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SUMMARY

Plk4 family kinases control centriole assembly. Plk4s
target mother centrioles through an interaction
between their cryptic polo box (CPB) and acidic
regions in the centriolar receptors SPD-2/Cep192
and/or Asterless/Cep152. Here, we report a crystal
structure for the CPB of C. elegans ZYG-1, which
forms a Z-shaped dimer containing an intermolecular
b sheet with an extended basic surface patch.
Biochemical and in vivo analysis revealed that elec-
trostatic interactions dock the ZYG-1 CPB basic
patch onto the SPD-2-derived acidic region to pro-
mote ZYG-1 targeting and new centriole assembly.
Analysis of a different crystal form of the Drosophila
Plk4 (DmPlk4) CPB suggests that it also forms a
Z-shaped dimer. Comparison of the ZYG-1 and
DmPlk4 CPBs revealed structural changes in the
ZYG-1 CPB that confer selectivity for binding
SPD-2 over Asterless-derived acidic regions. Overall,
our findings suggest a conserved mechanism for
centriolar docking of Plk4 homologs that initiate
daughter centriole assembly.

INTRODUCTION

Centrioles are small cylindrical organelles with two critical func-

tions: to recruit pericentriolar material (PCM) to form centro-

somes and to serve as basal bodies during ciliogenesis (Gönczy,

2012; Brito et al., 2012; Azimzadeh andMarshall, 2010; Loncarek

and Khodjakov, 2009). In dividing cells, duplicated centrosomes

promote bipolar spindle assembly by nucleatingmicrotubules on

opposite sides of the aligning chromosomes. Centrioles dupli-

cate precisely once per cell cycle to ensure that cells entering

mitosis have exactly two centrosomes. However, cells in solid

tumors and many cancer cell lines have extra centrosomes,

suggesting that dysregulation of centriole duplication may
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contribute to tumorigenesis (Nigg and Raff, 2009; Anderhub

et al., 2012).

Studies in eukaryotic model systems and vertebrate cells have

defined a small set of core components required for centriole

duplication, including SAS-4/CPAP, SAS-5/Ana2/STIL, SAS-6,

SPD-2/Cep192, Asterless/Cep152, and Plk4/ZYG-1 (Gönczy,

2012; Brito et al., 2012; Azimzadeh andMarshall, 2010; Loncarek

and Khodjakov, 2009; Carvalho-Santos et al., 2011). Two of

these, SAS-6 and SAS-4, which are structural components of

the cartwheel and outer centriole wall (Gönczy, 2012), are

conserved across eukaryotes (Carvalho-Santos et al., 2011). In

contrast, Plk4 kinase and its centriolar receptors, Asterless/

Cep152 and SPD-2/Cep192, are only found in animals and fungi

(Carvalho-Santos et al., 2011), likely because they represent a

regulatory module that couples centriole assembly to cell

division.

In metazoans, Plk4 kinases control daughter centriole assem-

bly. Plk4 homologs have an N-terminal kinase domain, a C-ter-

minal polo box (PB), and a central domain termed the ‘‘cryptic

PB’’ (CPB) (Swallow et al., 2005) that has been shown to

dimerize, to be sufficient for centriole localization, and to be

required for Plk4 to promote centriole assembly (Leung et al.,

2002; Habedanck et al., 2005; Slevin et al., 2012). One of the

most divergent Plk4 kinases, only recently appreciated to be a

bona fide Plk4 homolog, is C. elegans ZYG-1 (Jana et al.,

2012). In vertebrates, Plk4 is recruited to mother centrioles

through interactions of its CPB with acidic regions (ARs) in

SPD-2/Cep192 and Asterless/Cep152 (Kim et al., 2013, Sonnen

et al., 2013; Hatch et al., 2010; Cizmecioglu et al., 2010), whereas

in other organisms, Plk4 is recruited via interactions with either

SPD-2 (C. elegans; Pelletier et al., 2006; Delattre et al., 2006)

or Asterless (Drosophila; Dzhindzhev et al., 2010). A recent struc-

tural study showed that the Drosophila Plk4 (DmPlk4) CPB

consists of two tandem polo boxes, and the authors proposed

that it forms a butterfly-like side-by-side dimer (Slevin et al.,

2012). However, this structure did not explain how electrostatic

interactions could mediate an interaction between the Plk4

CPB and the ARs in SPD-2/Cep192 and Asterless/Cep152.

Here, we report a crystal structure for the CPB of C. elegans

ZYG-1. The ZYG-1 CPB formed a Z-shaped end-to-end dimer
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Table 1. Data Collection and Refinement Statistics

Data Collection ZYG-1 CPB DmPlk4 CPB

Wavelength (Å) 0.9792 0.9394

Space group P2 P6422

Cell Dimensions

a, b, c (Å) 53.38, 60.09,

87.51

132.21, 132.21,

134.25

a, b, g (�) 90, 93.31, 90 90, 90, 120

Resolution (Å) 46–2.30

(2.44–2.30)a
39–3.40

(3.60–3.40)a

No. of observed reflections 45,979 (7,427) 9,997 (1,518)

No. of unique reflections 15,326 (2,476) 241 (37)

Rmeas 0.092 (0.882) 0.148 (3.52)

CC(1/2) 99.7 (72.1) 100.0 (74.4)

I/sI 9.7 (1.5) 25.77 (2.06)

Completeness (%) 97.5 (96.2) 99.5 (97.4)

Redundancy 3.0 (3.0) 41.5 (41.3)

Refinement

Resolution (Å) 25–2.3 20–3.4

No. of reflections 45,953 9,938

Rwork/Rfree (%) 24.4/27.6 22.6/24.6

No. of Atoms

Protein 3,244 1,705

Ligand/ion 27 –

Water 226 –

Rmsd

Bond length (Å) 0.004 0.016

Bond angle (�) 0.876 1.051
aValues in parentheses are for the highest resolution shell.
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containing a 12-stranded inter-molecular b sheet with a con-

served basic surface patch. Parallel in vitro and in vivo analysis

demonstrated that electrostatic interactions between the basic

patch on the ZYG-1 CPB dimer and the SPD-2 AR dock

ZYG-1 onto centrioles to promote new centriole assembly. Anal-

ysis of a different crystal form of the DmPlk4 CPB and of the

dimer in solution using small-angle X-ray scattering (SAXS)

suggests that the DmPlk4 CPB also forms a Z-shaped dimer

(Z dimer) with a basic surface patch. A comparison of the

ZYG-1 and DmPlk4 CPBs revealed structural changes in the

ZYG-1 CPB dimer that confer selectivity for binding SPD-2

over Asterless-derived ARs. Overall, our work has elucidated

the native dimeric conformation of the CPBs of ZYG-1 and

DmPlk4 and suggests that Plk4 homologs dock onto their cen-

triolar receptors via a conserved basic patch on the CPB dimer.

RESULTS

The ZYG-1 CPB Forms a Z-Shaped End-to-End Dimer
The ZYG-1 CPB (amino acids [aa] 338–564) was expressed in

bacteria, purified, and crystallized. The resulting crystals dif-

fracted to 2.3 Å resolution with space group P2 (a = 53.38 Å,

b = 60.09 Å, c = 87.52 Å; b = 93.31�). The structure was solved

by single-wavelength anomalous dispersion (SAD) using seleno-
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methionine (SeMet)-substituted protein. The final structure con-

tains residues 351 to 562, with segments 510 to 515 and 548 to

550 disordered, and has Rwork and Rfree of 24.4% and 27.6%,

respectively (Table 1). The structure revealed that the ZYG-1

CPB contains two tandem PBs (PB1 and PB2), each containing

a six-stranded b sheet with an a helix packed against one side

(Figure 1A). The two PBs are organized like an open clamshell,

with the b sheet surfaces not covered by helices facing each

other. While covered by the long b5-b6 loop in PB1, this b sheet

surface is solvent exposed in PB2 (Figure 1A).

The asymmetric unit contains two copies of the ZYG-1 CPB

arranged in a compact, U-shaped dimer (U dimer). A second,

more extended Z-shaped dimer (Z dimer) can be assembled

on the basis of crystal packing interactions (Figure 1B). The sur-

face area buried by the Z and U dimers is nearly identical (838

versus 819 Å2, Proteins, Interfaces, Structures and Assemblies

server; Krissinel andHenrick, 2007). As attempts to disrupt dimer

formation by mutating residues on either interface were unsuc-

cessful because of protein insolubility or instability, we decided

to use SAXS to examine the shape of CPB dimers in solution

(Svergun and Koch, 2002). Synchrotron SAXS data were

collected, and the scattering pattern was processed and extrap-

olated to infinite dilution (Figure 1C; Experimental Procedures).

This yielded a molecular mass of 55 ± 6 kDa, confirming that

the CPB is dimeric in solution (monomer = 26.2 kDa). The radius

of gyrationRg = 32 ± 1 Å andmaximum particle sizeDmax = 110 ±

10 Å closely corresponded to the values computed from the

extended Z dimer (Rg = 31.7 Å, Dmax = 115 Å) rather than the

compact U dimer (Rg = 24.5 Å,Dmax = 76 Å). In addition, whereas

the experimental data superimposed well with the scattering

pattern calculated from the Z dimer (discrepancy c = 1.25), it

deviated substantially from that calculated from the U dimer

(c = 3.60) (Figure 1C). The Z dimer structure also superimposed

well with the low-resolution ab initio shape determined from the

experimental data (Figure 1D). We conclude that the ZYG-1 CPB

dimer in solution has a quaternary structure similar to that of the

Z dimer.

A Conserved Basic Patch Runs across the ZYG-1 CPB
Dimeric Interface
The majority of the acidic and some of the basic residues

conserved across nematode species (Figure S1A available

online) are buried in the interior, implying a role in protein folding;

notably, a few of these are buried under the b5-b6 loop in PB1

and within the PB1-PB2 interface. However, a subset of

conserved positive residues—including K454, R463, R470,

R471, R489, K491, and K500—form an extensive basic patch

on the CPB dimer surface (Figures 1E and 1F). In contrast, very

few conserved hydrophilic residues are present on the reverse

side of the dimer (Figures 1G and 1H). Nine of 13 temperature-

sensitive zyg-1 mutations (O’Connell et al., 2001; Kemp et al.,

2007; O’Rourke et al., 2011) are in the CPB (Figures S1A and

S1B). In contrast to the conserved basic residues, which cluster

near the dimer midline, the majority of temperature-sensitive

CPB mutations (eight of nine) are in nonconserved residues in

PB1 near the dimer periphery (Figures S1C and S1D). We

hypothesize that these mutations locally perturb PB1 structure

at elevated temperatures, compromising CPB function. Thus,

an analysis of charged residues revealed a conserved basic
–1104, August 5, 2014 ª2014 Elsevier Ltd All rights reserved 1091



Figure 1. The ZYG-1 CPB Forms a

Z-Shaped End-to-End Dimer with a

Conserved Basic Patch

(A) Ribbon diagram of the ZYG-1 CPB color-ram-

ped fromblue to red (N toC terminus). The twoPBs

(PB1 and PB2) are indicated, and the two disor-

dered loops in PB2 are shown as dashed lines.

(B) Crystal-packing suggests two possible dimer

interfaces.

(C) SAXS of the ZYG-1 CPB in solution. The log-

arithm of the scattering intensity is plotted as a

function of momentum transfer, s = 4p sin(q)/l,

where q is the scattering angle and l is the X-ray

wavelength. Inset shows the boxed region at

higher magnification.

(D) Two views of the representative ab initio low-

resolution shape reconstructed by GASBOR.

The most probable model, chosen from 12 re-

constructions by DAMAVER (Volkov & Svergun,

2003), is shown (transparent beads) super-

imposed with the Z dimer structure (green rib-

bons). The overall normalized spatial discrepancy

(NSD) was 1.3, and all models were consistent.

(E–H) Surface plots of the ZYG-1 CPB Z dimer

highlighting conserved basic (blue) and acidic

(magenta) residues (E and G) and electrostatic

potential (F and H). Views showing the basic patch

(E and F; dashed line in F) and the reverse side (G

and H) of the dimer are shown.
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patch that extends approximately 65 Å across one surface of

the 12-stranded intermolecular b sheet that constitutes the

midline of the CPB dimer.

The ZYG-1 CPB Interacts with the CeSPD-2 N Terminus
through a Series of Electrostatic Interactions
In vertebrates, Plk4 is recruited to mother centrioles through in-

teractions of its CPB with ARs in SPD-2/Cep192 and Asterless/

Cep152 (Kim et al., 2013; Sonnen et al., 2013; Hatch et al.,

2010; Cizmecioglu et al., 2010). In Drosophila, SPD-2 lacks an

AR, and Plk4 targeting depends on Asterless (Dzhindzhev

et al., 2010). C. elegans lacks an Asterless homolog and recruits

ZYG-1 via CeSPD-2 (Pelletier et al., 2006; Delattre et al., 2006),

which contains an N-terminal AR similar to those in other

SPD-2 and Asterless homologs (Figure 2A; Figures S2A and

S2B). Microscale thermophoresis (MST) (Seidel et al., 2013)

using fluorescently labeled ZYG-1 CPB as reporter revealed

that thioredoxin (Trx) fusions with three CeSPD-2 N-terminal

fragments (aa 1–147, 1–46, and 11–44) bound with nearly iden-

tical affinities (Kd � 0.5 mM; Figure 2B), indicating that residues

11 to 44 of CeSPD-2 are sufficient for interaction.

To find out whether the ZYG-1 CPB interacts with all or part

of the CeSPD-2 AR, we generated maltose-binding protein

(MBP)-tagged wild-type (WT) CeSPD-2 (aa 1–46) and three

mutant versions (LEFT, CENTER, and RIGHT; Figure 2C) that
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charge-reversed negatively charged resi-

dues in the center or on the left- or right-

flanking sides of the CeSPD-2 AR. All

three mutants pulled down significantly

less ZYG-1 CPB than the WT AR, sug-

gesting that negatively charged residues
across the entire CeSPD-2 AR interact with the ZYG-1 CPB (Fig-

ure 2D; Figure S3A). Analysis of seven charge-reversal CPB

mutants similarly revealed that all mutations compromised bind-

ing to the CeSPD-2 AR; only K454E, located at the very distal tips

of the basic patch, retained a substantial ability to be pulled

down (Figures 2E and 2F). Static light scattering (SLS) demon-

strated that ZYG-1 CPB dimers (54 kDa) each bind one

Trx-CeSPD-2 AR monomer (31 kDa) to form an 85 kDa complex

(Figure 2G). Far-UV circular dichroism and nuclear magnetic

resonance confirmed that the CeSPD-2 AR is intrinsically disor-

dered with a classical random-coil structure (Figures S2C–S2E).

Docking trials using the ZYG-1 CPB dimer structure as receptor

and the CeSPD-2 AR as ligand (ClusPro 2.0, electrostatic-

favored mode; Kozakov et al., 2010) docked the CeSPD-2 AR

neatly on the conserved basic patch across the dimeric interface

(Figure 2H). Overall, our data strongly suggest that the CeSPD-2

AR interacts with the ZYG-1 CPB through an extensive series of

electrostatic contacts that run along the length of the inter-

molecular b sheet on the CBP dimer.

A Distributed Array of Negatively Charged Residues in
the CeSPD-2 N Terminus Recruits ZYG-1 to Mother
Centrioles to Initiate Centriole Duplication In Vivo
Next, we investigated the role of charges on both sides of the

proposed interface in ZYG-1 centriolar targeting and daughter
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Figure 2. The ZYG-1 CPB Interacts with the CeSPD-2 N Terminus through a Series of Electrostatic Interactions.

(A) ARs in SPD-2 and Asterless homologs were manually selected and aligned using Muscle WS in Jalview. Color code: negatively charged, red; positively

charged, blue; aromatic, gold; hydrophilic, green; conformationally special, pink; cysteine, yellow.

(B) MST binding curves of Trx fusions with regions of the CeSPD-2 N terminus to the ZYG-1 CPB.

(C) Schematic showing the CeSPD-2 AR (red box) and residue changes in charge reversal mutants.

(D and E) In vitro pull-down experiments. Resin-immobilized WT or mutant MBP-CeSPD-2 AR (aa 1–46) (Coomassie gels; top) were used to pull down WT or

mutant 63 His-ZYG-1 CPB (western blots; bottom). Asterisks mark MBP released because of degradation. Equivalent solubility of all ZYG-1 CPB mutants in (E)

was independently confirmed. Magenta arrowheads mark CPB mutants that reduced the interaction.

(F) Location of positively charged residues on the ZYG-1 CPB dimer that contribute to the interaction with the CeSPD-2 AR.

(G) SLS results for the ZYG-1 CPB alone (blue) or mixed in a 1:2 ratio with Trx fusion with the CeSPD-2 N terminus (red).

(H) In silico docking result using the ZYG-1 CPB dimer (electrostatic surface plot) as receptor and the CeSPD-2 N terminus (aa 11–44; yellow stick model) as

ligand.
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centriole assembly in vivo. To analyze the CeSPD-2 AR, we

generated mCherry-tagged single copy spd-2 transgenes en-

coding WT SPD-2 and the same charge-reversal mutants that

we tested in vitro (Figure 2C). Transgenes were engineered to

be resistant to RNAi (RR [RNAi resistant]) targeting endogenous

spd-2 by altering 622 bp of nucleotide sequence without

affecting protein coding (Figure 3A; Figure S3B). Western blot-

ting confirmed that the WT and mutant proteins were compa-

rably expressed and that RNAi targeting the reencoded region

selectively depleted endogenous CeSPD-2 (Figure 3B). Quanti-
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tative confocal microscopy revealed that WT mCherry::

CeSPD-2 and the LEFT, CENTER, and RIGHT charge-reversal

mutants all accumulated at centrosomes to the same extent

when endogenous SPD-2 was depleted (Figure 3C).

CeSPD-2 is recruited to the two sperm centrioles following

fertilization and is required for them to recruit PCM to form

centrosomes, as well as for them to initiate daughter centriole

formation. Centrioles in CeSPD-2-depleted embryos recruit

only a small shell of PCM, and the resulting centrosomes are

insufficient to support spindle assembly; thus, chromosome
–1104, August 5, 2014 ª2014 Elsevier Ltd All rights reserved 1093
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Figure 3. A Distributed Array of Negatively Charged Residues in the CeSPD-2 N Terminus Recruits ZYG-1 to Mother Centrioles to Initiate

Centriole Duplication In Vivo

(A) Single copy mCherry::spd-2RR transgene.

(B) Western blot of mCherry::spd-2RR worm lysates, with (+) or without (�) endogenous SPD-2 depletion, probed for SPD-2 (top) and a tubulin (bottom). Asterisk

marks a background band.

(C) (Left) Confocal images of one-cell stage embryos expressing mCherry::SPD-2 fusions. (Right) Graph of mean centrosomal mCherry::SPD-2 fluorescence for

the indicated strains (n = number of centrosomes; error bars show SEM).

(D and E) Deconvolved immunofluorescence images of first-division (left) and second-division (right) embryos lacking (D) or expressing (E) the indicated spd-2

transgenes. Embryos were depleted of the indicated protein (D) or endogenous SPD-2 (E) by RNAi and were stained for microtubules (green) and DNA (red) (n =

number of embryos imaged).

(F) Plots showing percentage embryonic viability (left) and frequency of second-divisionmonopolar spindles (right). Error bars showSD of percentage lethality per

worm, N = number of worms, n = total number of embryos (left) or second-division cells (right).

(G) Deconvolved immunofluorescence images of embryos stained for DNA and SAS-4 (red and green; left) and ZYG-1 (right). Embryos expressing the indicated

spd-2 transgenes were depleted of endogenous SPD-2 by RNAi.

(H) Graph plotting mean centrosomal ZYG-1 fluorescence. Values are percentages of the mean control value. Error bars show SEM, n = number of centrosomes.

The scale bars represent 10 mm.
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segregation and the first embryonic cytokinesis fail (Figure 3D)

(Kemp et al., 2004; Pelletier et al., 2004). In contrast, in embryos

depleted of ZYG-1, which is required for centriole duplication

but not PCM assembly, the sperm centrioles recruit PCM,

and a normal bipolar spindle forms during the first embryonic

division. However, because the sperm centrioles fail to dupli-

cate, each daughter cell inherits only a single centriole, and mo-

nopolar, rather than bipolar, spindles form during the second

embryonic division (Figure 3D) (O’Connell et al., 2001). Whereas

WT mCherry::SPD-2 rescued embryonic viability following

endogenous SPD-2 depletion, the LEFT, CENTER, and RIGHT

mutants did not (Figure 3F). Immunofluorescence revealed

that all three mutants exhibited the ZYG-1 depletion phenotype:

100% second-division monopolar spindles (Figures 3E and 3F).

Thus, the LEFT, CENTER. and RIGHT CeSPD-2 mutants target

to mother centrioles and support PCM recruitment but fail to

promote centriole duplication. To determine whether duplica-

tion failure was due to a defect in ZYG-1 docking, we quantified

ZYG-1 levels at mother centrioles in fixed mitotic embryos

expressing WT mCherry::CeSPD-2 or the LEFT, CENTER, or

RIGHT mutants. All three mutants abolished ZYG-1 recruitment

(Figures 3G and 3H); the effect was the same in embryos at a

stage coincident with new centriole assembly (Figure S3C).

We conclude that an array of negatively charged residues in

the CeSPD-2 N terminus recruits ZYG-1 to mother centrioles;

selective alteration of charges in the beginning, middle, or

end of this region disrupts ZYG-1 docking and centriole

duplication.

The Ability of ZYG-1 CPB Mutants to Target Centrioles
and Support Centriole Assembly In Vivo Parallels Their
Ability to Bind to the CeSPD-2 N Terminus In Vitro
To examine residues in the basic surface patch on the ZYG-1

CPB dimer, we generated transgenes encoding untagged

ZYG-1, as both N- and C-terminal ZYG-1 GFP fusions are

nonfunctional (Figure 4A) (Lettman et al., 2013). As injection of

DNA containing the WT zyg-1 locus is toxic (Lettman et al.,

2013), transgenes also included the well-characterized P442L

temperature-sensitive point mutation (Kemphues et al., 1988;

Kemp et al., 2007). Strains weremaintained at the nonpermissive

temperature (23.5�C) to keep the transgenic proteins inactive.

After double-stranded RNA (dsRNA) injection to deplete endo-

genous ZYG-1, strains were shifted to the permissive tempera-

ture of 16�C to replace endogenous ZYG-1 with transgene-

encoded control or mutant ZYG-1. We constructed a transgene

encoding ZYG-1 lacking the CPB (DCPB; deletion of aa 350–560)

and mutants that charge-reversed basic residues that were cen-

trally positioned (R470E and R471E), more peripherally posi-

tioned (R463D and R489D), or at the distal tips (K454E) of the

basic patch (Figure 4B). ZYG-1 is exceedingly rare and difficult

to detect by immunoblotting, but an ultrasensitive detection

method revealed a band at the predicted size of ZYG-1 that

was lost following RNAi-mediated depletion in the absence of

a transgene (Figure 4C) and reduced (as expected because of

the depletion of endogenous ZYG-1) but not lost in the trans-

genic strains (Figure 4C). Whereas the control zyg-1 transgene

fully rescued the embryonic inviability and monopolar second-

division phenotype resulting from endogenous ZYG-1 depletion,

theDCPB and central (R470E and R471E) and peripheral (R463D
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and R489D) basic patch mutants exhibited 100% monopolar

second divisions and 0% embryonic viability, indicating failure

of centriole duplication (Figures 4D and 4E). The mutant charge

reversing the distal residue K454 exhibited a more mild pheno-

type, with 52% of second divisions being monopolar and a small

number of embryos (4.9%) even surviving to hatching (Figures

4D and 4E). Quantitative immunofluorescence revealed that

whereas the DCPB and the central (R470E and R471E) and pe-

ripheral (R463D and R489D) charge-reversal mutations reduced

the amount of ZYG-1 recruited to centrioles to the background

level seen following depletion of endogenous ZYG-1 (Figures

4F and 4G), charge-reversing the distal K454 residue reduced,

but did not abolish, ZYG-1 targeting. We conclude that the ability

of the CPB mutants to target to centrioles and support centriole

assembly in vivo (Figures 4E and 4G) parallels the ability of puri-

fied CPB with the equivalent mutations to bind to the SPD-2 N

terminus in vitro (Figure 2E). Thus, our in vivo data strongly sup-

port the conclusion that the association between the SPD-2 N

terminus and the ZYG-1 CPB is mediated by electrostatic inter-

actions involving most of the conserved charges in both

proteins.

The DmPlk4 CPB Forms a Z-Shaped End-to-End Dimer
Analogous to that Formed by the ZYG-1 CPB
Although a crystallographic interface that would generate a Z

dimer analogous to that formed by the ZYG-1 CPB was present

in the previously characterized crystal of the CPB from DmPlk4,

the DmPlk4 CPB was proposed to dimerize through a different

interface that generates a side-by-side butterfly-like dimer (Sle-

vin et al., 2012). As we already had crystals for a similar construct

(aa 383–601, compared with aa 382–602 in the published

construct), we characterized them to determine if they would

provide insight into the DmPlk4 CPB dimerization interface.

Interestingly, the small sequence change generated a different

crystal form with space group P6422 (a = b = 132.21 Å, c =

134.25 Å; b = 120�), compared with the P21212 for the previous

structure. We determined the DmPlk4 CPB structure by mole-

cular replacement using the previous structure (Protein Data

Bank [PDB] accession number 4G7N) (Slevin et al., 2012). The

structural model was refined to 3.4 Å resolution with final Rwork

and Rfree of 22.6% and 24.6%, respectively (Table 1). The struc-

ture contains residues 383 to 596 of DmPlk4 with a short disor-

dered loop (aa 549–552) between b11 and a2 (Figure 5A). The

Drosophila and C. elegans CPB monomers were topologically

identical (compare Figures 5A and 1A) and could be neatly

superimposed with a rmsd of 2.1 Å for backbone atoms in the

164 aligned residues.

In contrast to the numerous intermolecular contacts in the

published crystal, our crystal form had only three, none of which

resembled the proposed butterfly dimer interface (Figure 5D;

Figures S4C and S4D) (Slevin et al., 2012). In our crystal, 12

DmPlk4 CPBs form a hexagonal spiral (Figures 5B and 5C).

The smallest contact (interface area = 359 Å2) is located between

neighboring spirals with contributions from two vector-derived

residues (Figures S4A and S4B). The other two contacts are

within the hexagonal spiral (Figures 5B and 5C). One is primarily

mediated by the loop connecting b5 and b6 in PB1 and has an

interface area of 607 Å2 (Figure 5E, inset). The last contact,

mediated by the C-terminal b12 strand and the N terminus of
–1104, August 5, 2014 ª2014 Elsevier Ltd All rights reserved 1095
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Figure 4. Basic Patch Residues on the ZYG-1 CPB Dimer Are Required to Target ZYG-1 to Mother Centrioles and Promote Daughter

Centriole Assembly

(A) Single copy zyg-1RR transgene and predicted ZYG-1 protein carrying the temperature-sensitive P442L mutation.

(B) Surface plot of the ZYG-1 CPB dimer showing the three tested mutant clusters.

(C) Western blot of lysates from worms lacking a transgene (No Transgene) or with the indicated zyg-1RR transgenes with (+) or without (�) endogenous ZYG-1

depletion. The blot was probed for ZYG-1 (top) and a tubulin (bottom). Asterisks mark variable background bands due to the bacterial food that the worms eat.

Serial dilutions of lysate prepared from worms without transgenes (first five lanes) were used to assess endogenous ZYG-1 depletion. Numbers are percentages

loaded relative to the 100% no-transgene control.

(D and E) Plots showing percentage embryonic viability (D) and the frequency of second-division monopolar spindles (E). Error bars in (D) show SD of percentage

lethality per worm; N = number of worms, n = total number of embryos (D) or the number second division cells (E).

(legend continued on next page)
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a2 in PB2, has a surface area of 794 Å2 and generates a

Z-shaped end-to-end dimer (Figure 5F). The fact that the only

intermolecular interface in common between our and the pub-

lished crystal forms generates the Z dimer suggests that

DmPlk4, like ZYG-1 uses this dimerization interface. In support

of this conclusion, experimental SAXS data for the DmPlk4 dimer

in solution superimposed well with the scattering pattern calcu-

lated from the Z dimer (c = 0.935) but not with that calculated

from the butterfly dimer (c = 1.96). The low-resolution ab initio

shapes determined from the experimental data also provided

an extended particle envelope consistent with the Z dimer but

not the butterfly dimer (Figures 5G–5I).

Thus, analysis of a different crystal form for the DmPlk4 CPB,

combined with the SAXS analysis of the dimer in solution, sug-

gests that the DmPlk4 CPB forms a Z-shaped end-to-end dimer

analogous to the one formed by the ZYG-1 CPB.

Interactionwith the AR inDrosophilaAsterless Requires
Residues in the Center and around the Sides of the
DmPlk4 CPB Dimer
Mapping conserved hydrophilic residues revealed an extensive

basic patch on the side of the DmPlk4 CPB dimer containing

the solvent-exposed surface of the intermolecular b sheet,

whereas no conserved charge clusters were present on the

reverse side of the dimer (Figures 6A and 6B; Figures S5A–

S5C). SLS further demonstrated that each DmPlk4 CPB dimer

binds to one AR from Drosophila Asterless (aa 21–60, DmAsl

AR; Figure S5D). To map residues important for binding, we

generated ten charge-reversal mutants in the DmPlk4 CPB.

Five of the ten mutations, corresponding to six residues in the

basic patch (magenta in Figure 6D), significantly reduced the

ability of resin-immobilized 6 3 His-DmPlk4 CPB to pull down

MBP-DmAsl AR (Figure 6D). In addition to residues in the dimer

center (K510, R523, R595, and R594), the more distal residues

K498 and R490 on the dimer sides were also critical for DmAsl

AR binding; the R490E mutation reduced binding to the same

extent as the central R594E/R595E combination. These results

suggest that the DmAsl AR makes electrostatic contacts both

in the center and around the sides of the DmPlk4 CPB dimer,

in a fashion similar to the interaction between the CeSPD-2 AR

and the ZYG-1 CPB (Figures 6C and 6D).

The SPD-2/Cep192 AR Interacts with a More Compact
Region of theM. musculus Plk4 CPB than the Asterless/
Cep152 AR
The CPB of mammalian Plk4 interacts with ARs in both Aster-

less/Cep152 and SPD-2/Cep192 (Dzhindzhev et al., 2010; Hatch

et al., 2010; Cizmecioglu et al., 2010; Sonnen et al., 2013; Kim

et al., 2013). We therefore sought to determine whether the As-

terless/Cep152 and SPD-2/Cep192 ARs interact with the same

or different sets of CPB residues. Our attempts to crystallize

the M. musculus Plk4 (MmPlk4) CPB were not successful.

Nevertheless, homology-based structural modeling is generally
(F) (Left) Deconvolved immunofluorescence images of control and zyg-1(RNAi) em

Graph plotting mean centrosomal ZYG-1 fluorescence. Values are percentages o

(G) (Left) Representative deconvolved wide-field immunofluorescence images o

Embryos expressing the indicated zyg-1 transgenes were depleted of endogeno

cence. Values are percentages of the mean control value; n = number of centros
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reliable when primary sequences are more than 30% identical

(Xiang, 2006). Because MmPlk4 and DmPlk4 share 38% primary

sequence identity, we used the (PS)2-v2 protein structure predic-

tion server (Chen et al., 2009), using the DmPlk4 CPB as a tem-

plate, to generate a high-confidence model for the MmPlk4 CPB

(aa 557–770; Figure S5E). Assembly of a homologous dimer

based on the DmPlk4 CPB dimer revealed an extensive basic

patch similar to that on the DmPlk4 CPB (Figures S5F–S5H).

To map residues that interact with the MmAsl/Cep152 and

MmSPD-2/Cep192 ARs, we generated charge-reversal muta-

tions for all of the positively charged basic patch residues in

the MmPlk4 CPB, along with a control mutant (K752E/R753E)

that charge-reversed two basic residues on the reverse side of

the b sheet and amutant (W687A) that removed a bulky aromatic

side chain. Five of the eight mutations in the conserved basic

patch dramatically reduced the ability of MBP-MmPlk4 CPB to

be pulled down by resin-immobilized MmAsl AR, whereas only

three significantly reduced binding to the MmSPD-2 AR (Figures

6E and 6F). The control K752E/R753E mutation and the W687A

mutant (Figures 6E and 6F) did not affect binding to either AR.

Interestingly, three of the charge-reversal mutations, R564E/

K566E, K660E, and K568E/K569E, appeared to enhance CPB

binding to the MmAsl or MmSPD-2 ARs (Figures 6E and 6F,

empty triangles). The MmPlk4 CBP residues required for binding

to the MmAsl AR, like the DmPlk4 CPB residues required for

binding to the DmAsl AR, formed an elongated cleft that ran

across the surface of the dimer and included residues on the

dimer sides (K660 and R652; Figures 6D and 6E). In contrast,

the MmSPD-2 AR interacted with a subset of the residues

required for interaction with the MmAsl AR that formed a more

limited cluster in the dimer center (Figure 6F). Our results suggest

that the MmSPD-2 AR interacts with a more compact region of

the Plk4 CPB than the MmAsl AR.

Structural Changes in the ZYG-1 CPB Dimer Confer the
Ability to Selectively Bind SPD-2-Derived ARs
The different binding footprints of theMmSPD-2 andMmAsl ARs

prompted us to investigate whether the ZYG-1 or DmPlk4 CPBs

are specifically adapted to bind SPD-2 versus asterless-derived

peptides because the CPBs in these species no longer need to

bind both ARs. We began by using MST to measure the binding

affinities of the ZYG-1 and DmPlk4 CPBs for the ARs of

CeSPD-2, DmAsl, MmSPD-2, and MmAsl (Figure 7A; Fig-

ure S6A). The results demonstrated that the ZYG-1 and DmPlk4

CPBs have a similar binding affinity for their natural ligands, with

Kd values of 0.42 and 0.88 mM for the CeSPD-2 and DmAsl ARs,

respectively. The DmPlk4 CPB bound to the MmSPD-2 AR (Kd =

0.53 mM) and MmAsl AR (Kd = 0.72 mM) with similar affinity to the

DmAsl AR (Kd = 0.88 mM), suggesting that the DmPlk4 CPB

retains the ability to bind both asterless and SPD-2-derived

ARs. In contrast, the ZYG-1 CPB showed remarkable specificity

for SPD-2-derived ARs. The ZYG-1 CPB bound toMmSPD-2 AR

with an affinity only �12 times lower than its affinity for its native
bryos stained for DNA and SAS-4 (red and green; left) and ZYG-1 (right). (Right)

f the mean control value (n = number of centrosomes). Error bars show SEM.

f embryos stained for DNA and SAS-4 (red and green; left) and ZYG-1 (right).

us ZYG-1 by RNAi. (Right) Graph plotting mean centrosomal ZYG-1 fluores-

omes; error bars show SEM. The scale bars represent 10 mm.
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Figure 5. The DmPlk4 CPB Forms a Z-Shaped End-to-End Dimer Analogous to that Formed by the ZYG-1 CPB

(A) Ribbon diagram of the DmPlk4 CPB structure, color-ramped from blue to red (N to C terminus). The disordered loop (aa 549–552) in PB2 is shown as a dashed

line.

(B and C) Top (B) and side (C) views of a single hexagonal unit in the DmPlk4 CPB crystal, which contains 12 CPBs forming six pairs (yellow, blue, pink, green, red,

and cyan) arranged in a spiral along the vertical screw axis (c axis).

(D) Side view of the previously reported butterfly-like side-by-side dimer (Slevin et al., 2012).

(E) The intermolecular contact mediated by the b5-b6 loops (arrows) of adjacent PB1 domains in the hexagonal unit.

(F) The Z dimer formed by the DmPlk4 CPB.

(G and H) Superposition of the Z dimer (G) and butterfly-dimer (H) onto the ab initio shell reconstructed from SAXS data. The ab initio model is the most

representative model selected by DAMAVER out of 40 DAMMIN runs. The mean NSD was 0.542.

(I) SAXS analysis of the DmPlk4 CPB in solution. Inset shows the boxed region at a higher magnification.
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ligand (Kd = 5.17 mM); in contrast, its affinities for the DmAsl and

MmAsl ARs were substantially lower (Kd = 197.0 mM and too

weak to measure, respectively). Cumulatively, these results sug-

gest that the DmPlk4 CPB has remained similar to the MmPlk4

CPB, whereas the ZYG-1 CPB has evolved specificity for SPD-

2-derived ARs. The reduced affinity of the DmPlk4 CPB for the

CeSPD-2 AR (Kd = 26.0 mM) compared with its affinity for
1098 Structure 22, 1090–1104, August 5, 2014 ª2014 Elsevier Ltd Al
MmSPD-2 AR (Kd = 0.53 mM) further suggests that the CeSPD-

2 AR has coevolved with the ZYG-1 CPB.

To understand how the ZYG-1 CPB selectively binds SPD-2-

derived ARs, we compared the ZYG-1 and DmPlk4 CPBs.

Superimposing one monomer in each of the dimeric structures

shows that the other monomers cannot be placed on top of

each other (Figure 7B). A side view showed that whereas the
l rights reserved



Figure 6. The SPD-2/Cep192 AR Interacts with a More Compact Region of the MmPlk4 CPB Than the Asterless/Cep152 AR

(A) Surface plot (front view) of the DmPlk4 CPB Z-dimer with the two CPBs shown in green and pale cyan. Completely and highly (80%–95% identity) conserved

basic (dark and light blue) and acidic (red and pink) residues are shown. Residues in the basic surface patch (dashed line) are labeled.

(B) In silico docking result using the DmPlk4 CPB Z dimer (electrostatic surface plot) as receptor and the DmAsl N terminus (aa 21–60; yellow stick model) as

ligand.

(C) Location of positively charged residues on the ZYG-1 CPB dimer that contribute to the interaction with the CeSPD-2 AR, repeated from Figure 2F for

comparison. An end view is shown on the right.

(D–F) In vitro pull-down experiments. (D, left) Resin-immobilizedWT or mutant 63His-DmPlk4 CPB (Coomassie gel; top) was used to pull downMBP-DmAsl AR

(aa 21–60; western blot; bottom). (E and F, left) Resin-immobilizedGST-MmAsl/Cep152 AR (E) or GST-MmSPD-2/Cep192 AR (F) (Coomassie gels; top) were used

to pull down WT and mutant versions of the MBP-MmPlk4 CPB (western blots; bottom). (D–F, right) Location of positively charged residues on the DmPlk4 CPB

dimer (D) or the modeled MmPlk4 CPB dimer (E and F; see Figure S5H) whose mutation reduced (magenta) or did not affect (pale yellow) interaction with the

tested ARs are shown. Arrows indicate amutant outside the conserved patch that did not significantly affect the binary interactions. Empty trianglesmarkmutants

that significantly enhanced interactions.
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two CPB molecules are linearly arranged along the long axis of

the DmPlk4 dimer, the second CPB molecule bends 35� away

from the long axis of the ZYG-1 dimer (Figures 7B–7D). The
Structure 22, 1090
view down onto the b sheet plane further revealed that the sec-

ond CPB molecule in the ZYG-1 dimer is rotated 15� counter-

clockwise relative to the second CPB molecule in the DmPlk4
–1104, August 5, 2014 ª2014 Elsevier Ltd All rights reserved 1099
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dimer (Figures 7B–7D). This change in blunt angle narrows the

central basic cleft, which adopts an elongated S shape and likely

explains the selectivity of the ZYG-1 CPB for binding SPD-2 over

asterless-derived ARs (see Discussion).

DISCUSSION

The CPBs from C. elegans ZYG-1 and DmPlk4 Form
Z Dimers with a Central Intermolecular b Sheet
Our data suggest that the CPBs from C. elegans ZYG-1 and

DmPlk4 both form Z-shaped end-to-end dimers. The only inter-

molecular interface in common between the crystal form of the

DmPlk4 CPB that we characterize here and the previously pub-

lished crystal form (Slevin et al., 2012) generates the Z dimer,

which is also the conformation adopted by the ZYG-1 CPB.

SAXS analysis of the dimers in solution also supported Z-shaped

versus other possible dimer conformations for both the ZYG-1

and DmPlk4 CPBs. The Z dimer is further supported by our

in vitro and in vivo analyses showing that the 12-stranded inter-

molecular b sheet in the Z dimer is decorated with an extended

cluster of basic residues that are functionally important for

CPB binding to the centriolar receptors SPD-2/Cep192 and As-

terless/Cep152 in vitro and for ZYG-1 targeting and daughter

centriole assembly in vivo.

Electrostatic Interactions Generate an Interface that
Docks CPBs onto Their Centriolar Receptors
Our work suggests that centriolar Plk4 docking is mediated by

electrostatic interactions between basic residues on the CPB

dimer and acidic residues in N-terminal unstructured regions of

centriolar receptors that cumulatively result in a strong binding

affinity (Kd � 0.5 mM). In vitro pull-down assays demonstrated

that, in many cases, reversal of even a single charge in the

CPB basic patch significantly reduced the CPB-AR interaction.

For the ZYG-1 CPB, these reductions in CeSPD-2 AR binding

translated into failure to recruit ZYG-1 to centrioles and failure

of centriole duplication. Similar to the distributed array of basic

charges on the CPB surface, acidic charges in all regions of

the CeSPD-2 AR were required for CPB binding, centriolar

ZYG-1 targeting, and centriole duplication. Cumulatively, these

results suggest that tight CPB-AR binding is achieved by coop-

erative action of individual opposite charge attractions.

Regulation of CPB Docking at Centrioles
For the ZYG-1-CeSPD-2 interaction, we know that ZYG-1 is

present at vanishingly low levels, whereas CeSPD-2, which is
Figure 7. Structural Changes in the ZYG-1 CPB Dimer Confer the Abili

(A) Kd values measured by MST for different CPB-AR pairs.

(B) Superposition of the DmPlk4 and ZYG-1 CPB dimers aligning one of the twoCP

from the long axis relative to the DmPlk4 dimer. (Right) A view of the plane conta

counterclockwise toward the long axis by 15�.
(C and D) (Left) Electrostatic surface plots showing side and top views of the DmPl

the blunt angle at the dimeric junction is 105�. The ZYG-1 CPB dimer is curved

distributions of basic residues involved in the DmAsl AR-DmPlk4 and CeSPD-2

(E) Schematics illustrating docking modes for asterless and SPD-2-derived ARs o

green and pale cyan. Conserved basic clusters are shown as blue patches. ARs a

(blue) segments highlighted.

(F) Sequence comparison of the ARs in asterless and SPD-2 homologs. Acidic (r
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also a component of the PCM, does not appear to be. If

CeSPD-2 in the cytoplasm and on centrioles interacted equiva-

lently with the ZYG-1 CPB, one might expect that cytoplasmic

CeSPD-2 would titrate ZYG-1 away from centrioles. In addition,

whereas CeSPD-2 targets to the PCM and centrioles, ZYG-1

appears to target more specifically to centrioles. These results

suggest that availability of the CeSPD-2 AR might be regulated

so that only CeSPD-2 docked onto centrioles, and not CeSPD-2

in the cytoplasm or PCM, has the ability to interact with ZYG-1.

CeSPD-2 AR availability could be negatively regulated by an

intramolecular interaction with residues in the central and/or

C-terminal regions of CeSPD-2; indeed, the CeSPD-2 sequence

in these regions contains several conserved basic clusters and is

overall positively charged. During centriole duplication, binding

of CeSPD-2 to themother centriole might relieve this intramolec-

ular inhibition, releasing the AR to interact with the ZYG-1 CPB.
Structural Changes in the ZYG-1 CPB and CeSPD-2 AR
Have Led to Specificity for SPD-2-Derived Peptides and
a More Asterless-like Binding Mode
In contrast to SPD-2-derived ARs, Asterless-derived ARs have

conserved basic, as well as acidic residues, near their centers

(Figures 2A and 7F; Figures S2A and S2B). Although ARs con-

taining basic residues can be accommodated by the broad basic

cleft in the DmPlk4 and MmPlk4 CPBs, they are likely excluded

by the narrower cleft in the ZYG-1 CPB. This idea is supported

by docking trials, which show that although the CeSPD-2 and

MmSPD-2 ARs make numerous contacts when docked onto

the ZYG-1 CPB dimer, far fewer contacts are made in the best

docking solutions for Asterless-derived ARs (Figures S6B–S6G).

Pull-down experiments revealed that basic residues on the

sides of the DmPlk4/MmPlk4 CPB dimers are critical for binding

to the DmAsl and MmAsl ARs (Figures 6D, 6E, and 7E). This

suggests that binding of Asterless-derived ARs to the CPB dimer

has a pincer-like quality that may involve the patches of acidic

residues on the two sides of the DmAsl and MmAsl ARs (Fig-

ure 7F), an idea consistent with the results of docking trials (Fig-

ure S6B). In contrast, only the basic residues in the center of the

CPB dimer are required for binding to the MmSPD-2 AR (Fig-

ure 6F), which lacks distal patches of acidic residues (Figure 7F).

Interestingly, the CeSPD-2 AR has distal acidic patches on both

sides (Figures 7E and 7F) that are functionally important in vitro

and in vivo (Figures 2C, 2D, and 3), and basic residues on the

sides of the ZYG-1 CPB dimer are also important for SPD-2

AR binding, ZYG-1 targeting, and daughter centriole assembly

(Figures 2E, 2F, and 4). Cumulatively, these results suggest
ty to Selectively Bind SPD-2-Derived ARs

Bs. (Left) A side view demonstrates that the ZYG-1CPB dimer bends 35� away

ining the intermolecular b sheet shows that the second ZYG-1 CPB is rotated

k4 (C) and ZYG-1 (D) CPB dimers. The DmPlk4 dimer has a linear long axis, and

, with a 35� distortion of the long axis and a blunt angle of 120�. (Right) The
AR-ZYG-1 interactions are shown for comparison.

nto the ZYG-1 and Plk4 CPB dimers. The two CPBs in each dimer are colored

re shown as curved lines with the rough positions of the acidic (red) and basic

ed) and basic (blue) residues are highlighted.
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that coevolution of the ZYG-1 CPB and the SPD-2 AR have

conferred a more Asterless-like mode of binding in which distal

acidic patches contact residues on the sides of the CPB dimer

(Figure S6E).

An interesting question is why vertebrates have CBP-binding

ARs in both Asterless/Cep152 and SPD-2/Cep192, whereas

other species use one or the other, and whether these two

complexes function redundantly and/or collaboratively in Plk4

targeting (Kim et al., 2013; Sonnen et al., 2013). The fact that

the basic residues on the sides of the MmPlk4 CPB are essential

for Asterless/Cep152 but not SPD-2/Cep192 AR binding sug-

gests that characterization of side residue CPB mutants might

provide a means to analyze the relative roles of Plk4 binding to

SPD-2/Cep192 versus asterless/Cep152 in vivo.

EXPERIMENTAL PROCEDURES

Protein Expression and Purification

Proteins were expressed in E. coli BL21(DE3) after induction with 0.5 mM

isopropyl b-D-1-thiogalactopyranoside for 20 hr at 16�C; vectors are

described in Supplemental Experimental Procedures. ZYG-1 and DmPlk4

CPBs were purified by nickel-affinity chromatography and exchanged into

50 mM HEPES-NaOH (pH 7.5) and 250 mM NaCl after proteolytic removal of

the 6 3 His tag. For crystallization, lysine-methylated proteins were concen-

trated to �5 mg/ml after purification on a Superdex-200 16/60 column

(GE Healthcare) preequilibrated with buffer containing 20 mM Tris-HCl

(pH 8.0), 100 mM NaCl, 5% (v/v) glycerol, and 2 mM dithiothreitol (DTT). Se-

Met-substituted ZYG-1 CPB was expressed following published protocols

(Doublie, 1997), and purified as above, except that 10 mM DTT was added

to the gel filtration buffer. Ligands for MST binding assays were isolated by

nickel-affinity chromatography. After removal of the Trx tag, proteins were

further purified on a Superdex-200 16/60 column equilibrated as described

previously and concentrated to 5 to 10 mg/ml. For details, see Supplemental

Experimental Procedures.

Crystallization and Data Collection

SeMet-substituted ZYG-1 CPB was crystallized at 4�C by the hanging drop

method against a reservoir solution containing 100 mM trisodium citrate

(pH 5.6), 15% (w/v) polyethylene glycol 4,000, and 200 mM (NH4)2SO4. Crys-

tals were soaked in reservoir solution containing increasing amounts of glyc-

erol with a final concentration of 20% (v/v), loop mounted, and flash frozen

in liquid nitrogen. Diffraction data were collected at the beamline ID29 of the

European Synchrotron Radiation Facility (ESRF). DmPlk4 CPB was crystal-

lized at 4�C using the sitting drop method against a reservoir solution contain-

ing 100 mM HEPES-NaOH (pH 7.0), 2.5 M NaCl, and 2 mM MgCl2. Crystals

were soaked in reservoir solution containing increasing amounts of ethylene

glycol with a final concentration of 20% (v/v), loop mounted, and flash frozen

in liquid nitrogen. Diffraction data were collected at the beamline ID14-4 of

the ESRF.

Structure Determination

Diffraction data were integrated and scaled using XDS (Kabsch, 2010). The

ZYG-1 CPB structure was determined by using the SAD methods. Selenium

sites were located and experimental maps calculated using Phenix (Terwilliger

et al., 2009). ARP/wARP (Langer et al., 2008), COOT (Emsley and Cowtan,

2004), and Phenix (Terwilliger et al., 2009) were used to build the initial model,

check and manually build missing loops or gaps, and refine the structure,

respectively. The DmPlk4 CPB structure was determined by molecular

replacement using the previously determined DmPlk4 CPB structure (PDB

accession number 4G7N) (Slevin et al., 2012). COOT and Phenix were used

to check and manually rebuild and refine the structure, respectively.

SLS

SLS was carried out on a Mini-DAWN Treos light-scattering instrument

coupled with 1260 Infinity high-performance liquid chromatography system
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(Agilent Technologies) and Superdex-200 10/300 GL gel filtration column

(GE Healthcare) equilibrated in 20 mM Tris-HCl (pH 8.0), 100 mM NaCl,

2 mM DTT, and 2 mM MgCl2. Data were collected and analyzed with Wyatt

Astra version 5.3.4.14 software.

SAXS

SAXS data collection and processing are described in detail in Supplemental

Experimental Procedures. Data were collected at the European Molecular

Biology Laboratory (EMBL) beamline X33 (Deutsches Elektronen-Synchro-

tron), in Hamburg, Germany, and the ESRF beamline BM29 (Pernot et al.,

2013), in Grenoble, France. Before data collection, samples were purified by

gel filtration chromatography and checked for monodispersity by SLS. Individ-

ual X-ray exposures were monitored for radiation sensitivity. The data were

processed and merged using PRIMUS (Konarev et al., 2003), and the pair dis-

tribution function was computed using GNOM (Svergun, 1992). Multiple

rounds of ab initio shape reconstruction by both DAMMIN (Svergun, 1999)

and GASBOR (Svergun et al., 2001) were consistent. Theoretical scattering

was calculated from atomic structures using CRYSOL (Svergun et al., 1995).

MST

MST was performed using a Monolith NT.115 (Nanotemper Technologies).

Labeled CPBs (Monolith NT.115 Labeling Kit RED-NHS) were mixed with

binding partners in 20 mM Tris-HCl (pH 8.0), 100 mM NaCl, 5% (v/v) glycerol,

2 mM DTT, 2 mM MgCl2, 0.5 mg/ml BSA, and 0.2% (v/v) Tween-20. Dissoci-

ation constants were determined using NTA analysis software version 1.4.27

(Nanotemper Technologies) with subsequent nonlinear fitting in SigmaPlot

(Systat Software).

In Vitro Pull-Down Assays and Western Blots

For additional details, see Supplemental Experimental Procedures. Western

blots for pull-downs were performed using mouse monoclonal antibodies

against 5 3 His (1:2,000; Qiagen) and MBP (1:10,000; New England Biolabs).

Goat antimouse horseradish peroxidase (HRP) secondary (New England Bio-

labs) was visualized using SuperSignal West Pico (Thermo Scientific). Worm

lysate blots were performed as described (Lettman et al., 2013) using rabbit

antibodies to SPD-2 (aa 2–200; 1 mg/ml) and ZYG-1 (aa 250–371; Lettman

et al., 2013). HRP-conjugated secondary (1:10,000; GE Healthcare Life Sci-

ences) was visualized using ECL-Prime (GE Healthcare; SPD-2) or Western-

Bright Sirius (Advansta; ZYG-1). Alpha tubulin was detected using DM1a

(1:500; Sigma-Aldrich) followed by an alkaline phosphatase-conjugated anti-

mouse secondary (1:3,750; Jackson ImmunoResearch Laboratories).

C. elegans Strains and RNA-Mediated Interference

C. elegans strains (listed in Table S1) and dsRNAs are described in Supple-

mental Experimental Procedures. L4 hermaphrodites were injected with

dsRNA and incubated at 16�C for 40 to 44 hr before dissection and imaging

of their embryos. For viability assays, L4 worms were injected with dsRNA

and incubated at 16�C for 48 hr. Adults were singled and allowed to lay

eggs for 24 hr before removing them from the plate. Hatched larvae and

unhatched embryos were counted 24 to 30 hr later.

Microscopy, Immunofluorescence, and Image Analysis

For details on microscopy and immunofluorescence, see Supplemental

Experimental Procedures. Centrosomal ZYG-1 andmCh::SPD-2 fluorescence

was quantified from maximum-intensity projections of the portion of the

z stack containing the centrosomes using MetaMorph software (Molecular

Devices). A box 10 (ZYG-1) or 14 (mCh::SPD-2) pixels wide was drawn around

each centrosome, along with a box 1 pixel larger on each side in both dimen-

sions. The per pixel background was calculated as [(integrated intensity in the

larger box � integrated intensity in the smaller box)/(area of larger box � area

of smaller box)]. The centrosomal ZYG-1/mCh::SPD-2 signal was the inte-

grated intensity in the smaller box minus the area of the smaller box multiplied

by the per pixel background.
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