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1. INTRODUCTION

Let D be a bounded convex domain in the complex plane C, and let &
be a family of analytic self-mappings of D. We consider sequences of the
form

F,=fof,0 of, f,eF, n=12,..., (1.1)

and ask whether such sequences must converge to a constant limit in D. It
is known that if & consists of contraction mappings, in the sense that

(1) for each f € 7, we have |f'| < 1in D,
and

(I1) for some z, € D, suplf'(z,)l =1 — ¢,, where ¢, > 0,
fes
then each sequence of the form (1.1) converges uniformly to a constant.
This was proved by Beardon in [2]; see also [1], where the redundant
assumption that each f in .7 extends continuously to D (which follows
from (1)) was included.

The key to the proof of such convergence results in [1] and [2] is to
consider the nested sequence of sets F,(D), n =1, 2, ..., and show that
diam F/(D) —» 0 as n — . In [1], the explicit estimate diam F (D) =
O(1/n'/?) was obtained for the special case when D is a disc, and the
same estimate was obtained in [2] under the assumption that D is bounded
convex with the curvature of ¢D uniformly bounded away from both 0 and
o, Here, we generalize this latter result somewhat further.
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We call ¢ a Dini function if it is strictly increasing and convex on [0, <),
with

I (Pt(zt)dt <o, (1.2)

For such a function ¢ and a positive number a, we call the set
E,,={x+iy:lxl<a, o(lx]) <y < ¢(a)}

a Dini comparison domain. Then we say that a bounded convex domain D
is a Dini-convex domain if there exist Dini comparison domains E, , and

E, , such that, for each {, € 4D,

o+ woEy, ,SD C{y+ wE, ,,
where w, is a unit tangent vector to ¢D at {,.

Note that, since a Dini function is strictly increasing with derivative zero
at 0, there is a unique tangent line at each boundary point of a Dini-
convex domain. Also, there are no line segments in the boundary of such a
domain.

THEOREM. Let D be a Dini-convex domain, with Dini comparison do-
mains E, , and E,, ,, and suppose that the family 7 of analytic self-mappings
of D satisfies (I) and (II). Then

diam F,(D) < 4¢ '(C/n), forn=1,2, ..., (1.3)

where C = C(z,, ¢,, D) is a positive constant.

Remarks. 1. If 9D has curvature uniformly bounded away from 0 and <o,
then we can take ¢ and  to be of the form ¢(x) = cx? and (x) = dx?,
where 0 < ¢ < d < . Then (1.3) implies that diam F,(D) = O(1/n"/?) as
n — o, which is the result of Beardon mentioned earlier. More general
Dini-convex domains can be obtained as follows. First, let ¢ and & be
increasing function on (0, «) such that

0<e(t) <o(t), for0<t<ee,

and [y 1~ %8(¢t)dr < . Let L > 0 and consider any increasing real function
6 such that

0(t+L)=6(t) + 2, for t € R,
ety —t) <0(t,) —0(ty) <6(t, —ty), fore, <t,,
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and

[Femo a0,
0

Then y(1) = [{ e dr, 0 <t < L, is a unit-speed parametrization of a
Jordan curve T' of length L, and it is straightforward to show that I’
bounds a Dini-convex domain, with corresponding Dini functions of the
form

o(t) =C/Oa8(7) dr, () =C/(-)Ct5('r) dr,

where ¢ = c¢(&, L) and C = C(8, L) are positive constants.

2. Note that if D is Dini-convex, then we must have ¢(x) = O(x?) as
x — 0, because of the existence of (a dense set of) discs internally tangent
to dD.

3. As in [2] we could formulate a version of our theorem in which the
inner Dini comparison domain E, , is replaced by an inner B-wedge
condition, 0 < B <1, and the outer Dini comparison domain E,, is
unchanged. In this case the right-hand side of (1.3) is replaced by
49 1((C/n)P). We omit the details.

4. Our theorem does not apply when the domain D is, for example, a
square, and no explicit estimate for the rate at which diam F,(D) tends to
zero seems to be known in this case.

2. PROOF OF THEOREM

First, we introduce the modulus of equicontinuity

w(r) =sup{lf(z1) —f(z,)l: 21,2, €D, lz; — z,l <1, f € F},
0<r<d,

where d = diam D. Then (see [1]), we have
diam F,(D) < 0"(d), forn=1,2,,..., (2.1)
where " denotes the nth iterate of w. To proceed, we need a good

estimate for w. Let §,(z) =dist(z, dD), and put A, ={z: |z — z,
< 36,(z)). By applying the Schwarz—Pick theorem to the function f’ we
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obtain a positive constant ¢; = ¢,(z,, ¢y, D) such that
lf'(z)l<1—cy, forze Ay, fes. (2.2)
Since |f’| is subharmonic in D, we deduce that
1—-1f'(z)l =ch(z), forzeD - A, (2.3)

where £ is the harmonic measure in D — A, of dA,. Harnack’s inequality,
together with [3, part (ii) of Theorem], shows that

h(z) 2c¢,6p(z), forzeD—A,, (2.4)
where ¢, = ¢,(z,, D) > 0. Thus, by (2.2), (2.3), and (2.4),
lf'(2)l<1—c¢36,(2z), forzeD, (2.5)
where ¢; = c4(z,, ¢q, D) > 0.
Now let L be any closed line segment in D of length r, 0 <r < d, and

let L be the closed line segment contained in L, with the same centre as
L and length 3r. We claim that

8p(2) 2 ¢y @(3r), forzelL, (2.6)

where ¢, = ¢,(D) > 0. To prove (2.6), let z,;, z, be the endpoints of L and
consider the unique points ¢;, {, € dD at which the lines tangent to ¢D
are parallel to L. If Q denotes the quadrilateral with vertices z,, {;, z,, {5,
then evidently

8p(2) = 8y(z), forzel. (2.7)
Let w;, w, denote unit tangent vectors to dD at {;, {,, respectively, so

that Q lies in both {; + w,E, , and ¢, + w, E, ,. A simple geometric
argument then shows that

,a

8o(z) = imin {4r, ¢(r)}), forzeL. (2.8)
Using (1.2) and that fact that ¢ is increasing, we deduce that
o(r) < Cyr, for0<r<d,

where C; = C(D) > 0, and so (2.6) follows from (2.7) and (2.8).
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Using (2.5) and (2.6), we obtain

1f(21) = f(2,)] < lef/(z)IIdzl
<r-— cstSD(z)ldzl

Sr—c3f~6D(z)|dz|
T

<r-— %rc3c4cp(%r),
so that

w(r) Sr(l— %go(%r)), for0<r<d, (2.9)

where C = C(z,, ¢y, D) > 0. Now let r, = w"(d) and x, = ¢(3r,). Then
(2.9) implies that

1
Vn+1Srn(1— E(P(%rn)), forn=0,1,2,....
Hence, by the convexity of ¢,

X
<x|1--2), forn=0,12,....
xn+l Xn( C) n
It follows that

1

! 1 x”) f 0,1,2
> — + —, or =U,l1,4, ...,
xn( C "

xn+ 1
and so

, forn=0,1,2,....

al =

1
—_— >
xn
Therefore

w"(d) =r, =4<p_1(xn) 34(,0_1(C/n), forn=1,2,....
In view of (2.1), the proof of the theorem is complete.
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