that 7r I prevails 7r 2. Then, 7r 1 fits in 7/" 2 and at least one of the following
conditions is true:
(a) A 2 < ~ A ~ a n d B 2~<B~,
(b) A 2 ~< A 1 and B~ > B~) min(lT~], IT/I),
(c) A 2 > A 1/> min(lTsl, IT/I) and B~ 2 ~< B l,
(d) A 2 > A 1 >~ min(lT~ I, IT/I) and B~ 2 > B~ >~ min(lZ~[, IT21).

We distinguish among the following cases.
(i) (Tr I fits in 7r 2) and (A 2 ~< A~ and B~ ~< B2).
Then, according to Definition 3.4, 7r 2 is eliminated. Assume that it is not safe to do so. That means

that there exists a drawing (atom) of T~s that we only get by using the partial drawing 7r 2 which we
want to eliminate. Say that this atom has dimensions (W 2 , H]). Also assume that the drawing of T~
in this atom is 7rr~ of dimensions (W, H) . Then, we must have that

W 2, = W~ + max(0, W - A2s), H 2 = H 2 + max(0, H - B2) . (2)

But, consider the drawing obtained by using 7rT~ and 7r 1. We must have that

W~s = W~ + max(0, W - Al~), H 1 = H~ + max(0, H - B~). (3)

Note that

max(0, W - Als) ~< max(0, W - AZs),

max(0, H - B2) ~ max(0, H - B2) , (4)

w l <, <<.

From (2), (3) and (4) we get

W1 <~ W~s and Hls <<. H2s.

Thus 7r 2 is not an atom, a contradiction.
(ii) (Tr I fits i n 7l "2) and (A 2 <~ A n and B 2 > B 2 ~> min(lTsl, IT/l)).
Again, according to the definition of prevail, 7r 2 is eliminated. This is safe, since in this case the

interesting drawings are the drawings 7r l' and 7r 2' that have the same enclosing rectangles as 7r 1 and 7r 2
respectively, but their empty rectangles are (A~, min([T~ [, [T/1)) and (A~, min(IT~l, IT/1)), respectively.
Now, because of case (i), 7r 2' can be safely eliminated.

B~ ~< B ,) . (iii) (Tr 1 fits in 7r 2) and (A 2 > A 1 ~> min(lTs[, IT I) and 2 l

In this case, the interesting drawings 7r I and 7r 2 have as empty rectangles (min(lTs I,] T/]), B~) and
(min(]T~],]T~]), B2), respectively. Thus, 7r 2' can be safely eliminated.

> As ~> mm(lT~l, IT~'I) and B s > B s ~> (iv) (Tr 1 f i t s in 71-2) and (A~ 1 • i 2 1 min(IT~l, IT21)).
Obviously, the drawings 7r z 2' and 7r have the same empty rectangle (min(]T~], IT/I), min(lTsl, IY~l)).

Thus, 7r 2' can be safely eliminated. []

L e m m a 3.8. We can safely eliminate prevailed elements from Rs after the end of each pruning stage.

156 P.T. Metaxas et al. / Computational Geometry 9 (1998) 145-158

Proof. Let Tf, be the partial tree rooted at f and containing Tz and T~ - l as f ' s children. Let 7@ =
((W),,H},), (A},, B},), (., .)) and 7@ = ((W},, H},), (A},, B},), (.,-)) be two partial drawings of Rf,
such that 7@ prevails 7@. Then 7r}, fits in 7@ and at least one of the following conditions is true:
(a) A}, ~< A}, and B}, ~< B},,

(b) A}, <~ A}, and B}, > B}, ~> [Tf, I,
(c) A}, > A}, ~> [Tf,[and B), ~< B),,

(d) A}, > A}, ~> IZf'l and B}, > B), >/ITf,[.
Let 7rf -- ((W,H) , (A ,B) , (. , .)) be a partial drawing of T) -1 with which 7@ and 7r}, will be

combined during the shortcutting stage. We will show that it is safe to eliminate 7@. Again, we
distinguish four cases, one for each of the four conditions in Definition 3.4.

(i) (rr}, fits in re},) and (A}, ~< A}, and B}, ~< B),).
This can be equivalently written as

w), .< .</#,, A}, A},, 8}, (5)
1 and 2 Consider the partial drawings 7rs % we get when we combine 71-f with 7@ and 7r},, respectively.

For 7r 1 w e have

WJ = W + max(0, W } , - A),

AI~ = A}, + max(0, A - W),),

For 7r 2 we have

W 2 : W + max(0, W}, - A),

A2~ = A}, + max(0, A - W},),

H i = H + max(0, H) , - B),

B~ : Hlf, + max(0, B - H),) .
(6)

H 2 = H + max(0, H } , - B),

t3 2 = H), + max(0, B - H},).
(7)

A 1 1 prevails 1 fits in 2 and also (A2,B~) fits in (s, B2). Thus % Combining (5), (6) and (7) we get that % 7r~
2 So, the use of 7r}, resulted to a partial drawing that is eliminated (according to Lemma 3.7) after 71" S ,

the shortcutting stage.
The proof for the remaining three cases proceeds on the same lines as in Lemma 3.7. []

Theorem 3.9. A minimum size h-v drawing of a binary tree with n nodes can be computed in O(log 2 n)
parallel time using O(n6/ log n) EREW processors.

Proof. By Lemmas 3.7 and 3.8 the prevail operation does not eliminate useful partial drawings. Thus,
the algorithm correctly computes a minimum size h-v drawing.

For the time and processor bounds of the algorithm we note the following. During pruning, since 1
is a leaf, the tree Tt includes only I. Thus, we may have only O(]T~ I) elements in the set Rz. Also,
from Lemma 3.6, the list Rs contains at most O(min(ITsl, IT -ll) • [T~-1I 2) partial drawings. This
means that at most O(ITr, I- min(lTs[, IT~ - l t)" IT -ll 2) partial drawings are computed, on which we
apply the prevail operation to get Rf,. The number of partial drawings in Rf, is at most O(min(lT~, I +
IT~-ll, ITsl)- ([T~z I + IT~-ll)2).

After shortcutting, the number of computed partial drawings is

t R f [. [Rf,[= min([T)-l] ,]Tf[). [T~-I[2. min(lT~t [+ [T~-I], [T~[). ([T~[+ [T~-I[) 2.

P.T. Metaxas et al. / Computational Geometry 9 (1998) 145-158 157

Again, the prevail operation is applied on them. Note that, at each phase of the parallel tree contraction
algorithm, each tree node contributes to the complexity of only one shunt operation (applied to a leaf l).
This comes from the fact that the number of computed partial drawings depends on the number of
nodes that have already been contracted to the nodes f , l and s. Thus, on each phase of the parallel
tree contraction algorithm, for both the computation of the elements and the implementation of the
prevail operation, a total number of O(n 6) processors is employed. O(log n) time is needed for the
implementation of the prevail. This gives a total of O(log 2 n) parallel time and O(n6/ log n) processors
for the parallel tree contraction algorithm. []

3.4. Minimum area h-v drawings

When we are after minimum area h-v drawings, the number of processors required by the parallel
algorithm can be substantially reduced. To achieve that, we used a result due to Crescenzi, Di Battista
and Piperno which was developed in the context of upward drawings of binary trees [4]. An upward
drawing of a binary tree is quite similar to an h-v drawing. The only difference is that in an upward
drawing of a tree the enclosing rectangles which correspond to partial drawing of subtrees rooted at
sibling nodes are allowed to overlap. Related results regarding minimum area upward drawings of
general trees were obtained by Garg, Goodrich and Tamassia [8].

Theorem 3.10 (Crescenzi, Di Battista and Piperno [4]). For any binary tree T of n nodes, there exists
an h-v drawing of T with at most n(logn + 1) area. Moreover, the width of the layout is at most
log n ÷ 1 while its height is at most n.

By using the above result we can reduce the number of partial drawings of T~ in R~ during each tree
contraction phase. More precisely, we only keep partial drawings with area bounded by n(log n ÷ 1).
As a result, at the end of each pruning stage there are at most nZ(log n ÷ 1) partial drawings in any
R-list while, during the shortcutting stage, a total of at most n4(log n ÷ 1) 2 partial drawings might be
created. Thus, on the same lines with Theorem 3.9, we can prove the following theorem.

Theorem 3.11. A minimum area h-v drawing of a binary tree with n nodes can be computed in
O(log 2 n) parallel time using O(n 4 log n) EREW processors.

In the case we are interested in some layout of area bounded by n(log n + 1) rather than a minimum
area layout, the number of processors required by our parallel solution can be further reduced to
O(n 2 log 3 n). This is achieved by taking into account that there exist layouts with width at most
log n ÷ 1 which satisfy this area requirement.

However, there is a straightforward PRAM algorithm for computing an h-v drawing of area n(log n +
1) in O(log n) parallel time with n / l o g n processors. It consists of three steps. Firstly, we determine
the size of each subtree, i.e.,]Tvl for all nodes v of the tree. Then, we classify the tree edges as heavy
and light. An edge between u and its child v is heavy if]Tv] > IT~I/2, and light otherwise. The heavy
edges form a collection of heavy paths. Finally, we draw the heavy paths as horizontal chains and the
light edges as vertical segments. The computation of the exact coordinates for each node is easy and
can be done with standard Euler tour techniques.

158 PT. Metaxas et al. /Computational Geometry 9 (1998) 145-158

4. Conclusions

In this paper, we presented a parallel method which constructs optimal h-v drawings of binary trees.
Even though the number of processors involved in our method is high, our work places the problem
in NC, presenting the first algorithm with polylogarithmic time complexity. The number of processors
involved in the NC algorithm is large. It would be nice to get a solution with a smaller number of
processors. Also, the only sequential solution we know is based on the bottom-up approach and takes
O(n 2) time. It is open to derive an o(n 2) sequential algorithm.

It is worth mentioning that our method can be applied to produce optimal inclusion drawings of
binary trees [6] and minimum area slicing floorplans [3,10]. For inclusion drawings the time/processor
requirements are similar to those of the h-v drawings, thus placing the problem in NC. The slicing
floorplanning problem is also placed in NC (with similar time and processor complexities) only in the
case that the optimal layout is of polynomial size; the only case of practical interest. For details about
these extensions see [9].

Acknowledgements

We would like to thank the anonymous referee for bringing to our attention the optimal parallel
algorithm for h-v drawings in n(log r~ + 1) area which was sketched at the end of Section 3.4.

References

[1] K. Abrahamson, N. Dadoun, D. Kirkpatrick, T. Przytycka, A simple parallel tree contraction algorithm,
J. Algorithms 10 (1989) 287-302.

[2] R.P. Brent, The parallel evaluation of general arithmetic expressions, J. Assoc. Comput. Match. 21 (1974)
201-206.

[3] C.-H. Chen, I. Tollis, Parallel algorithms for slicing floorplan designs, in: Proceedings of SPDP '90, 1990,
pp. 279-282.

[4] E Crescenzi, G. Di Battista, A. Piperno, A note on optimal area algorithms for upward drawings of binary
trees, Computational Geometry: Theory and Applications 2 (4) (1992) 187-200.

[5] G. Di Battista, R Eades, R. Tamassia, I.G. Tollis, Algorithms for drawing graphs: an annotated bibliography,
Computational Geometry: Theory and Applications 4 (5) (1994) 235-282.

[6] P. Eades, T. Lin, X. Lin, Two tree drawing conventions, Internat. J. Comput. Geom. Appl. 3 (2) (1993)
133-153.

[7] R Eades, T. Lin, X. Lin, Minimum size h-v drawings, in: Proceedings Advanced Visual Interfaces (AVI
'92), World Series in Computer Science, Vol. 36, 1992, pp. 386-394.

[8] A. Garg, M.T. Goodrich, R. Tamassia, Area-efficient upward tree drawings, in: Proceedings 9th Sympos.
Comput. Geom., 1992, pp. 359-368.

[9] RT. Metaxas, G.E. Pantziou, A. Symvonis, Parallel h-v drawings of binary trees, in: Proceedings 5th Intemat.
Sympos. Algorithms Comput., Lecture Notes in Computer Science 834, Springer, Berlin, 1994, pp. 487-496;
also: TR 480, Dept. of Computer Science, University of Sydney, March 1994.

[10] L. Stockmeyer, Optimal orientations of cells in slicing floorplan designs, Inform. and Control 57 (1993)
91-101.

