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Abstract

We show that the refined analytic torsion is a holomorphic section of the determinant line bundle over the
space of complex representations of the fundamental group of a closed oriented odd-dimensional manifold.
Further, we calculate the ratio of the refined analytic torsion and the Farber–Turaev combinatorial torsion.
As an application, we establish a formula relating the eta-invariant and the phase of the Farber–Turaev
torsion, which extends a theorem of Farber and earlier results of ours. This formula allows to study the
spectral flow using methods of combinatorial topology.
© 2006 Elsevier Inc. All rights reserved.
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1. Introduction

Let M be a closed oriented odd-dimensional manifold. Denote by Rep(π1(M),C
n) the

space of n-dimensional complex representations of the fundamental group π1(M) of M . For
α ∈ Rep(π1(M),C

n) we denote by Eα the flat vector bundle over M whose monodromy is equal
to α. Let ∇α be the flat connection on Eα . In [6], we defined the non-zero element

ρan(α) = ρan(∇α) ∈ Det
(
H •(M,Eα)

)
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of the determinant line Det(H •(M,Eα)) of the cohomology H •(M,Eα) of M with coefficients
in Eα . This element, called the refined analytic torsion, carries information about the Ray–Singer
metric and about the η-invariant. In particular, if α is a unitary representation, then the Ray–
Singer norm of ρan(α) is equal to 1.

1.1. Analyticity of the refined analytic torsion

The disjoint union of the lines Det(H •(M,Eα)) (α ∈ Rep(π1(M),C
n)), forms a line bun-

dle Det → Rep(π1(M),C
n), called the determinant line bundle, cf. [3, Section 9.7]. It admits a

nowhere vanishing section, given by the Farber–Turaev torsion, and, hence, has a natural struc-
ture of a trivializable holomorphic bundle.

Our first result is that ρan(α) is a nowhere vanishing holomorphic section of the bundle Det. It
means that the ratio of the refined analytic and the Farber–Turaev torsions is a holomorphic func-
tion on Rep(π1(M),C

n). For an acyclic representation α, the determinant line Det(H •(M,Eα))

is canonically isomorphic to C and ρan(α) can be viewed as a non-zero complex number. We
show that ρan(α) is a holomorphic function on the open set Rep0(π1(M),C

n) ⊂ Rep(π1(M),C
n)

of acyclic representations. This result extends Corollary 13.11 of [5]. See also [10] for somewhat
related results.

1.2. Comparison with the Farber–Turaev torsion

In [22,23], Turaev constructed a refined version of the combinatorial torsion associated to
an acyclic representation α, which depends on additional combinatorial data, denoted by ε and
called the Euler structure, as well as on the cohomological orientation of M , i.e., on the orien-
tation o of the determinant line of the cohomology H •(M,R) of M . In [15], Farber and Turaev
extended the definition of the Turaev torsion to non-acyclic representations. The Farber–Turaev
torsion associated to a representation α, an Euler structure ε, and a cohomological orientation o

is a non-zero element ρε,o(α) of the determinant line Det(H •(M,Eα)).
Theorem 5.11 of this paper states, that for each connected component3 C of the space

Rep(π1(M),C
n), there exists a constant θ ∈ R, such that4

ρan(α)

ρε,o(α)
= eiθ · fε,o(α), (1.1)

where fε,o(α) is a holomorphic function of α ∈ Rep(π1(M),C
n), given by an explicit local

expression, cf. (5.50). In the case where α is an acyclic representation close to an acyclic unitary
representation, this formula was obtained in [5,7].

Recently, R.-T. Huang [19] showed by an explicit calculation for lens spaces that the con-
stant θ can depend on the connected component C.

3 In this paper we always consider the classical (not the Zariski) topology on the complex analytic space
Rep(π1(M),C

n).
4 Note that since ρan(α) and ρε,o(α) are non-vanishing sections of the same bundle, their ratio is a non-zero complex-

valued function.
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1.3. Sketch of the proof of formula (1.1)

Using the calculation of the Ray–Singer norm of the Farber–Turaev torsion, given in [15,
Theorem 10.2] and the formula for the Ray–Singer norm of the refined analytic torsion [6, The-
orem 11.3], we obtain (cf. (5.58)) that∣∣∣∣ ρan(α)

ρε,o(α)

∣∣∣∣ = ∣∣fε,o(α)
∣∣. (1.2)

Both, the left- and the right-hand side of this equality, are absolute values of holomorphic func-
tions. If the absolute values of two holomorphic functions are equal, then the two functions are
equal up to a multiplication by a locally constant function, whose absolute value is equal to one.
Hence, (1.1) follows from (1.2).

1.4. Application: Relation of the η-invariant with the phase of the Farber–Turaev torsion

If α ∈ Rep0(π1(M),C
n) is an acyclic unitary representation, then the refined analytic tor-

sion ρan(α) is a non-zero complex number, whose phase is equal, up to a correction term, to
the η-invariant ηα of the odd signature operator corresponding to the flat connection on Eα ,
cf. (6.65). Hence, if α1 and α2 are two acyclic unitary representations which lie in the same con-
nected component of Rep(π1(M),C

n), equality (1.1) allows to compute the difference ηα1 −ηα2

in terms of the phases of the Farber–Turaev torsions ρε,o(α1) and ρε,o(α2). The significance of
this computation is that it allows to study the spectral invariant ηα by the methods of combina-
torial topology. With some additional assumptions on α1 and α2 a similar result was established
in [13] and [5], cf. Remark 6.5.

1.5. Related works

In [22,23], Turaev constructed a refined version of the combinatorial torsion and posed the
problem of constructing its analytic analogue. In [15, Section 10.3], Farber and Turaev asked this
question in a more general setting and also suggested that such an analogue should involve the
η-invariant. The proposed notion of refined torsion gives an affirmative answer to this question
in full generality.

Having applications in topology in mind, quite some time ago, Burghelea asked the question
if there exists a holomorphic function on the space of acyclic representations Rep0(π1(M),C

n)

whose absolute value is equal to the (modified) Ray–Singer torsion. In [9,10], Burghelea and
Haller constructed such a holomorphic function. In particular, in [10] they outlined a construction
of this function involving Laplace-type operators acting on forms.5 They require that the given
complex vector bundle admits a non-degenerate symmetric bilinear form, which they use to
define their Laplace-type operators. The function constructed in [10] is similar to the invariant ξ

defined in Section 7 of our paper [5]. Burghelea and Haller then express the square of the Farber–
Turaev torsion in terms of these determinants and some additional ingredients. Hence they obtain
a formula for the Farber–Turaev torsion in terms of analytic quantities up to a sign. This result
should be compared with our formula (1.1), which expresses the Farber–Turaev torsion including
its sign in analytic terms. The sign is important, in particular, for the application discussed in

5 Added in proof: for a more detailed presentation see [11].
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Section 6. Note that the result of Burghelea and Haller is valid on a manifold of arbitrary, not
necessarily odd dimension. Their holomorphic function is different from our refined analytic
torsion and is not related to the Atiyah–Patodi–Singer η-invariant. In [8], we obtain an explicit
formula computing the Burghelea–Haller torsion in terms of the refined analytic torsion and the
η-invariant.

2. The refined analytic torsion

In this section we recall the definition of the refined analytic torsion from [6]. The refined
analytic torsion is constructed in 3 steps: first, we define the notion of refined torsion of a
finite-dimensional complex endowed with a chirality operator, cf. Definition 2.3. Then we fix
a Riemannian metric gM on M and consider the odd signature operator B = B(∇, gM) associ-
ated to a flat vector bundle (E,∇), cf. Definition 2.5. Using the graded determinant of B and
the definition of the refined torsion of a finite-dimensional complex with a chirality operator we
construct an element ρ = ρ(∇, gM) in the determinant line of the cohomology, cf. (2.15). The
element ρ is almost the refined analytic torsion. However, it might depend on the Riemannian
metric gM (though it does not if dimM ≡ 1 (mod 4)). Finally we “correct” ρ by multiplying it
by an explicit factor, the metric anomaly of ρ, to obtain a diffeomorphism invariant ρan(∇) of
the triple (M,E,∇), cf. Definition 2.9.

2.1. The determinant line of a complex

Given a complex vector space V of dimension dimV = n, the determinant line of V is the
line Det(V ) := ΛnV , where ΛnV denotes the nth exterior power of V . By definition, we set
Det(0) := C. Further, we denote by Det(V )−1 the dual line of Det(V ).

Let

(C•, ∂): 0 → C0 ∂−→ C1 ∂−→ · · · ∂−→ Cd → 0

be a complex of finite-dimensional complex vector spaces. We call the integer d the length of the
complex (C•, ∂) and we denote by H •(∂) = ⊕d

i=0 Hi(∂) the cohomology of (C•, ∂). Set

Det(C•) :=
d⊗

j=0

Det
(
Cj

)(−1)j
,

Det
(
H •(∂)

) :=
d⊗

j=0

Det
(
Hj(∂)

)(−1)j
. (2.3)

The lines Det(C•) and Det(H •(∂)) are referred to as the determinant line of the complex C• and
the determinant line of its cohomology, respectively. There is a canonical isomorphism

φC• = φ(C•,∂) : Det(C•) → Det
(
H •(∂)

)
, (2.4)

cf., for example, [6, Section 2.4].
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2.2. The refined torsion of a finite-dimensional complex with a chirality operator

Let d = 2r − 1 be an odd integer and let (C•, ∂) be a length d complex of finite-dimensional
complex vector spaces. A chirality operator is an involution Γ :C• → C• such that Γ (Cj ) =
Cd−j , j = 0, . . . , d . For cj ∈ Det(Cj ) (j = 0, . . . , d) we denote by Γ cj ∈ Det(Cd−j ) the image
of cj under the isomorphism Det(Cj ) → Det(Cd−j ) induced by Γ .

Fix non-zero elements cj ∈ Det(Cj ), j = 0, . . . , r − 1, and denote by c−1
j the unique element

of Det(Cj )−1 such that c−1
j (cj ) = 1. Consider the element

cΓ := (−1)R(C•) · c0 ⊗ c−1
1 ⊗ · · ·

⊗ c
(−1)r−1

r−1 ⊗ (Γ cr−1)
(−1)r ⊗ (Γ cr−2)

(−1)r−1 ⊗ · · · ⊗ (Γ c0)
−1 (2.5)

of Det(C•), where

R(C•) := 1

2

r−1∑
j=0

dimCj · (dimCj + (−1)r+j
)
. (2.6)

It follows from the definition of c−1
j that cΓ is independent of the choice of cj (j = 0, . . . , r −1).

Definition 2.3. The refined torsion of the pair (C•,Γ ) is the element

ρΓ = ρC•,Γ := φC•(cΓ ) ∈ Det
(
H •(∂)

)
, (2.7)

where φC• is the canonical map (2.4).

2.4. The odd signature operator

Let M be a smooth closed oriented manifold of odd dimension d = 2r − 1 and let (E,∇) be a
flat vector bundle over M . We denote by Ωk(M,E) the space of smooth differential forms on M

of degree k with values in E and by

∇ :Ω•(M,E) → Ω•+1(M,E)

the covariant differential induced by the flat connection on E.
Fix a Riemannian metric gM on M and let ∗ :Ω•(M,E) → Ωd−•(M,E) denote the Hodge

∗-operator. Define the chirality operator Γ = Γ (gM) :Ω•(M,E) → Ω•(M,E) by the formula

Γ ω := ir (−1)
k(k+1)

2 ∗ ω, ω ∈ Ωk(M,E), (2.8)

with r given as above by r = d+1
2 . The numerical factor in (2.8) has been chosen so that Γ 2 = 1,

cf. [3, Proposition 3.58].

Definition 2.5. The odd signature operator is the operator

B = B
(∇, gM

) := Γ ∇ + ∇Γ :Ω•(M,E) → Ω•(M,E). (2.9)

We denote by Bk the restriction of B to the space Ωk(M,E).
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2.6. The graded determinant of the odd signature operator

Note that for each k = 0, . . . , d , the operator B2 maps Ωk(M,E) into itself. Suppose I is
an interval of the form [0, λ], (λ,μ], or (λ,∞) (μ > λ � 0). Denote by ΠB2,I the spectral
projection of B2 corresponding to the set of eigenvalues, whose absolute values lie in I . Set

Ω•
I(M,E) := ΠB2,I

(
Ω•(M,E)

) ⊂ Ω•(M,E).

If the interval I is bounded, then, cf. [6, Section 6.10], the space Ω•
I(M,E) is finite-dimensional.

For each k = 0, . . . , d , set

Ωk
+,I(M,E) := Ker(∇Γ ) ∩ Ωk

I(M,E),

Ωk
−,I(M,E) := Ker(Γ ∇) ∩ Ωk

I(M,E). (2.10)

Then

Ωk
I(M,E) = Ωk

+,I(M,E) ⊕ Ωk
−,I(M,E) if 0 /∈ I. (2.11)

We consider the decomposition (2.11) as a grading6 of the space Ω•
I(M,E), and refer to

Ωk
+,I(M,E) and Ωk

−,I(M,E) as the positive and negative subspaces of Ωk
I(M,E). Set

Ωeven
±,I (M,E) =

r−1⊕
p=0

Ω
2p

±,I(M,E)

and let BI and BI
even denote the restrictions of B to the subspaces Ω•

I(M,E) and Ωeven
I (M,E),

respectively. Then BI
even maps Ωeven

±,I (M,E) to itself. Let B±,I
even denote the restriction of BI

even to

the space Ωeven
±,I (M,E). Clearly, the operators B±,I

even are bijective whenever 0 /∈ I .

Definition 2.7. Suppose 0 /∈ I . The graded determinant of the operator BI
even is defined by

Detgr,θ
(
BI

even

) := Detθ (B+,I
even)

Detθ (−B−,I
even)

∈ C \ {0}, (2.12)

where Detθ denotes the ζ -regularized determinant associated to the Agmon angle θ ∈ (−π,0),
cf., for example, [6, Section 6].

It follows from [6, formula (6.17)] that (2.12) is independent of the choice of θ ∈ (−π,0).

6 Note, that our grading is opposite to the one considered in [12, Section 2].
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2.8. The refined analytic torsion

Since the covariant differentiation ∇ commutes with B, the subspace Ω•
I(M,E) is a sub-

complex of the twisted de Rham complex (Ω•(M,E),∇). Clearly, for each λ � 0, the complex
Ω•

(λ,∞)(M,E) is acyclic. Since

Ω•(M,E) = Ω•[0,λ](M,E) ⊕ Ω•
(λ,∞)(M,E), (2.13)

the cohomology H •[0,λ](M,E) of the complex Ω•[0,λ](M,E) is naturally isomorphic to the coho-
mology H •(M,E).

Let ΓI denote the restriction of Γ to Ω•
I(M,E). For each λ � 0, let

ρΓ[0,λ] = ρΓ[0,λ]
(∇, gM

) ∈ Det
(
H •[0,λ](M,E)

)
(2.14)

denote the refined torsion of the finite-dimensional complex (Ω•[0,λ](M,E),∇) corresponding to
the chirality operator Γ[0,λ], cf. Definition 2.3. We view ρΓ[0,λ] as an element of Det(H •(M,E))

via the canonical isomorphism between H •[0,λ](M,E) and H •(M,E).
It is shown in [6, Proposition 7.8] that the non-zero element

ρ(∇) = ρ
(∇, gM

) := Detgr,θ
(
B(λ,∞)

even

) · ρΓ[0,λ] ∈ Det
(
H •(M,E)

)
(2.15)

is independent of the choice of λ � 0. Further, ρ(∇) is independent of the choice of the Agmon
angle θ ∈ (−π,0) of Beven.

If the odd signature operator is invertible then Det(H •(M,E)) is canonically isomorphic to C

and ρΓ{0} = 1. Hence, ρ(∇) is a complex number which coincides with the graded determinant

Detgr,θ (Beven) = Detgr,θ
(
B(0,∞)

even

)
.

This case was studied in [5,7].
Let Btrivial(g

M) :Ωeven(M,C) → Ωeven(M,C) denote the even part of the odd signature op-
erator Γ d +dΓ :Ω•(M,C) → Ω•(M,C) corresponding to the trivial line bundle M ×C → M .

Definition 2.9. The refined analytic torsion is the element

ρan(∇) := ρ
(∇, gM

) · eiπ ·rankE·ηtrivial(g
M) ∈ Det

(
H •(M,E)

)
, (2.16)

where gM is any Riemannian metric on M , ρ(∇, gM) ∈ Det(H •(M,E)) is defined in (2.15), and

ηtrivial
(
gM

) = 1

2
η(0,Btrivial)

is one half of the value at zero of the η-function of the operator Btrivial, cf. [1,2].
In particular, if dimM ≡ 1 (mod 4), then ηtrivial(g

M) = 0, cf. [1], and ρan(∇) = ρ(∇, gM).

It is shown in [6, Theorem 9.6] that ρan(∇) is independent of gM .
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3. The determinant line bundle over the space of representations

The space Rep(π1(M),C
n) of complex n-dimensional representations of π1(M) has a natural

structure of a complex analytic space, cf., for example, [5, Section 13.6]. The disjoint union

Det :=
⊔

α∈Rep(π1(M),Cn)

Det
(
H •(M,E)

)
(3.17)

has a natural structure of a holomorphic line bundle over Rep(π1(M),Cn), called the determinant
line bundle. In this section we describe this structure, using a CW-decomposition of M . Then,
by construction, the Farber–Turaev torsion ρε,o(α) is a nowhere vanishing holomorphic section
of Det. In particular, it defines a holomorphic trivialization of Det. Note, however, that this
trivialization is not canonical since it depends on the Euler structure ε.

3.1. The flat vector bundle induced by a representation

Denote by π : M̃ → M the universal cover of M and by π1(M) the fundamental group of M ,
viewed as the group of deck transformations of M̃ → M . For α ∈ Rep(π1(M),C

n), we denote
by

Eα := M̃ ×α C
n → M (3.18)

the flat vector bundle induced by α. Let ∇α be the flat connection on Eα induced from the trivial
connection on M̃ × C

n. We will also denote by ∇α the induced differential

∇α :Ω•(M,Eα) → Ω•+1(M,Eα),

where Ω•(M,Eα) denotes the space of smooth differential forms of M with values in Eα .
For each connected component (in classical topology) C of Rep(π1(M),C

n), all the bun-
dles Eα , α ∈ C, are isomorphic, see e.g. [17].

3.2. The combinatorial cochain complex

Fix a CW-decomposition K = {e1, . . . , eN } of M . For each j = 1, . . . ,N , fix a lift ẽj , i.e.,
a cell of the CW-decomposition of M̃ , such that π(ẽj ) = ej . By (3.18), the pull-back of the
bundle Eα to M̃ is the trivial bundle M̃ × C

n → M̃ . Hence, the choice of the cells ẽ1, . . . , ẽN

identifies the cochain complex C•(K,α) of the CW-complex K with coefficients in Eα with the
complex

0 → C
n·k0 ∂0(α)−−−→ C

n·k1 ∂1(α)−−−→ · · · ∂d−1(α)−−−−→ C
n·kd → 0, (3.19)

where kj ∈ Z�0 (j = 0, . . . , d) is equal to the number of j -dimensional cells of K and the
differentials ∂j (α) are (nkj × nkj−1)-matrices depending analytically on α ∈ Rep(π1(M),C

n).
The cohomology of the complex (3.19) is canonically isomorphic to H •(M,Eα). Let

φC•(K,α) : Det
(
C•(K,α)

) → Det
(
H •(M,Eα)

)
(3.20)

denote the isomorphism (2.4).
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3.3. The holomorphic structure on Det

The standard bases of C
n·kj (j = 0, . . . , d) define an element c ∈ Det(C•(K,α)), and, hence,

an isomorphism

ψα : C → Det
(
C•(K,α)

)
, z �→ z · c.

Then the map

σ :α �→ φC•(K,α)

(
ψα(1)

) ∈ Det
(
H •(M,Eα)

)
, (3.21)

where α ∈ Rep(π1(M),C
n), is a nowhere vanishing section of the determinant line bundle Det

over Rep(π1(M),C
n).

Definition 3.4. We say that a section s(α) of Det is holomorphic if there exists a holomorphic
function f (α) on Rep(π1(M),C

n), such that s(α) = f (α) · σ(α).

This defines a holomorphic structure on Det, which is independent of the choice of the lifts
ẽ1, . . . , ẽN of e1, . . . , eN , since for a different choice of lifts the section σ(α) will be multiplied
by a constant. In the next subsection we show that this holomorphic structure is also independent
of the CW-decomposition K of M .

3.5. The Farber–Turaev torsion

The choice of the lifts ẽ1, . . . , ẽN of e1, . . . , eN determines an Euler structure on M , while
the ordering of the cells e1, . . . , eN determines a cohomological orientation o, cf. [24, Sec-
tion 20]. Moreover, every Euler structure and every cohomological orientation can be obtained
in this way. The Farber–Turaev torsion ρε,o(α), corresponding to the pair (ε,o), is, by definition,
[15, Section 6], equal to the element σ(α) defined in (3.21). In particular, it is a non-vanishing
holomorphic section of Det, according to Definition 3.4. Since the Farber–Turaev torsion is in-
dependent of the choice of the CW-decomposition of M [15,23], so is the holomorphic structure
defined in Definition 3.4.

3.6. The acyclic case

If the representation α is acyclic, i.e., H •(M,Eα) = 0, then the determinant line Det(H •(M,

Eα)) is canonically isomorphic to C. Hence, the Farber–Turaev torsion can be viewed as a
complex-valued function on the set

Rep0

(
π1(M),C

n
) ⊂ Rep

(
π1(M),C

n
)

of acyclic representations. It is easy to see, cf. [9, Theorem 4.3], that this function is holomorphic
on Rep0(π1(M),C

n). Moreover, it is a rational function on Rep(π1(M),C
n), all whose poles are

in

Rep
(
π1(M),C

n
) ∖

Rep0
(
π1(M),C

n
)
.
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In particular, the holomorphic structure on Det, which we defined above, coincides, when re-
stricted to Rep0(π1(M),C

n), with the natural holomorphic structure obtained from the canonical
isomorphism

Det|Rep0(π1(M),Cn)  Rep0

(
π1(M),C

n
) × C.

We summarize the results of this section in the following

Proposition 3.7.

(a) The holomorphic structure defined in Definition 3.4 is independent of any choices made.
(b) For every Euler structure ε and every cohomological orientation o, the Farber–Turaev tor-

sion ρε,o(α) is a holomorphic section of the determinant line bundle Det.
(c) The restriction of ρε,o(α) to the open subset

Rep0

(
π1(M),C

n
) ⊂ Rep

(
π1(M),C

n
)

of acyclic representations is a holomorphic function.

4. Refined analytic torsion as a holomorphic section

One of the main results of this paper is that the refined analytic torsion ρan is a non-vanishing
holomorphic section of Det. More precisely, the following theorem holds.

Theorem 4.1. The refined analytic torsion ρan is a holomorphic section of the determinant bundle
Det, i.e., for any Euler structure ε and any cohomological orientation o, the ratio ρan/ρε,o is a
holomorphic function on Rep(π1(M),Cn).

In particular, the restriction of ρan to the set Rep0(π1(M),C
n) of acyclic representations,

viewed as a complex-valued function via the canonical isomorphism

Det|Rep0(π1(M),Cn)  Rep0

(
π1(M),C

n
) × C,

is a holomorphic function on Rep0(π1(M),C
n).

We prove this theorem in two steps: in this section we show that ρan is holomorphic on
Rep(π1(M),C

n) \ Σ(M), where Σ(M) is the set of singular points of the complex analytic set
Rep(π1(M),C

n). In the next section we will use this result to calculate the ratio of the refined
analytic and the Farber–Turaev torsions. This calculation and the fact that the Farber–Turaev
torsion is holomorphic, will imply that ρan is holomorphic everywhere, cf. Section 5.13.

The main result of this section is the following.

Proposition 4.2. Let α0 ∈ Rep(π1(M),C
n)\Σ(M). Then the refined analytic torsion ρan, viewed

as a section of Det, is holomorphic in a neighborhood of α0 with respect to the holomorphic
structure defined in Section 3.

For convenience of the reader and in order to illustrate the main ideas of the proof we, first,
prove the proposition for the case when α0 is acyclic. Then in a neighborhood of α0 the refined
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analytic torsion can be viewed as a complex-valued function, and we shall show that this function
is holomorphic at α0.

4.3. Reduction to a finite-dimensional complex

Fix a Riemannian metric gM on M and a number λ � 0 such that there are no eigenval-
ues of B(∇α0, g

M)2 with absolute value equal to λ. Then there exists a neighborhood Uλ ⊂
Rep0(π1(M),C

n) \ Σ(M) of α0 such that the same property holds for all α ∈ Uλ. By [5, Propo-
sition 13.2] the function α �→ Detgr,θ (B(λ,∞)

even (∇α, gM)) is holomorphic7 on Uλ. It follows now
from (2.15) and (2.16) that to prove Proposition 4.2 it is enough to show that the function

α �→ ρΓ[0,λ](∇α) = ρΓ[0,λ]
(∇α, gM

)
is holomorphic.

4.4. Reduction to one-parameter families of representations

By Hartog’s theorem [18, Theorem 2.2.8], it is enough to show that for every holomorphic
curve γ :O → Uλ, where O is a connected open neighborhood of 0 in C, such that γ (0) = α0,

z �→ ρΓ[0,λ](∇γ (z)), z ∈O,

is a holomorphic function on O.

4.5. A family of connections

Let us introduce some additional notations. Let E be a vector bundle over M and let ∇ be a
flat connection on E. Fix a base point x∗ ∈ M and let Ex∗ denote the fiber of E over x∗. We will
identify Ex∗ with C

n and π1(M,x∗) with π1(M).
For a closed path p : [0,1] → M with p(0) = p(1) = x∗, we denote by Mon∇(p) ∈ EndEx∗ 

Matn×n(C) the monodromy of ∇ along p. Since the connection ∇ is flat, Mon∇(p) depends
only on the class [p] of p in π1(M). Hence, the map p �→ Mon∇(φ) defines an element
of Rep(π1(M),C

n), called the monodromy representation of ∇ .
Suppose now that O ⊂ C is a connected open set. Let γ :O → Rep(π1(M),C

n) be a holo-
morphic curve. By [17, Proposition 4.5], all the bundles Eγ(z), z ∈ O, are isomorphic to each
other. In other words, there exists a vector bundle E → M and a family of flat connections ∇z,
z ∈ O, on E, such that the monodromy representation of ∇z is equal to γ (z) for all z ∈O. More-
over, [5, Lemma B.6] shows that, for any z0 ∈O, the family ∇z can be chosen so that there exists
a one-form ω ∈ Ω1(M,EndE) such that

∇z = ∇z0 + (z − z0)ω + o(z − z0). (4.22)

7 Proposition 13.2 of [5] only deals with the case where B is invertible and λ = 0. But a verbatim repetition of the same
proof with B replaced everywhere by B(λ,∞) works in our more general situation.
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Since z0 ∈ O is arbitrary, it follows now from the discussion in Section 4.4, that to finish the
proof of Proposition 4.2 we only need to show that the function

f (z) := ρΓ[0,λ]
(∇z, g

M
)

(4.23)

is complex differentiable at z0, i.e., there exists a ∈ C, such that

f (z) = f (z0) + (z − z0)a + o(z − z0).

4.6. Choice of a basis

Let Π[0,λ](z) (z ∈ O) denote the spectral projection of the operator B(∇z, g
M)2, correspond-

ing to the set of eigenvalues of B(∇z, g
M)2, whose absolute value is � λ, cf. Section 4.3. It

follows from (4.22) that there exists a bounded operator P :Ω•(M,E) → Ω•(M,E) such that

Π[0,λ](z) = Π[0,λ](z0) + (z − z0)P + o(z − z0). (4.24)

We denote by Ω•(z) the image of Π[0,λ](z). For each j = 0, . . . , r − 1, fix a basis wj =
{w1

j , . . . ,w
mj

j } of Ωj(z0) and set wd−j := {Γ w1
j , . . . ,Γ w

mj

j }. To simplify the notation we will

write wd−j = Γ wj . Then wj is a basis for Ωj(z0) for all j = 0, . . . , d .
For each z ∈O, j = 0, . . . , d , set

wj (z) = {
w1

j (z), . . . ,w
mj

j (z)
} := {

Π[0,λ](z)w1
j , . . . ,Π[0,λ](z)w

mj

j

}
.

It follows from the definition of Uλ that the projection Π[0,λ](z) depends continuously on z.
Hence, there exists a neighborhood O′ ⊂ O of z0, such that wj (z) is a basis of Ωj(z) for all
z ∈O′, j = 0, . . . , d . Further, since Π[0,λ](z) commutes with Γ , we obtain

wd−j (z) = Γ wj (z). (4.25)

Clearly, wj (z0) = wj for all j = 0, . . . , d .
Let

φΩ•(z) : Det
(
Ω•(z)

) → Det
(
H •(M,Eγ (z))

)  C

denote the isomorphism (2.4). For z ∈ O′, let w(z) ∈ Det(Ω•(z)) be the element determined by
the basis w1(z), . . . ,wd(z) of Ω•(z). More precisely, we introduce

wj(z) = w1
j (z) ∧ · · · ∧ w

mj

j (z) ∈ Det
(
Ωj(z)

)
,

and set

w(z) := w0(z) ⊗ w1(z)
−1 ⊗ · · · ⊗ wd(z)−1.

Then, according to Definition 2.3, it follows from (4.25) that, for all z ∈ O′, the refined torsion
of the complex Ω•(z) is equal to φΩ•(z)(w(z)), i.e.,

ρΓ[0,λ](∇z) = φΩ•(z)
(
w(z)

)
. (4.26)
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4.7. Reduction to a family of differentials

For each z ∈ O′, the space Ω•(z) is a subcomplex of (Ω•(M,E),∇z), whose cohomology
is canonically isomorphic to the cohomology of (Ω•(M,E),∇z) and, hence, to H •(M,Eγ (z)).
Using the basis wj (z) we define the isomorphism

ψj (z) : Cmj → Ω
j

[0,λ](z)

by the formula

ψj (z)(x1, . . . , xmj
) :=

mj∑
k=1

xjw
k
j (z) =

mj∑
k=1

xjΠ[0,λ](z)wk
j . (4.27)

We conclude that for each z ∈O′, the complex (Ω•(z),∇z) is isomorphic to the complex

(
W •, d(z)

): 0 → C
m0 d0(z)−−−→ C

m1 d1(z)−−−→ · · · dd−1(z)−−−−→ C
md → 0, (4.28)

where

dj (z) := ψj+1(z)
−1 ◦ ∇z ◦ ψj (z), j = 0, . . . , d. (4.29)

It follows from (4.24) and (4.27) that dj (z) is complex differentiable at z0, i.e., there exists a
(mj+1 × mj)-matrix A such that

dj (z) = dj (z0) + (z − z0)A + o(z − z0).

Let ψ(z) := ⊕d
j=0 ψj (z). Since Γ (Ωj (z)) = Ωd−j (z) (j = 0, . . . , d), we conclude that mj =

md−j . From (4.25) we obtain that

Γ̃ := ψ−1(z) ◦ Γ ◦ ψ(z) (4.30)

is independent of z ∈ O′ and

Γ̃ : (x1, . . . , xmj
) �→ (x1, . . . , xmj

), j = 0, . . . , d. (4.31)

It follows from (4.29) and (4.30) that

ρΓ̃ (z) = ρΓ[0,λ](∇z), (4.32)

where ρΓ̃ (z) denotes the refined torsion of the finite-dimensional complex (W •, d(z)) corre-
sponding to the chirality operator Γ̃ , cf. Definition 2.3.

Let φW •(z) : Det(W •) → Det(H •(d(z))) denote the isomorphism (2.4). The standard bases
of C

mj (j = 0, . . . , d) define an element w̃ ∈ Det(W •). From (4.31) and the definition (2.7)
of ρΓ̃ (z) we conclude that

ρΓ̃ (z) = φW •(z)(w̃). (4.33)
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Hence, to finish the proof of Proposition 4.2 in the case when α0 is acyclic it remains to show
that the function z �→ φW •(z)(w̃) is complex differentiable at z0. In view of (4.29), this follows
from the following lemma.

Lemma 4.8. Let(
C•, ∂(z)

): 0 → C
n·k0 ∂0(z)−−−→ C

n·k1 ∂1(z)−−−→ · · · ∂d−1(z)−−−−→ C
n·kd → 0 (4.34)

be a family of acyclic complexes defined for all z in an open set O ⊂ C. Suppose that the dif-
ferentials ∂j (z) are complex differentiable at z0 ∈ O. Then for any c ∈ Det(C•) the function
z �→ φ(C•,∂(z))(c) is complex differentiable at z0.

Proof. It is enough to prove the lemma for one particular choice of c. To make such a choice let

us fix for each j = 0, . . . , d a complement of Im(∂j−1(z0)) in Cj and a basis v1
j , . . . , v

lj
j of this

complement. Since the complex C• is acyclic, for all j = 0, . . . , d , the vectors

∂j−1(z0)v
1
j−1, . . . , ∂j−1(z0)v

lj−1
j−1, v1

j , . . . , v
lj
j (4.35)

form a basis of Cj . Let c ∈ Det(C•) be the element defined by these bases. Then, for all z close
enough to z0 and for all j = 0, . . . , d ,

∂j−1(z)v
1
j−1, . . . , ∂j−1(z)v

lj−1
j−1, v1

j , . . . , v
lj
j (4.36)

is also a basis of Cj . Let Aj(z) (j = 0, . . . , d) denote the non-degenerate matrix transforming
the basis (4.36) to the basis (4.35). Then, by the definition of the isomorphism φ(C•,∂(z)), cf. [6,
Section 2.4],

φ(C•,∂(z))(c) = (−1)N (C•)
d∏

j=0

Det
(
A(z)

)(−1)j
, (4.37)

where N (C•) is the integer defined in [6, formula (2.15)] which is independent of z. Clearly, the
matrix-valued functions Aj(z) and, hence, their determinants are complex differentiable at z0.
Thus, so is the function z �→ φ(C•,∂(z))(c). �
4.9. Sketch of the proof of Proposition 4.2 in the non-acyclic case

Let ∇z be the family of connections (4.22). To prove Proposition 4.2 in the case when α0 is
not acyclic it is enough to show that the function

f (z) := ρΓ[0,λ](∇z, g
M)

ρε,o(γ (z))
(4.38)

is complex differentiable at z0. Here ρε,o(γ (z)) stands for the Farber–Turaev torsion associated to
the representation γ (z), the Euler structure ε and the cohomological orientation o, cf. Section 3.5.
To see this we consider the integration map

Jz :Ω•(z) ⊂ Ω•(M,E) → C•(K,γ (z)
)
,
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where C•(K,γ (z)) is the cochain complex corresponding to the CW-decomposition K =
{e1, . . . , eN }, cf. Section 3.2. Note that the integration of E-valued differential forms is defined
using a trivialization of E over each cell ej , and, hence, it depends on the flat connection ∇z, cf.
below. We then consider the cone complex Cone•(Jz) of the map Jz. This is a finite-dimensional
acyclic complex with a fixed basis, obtained from the bases of Ω•(z) and C•(K,γ (z)). The
torsion of this complex is equal to f (z). An application of Lemma 4.8 to this complex proves
Proposition 4.2.

In the definition of the integration map Jz we have to take into account the fact that the
vector bundles Eγ(z) and E are isomorphic but not equal. The standard integration map, cf.
Section 4.10, is a map from Ω•(M,E) to the cochain complex C•(K,E) of K with coefficients
in E, which is not equal to the complex C•(M,Eγ (z)). There is a natural isomorphism between
the complexes C•(K,E) and C•(K,γ (z)) which depends on z. The study of this isomorphism,
which is conducted in Section 4.11, is important for the understanding of the properties of Jz. In
particular, it is used to show that Jz is complex differentiable at z0, which implies that the cone
complex Cone•(Jz) satisfies the conditions of Lemma 4.8.

4.10. The cochain complex of the bundle E

Fix a CW-decomposition K = {e1, . . . , eN } of M . For each j = 1, . . . ,N choose a point xj ∈
ej and let Exj

denote the fiber of E over xj . The cochain complex of the CW-decomposition K

with coefficients in the flat bundle (E,∇z) can be identified with the complex (C•(K,E), ∂ ′(z))

0 →
⊕

dim ei=0

Exi

∂ ′
0(z)−−−→

⊕
dim ei=1

Exi

∂ ′
1(z)−−−→ · · · ∂ ′

d−1(z)−−−−→
⊕

dim ei=d

Exi
→ 0. (4.39)

We use the prime in the notation of the differentials ∂ ′
j in order to distinguish them from the

differentials of the cochain complex C•(K,γ (z)) defined in (3.19).
It follows from (4.22) that ∂ ′

j (z) are complex differentiable at z0, i.e., there exist linear maps

aj :
⊕

dim ei=j

Exi
→

⊕
dim ei=j+1

Exi

such that

∂ ′
j (z) = ∂ ′

j (z0) + (z − z0)aj + o(z − z0), j = 1, . . . , d − 1.

4.11. Relationship with the complex C•(K,γ (z))

Recall that for each z ∈O′ the monodromy representation of ∇z is equal to γ (z). Let π : M̃ →
M denote the universal cover of M and let Ẽ = π∗E denote the pull-back of the bundle E to M̃ .
Recall that in Section 4.5 we fixed a point x∗ ∈ M . Let x̃∗ ∈ M̃ be a lift of x∗ to M̃ and fix a basis
of the fiber Ẽx̃∗ of Ẽ over x∗. Then, for each z ∈ O′, the flat connection ∇z identifies Ẽ with
the product M̃ × C

n. Let ẽj (j = 1, . . . ,N) be the lift of the cell ej fixed in Section 4.5 and let
x̃j ∈ ẽj be the lift of xj ∈ ej . Then the trivialization of Ẽ defines isomorphisms

Sz,j :Exj
 Ẽx̃j

→ C
n, j = 1, . . . ,N, z ∈O′.
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The isomorphisms Sz,j depend on the trivialization of Ẽ, i.e., on the connection ∇z. The direct
sum Sz = ⊕

j Sz,j is an isomorphism Sz :C•(K,E) → C•(K,γ (z)) between the complex (4.39)
and (3.19). It follows from (4.22) that Sz is complex differentiable at z0, i.e., there exists a linear
map s :C•(K,E) → C

n·N such that

Sz = Sz0 + (z − z0)s + o(z − z0).

4.12. The integration map

For each z ∈ O′ and for each j = 1, . . . ,N , the flat connection ∇z defines an isomorphism
Tj,z :E|ej

→ Exj
× ej . Thus, we can define the integration map

Iz :Ω•(M,E) → C•(K,E) (4.40)

by the formula

Iz(ω) =
⊕

1�j�N

∫
ej

Tj,z(ω). (4.41)

By the de Rham theorem, Iz is a morphism of complexes, i.e., Iz ◦∇z = ∂̃(z) ◦ Iz, which induces
an isomorphism of cohomology. Also it follows from (4.22) that Iz is complex differentiable
at z0.

Finally, we consider the morphism of complexes

Jz := Sz ◦ Iz ◦ ψ(z) :W • → C•, z ∈O′. (4.42)

This map is complex differentiable at z0 and induces an isomorphism of cohomology.

4.13. The cone complex

The cone complex Cone•(Jz) of the map Jz is given by the sequence of vector spaces

Conej (Jz) := Wj ⊕ Cj−1(K,γ (z)
)  C

mj ⊕ C
n·kj−1 , j = 0, . . . , d,

with differentials

∂̂j (z) =
(

dj (z) 0
Jz,j ∂(γ (z))

)
,

where Jz,j denotes the restriction of Jz to Wj . This is a family of acyclic complexes with differ-
entials ∂̂j (z), which are complex differentiable at z0. The standard bases of C

mj ⊕C
n·kj−1 define

an element c ∈ Det(Cone•(Jz)) which is independent of z ∈ O′. Using the isomorphism (2.4),
we hence obtain for each z ∈ O′ the number φCone•(Jz)(c) ∈ C \ {0}. From the discussion in
Section 4.9 it follows that this number is equal to the ratio (4.23). Hence, to finish the proof of
Proposition 4.2 it remains to show that the function z �→ φCone•(Jz)(c) is complex differentiable
at z0. This follows immediately from Lemma 4.8.
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5. Comparison between the refined analytic and the Farber–Turaev torsions

In this section we calculate the ratio of the refined analytic and the Farber–Turaev torsion. As
a corollary, we conclude that the refined analytic torsion is a holomorphic section on the whole
space Rep(π1(M),Cn) and not only on the subset Rep(π1(M),Cn) \ Σ(M) of smooth points.

First, we need to introduce some additional notations.

5.1. The η-invariant

First, we recall the definition of the η-function of a non-self-adjoint elliptic operator D,
cf. [16]. Let D :C∞(M,E) → C∞(M,E) be an elliptic differential operator of order m � 1
with self-adjoint leading symbol. Assume that θ is an Agmon angle for D (cf., for example,
[5, Definition 3.3]). Let Π> (respectively Π<) be a pseudo-differential projection whose im-
age contains the span of all generalized eigenvectors of D corresponding to eigenvalues λ with
Reλ > 0 (respectively with Reλ < 0) and whose kernel contains the span of all generalized
eigenvectors of D corresponding to eigenvalues λ with Reλ � 0 (respectively with Reλ � 0).
For all complex s with Re s < −d/m, we define the η-function of D by the formula

ηθ (s,D) = ζθ (s,Π>,D) − ζθ (s,Π<,−D), (5.43)

where ζθ (s,Π>,D) := Tr(Π>Ds) and, similarly, ζθ (s,Π<,D) := Tr(Π<Ds). Note that, by de-
finition, the purely imaginary eigenvalues of D do not contribute to ηθ (s,D).

It was shown by Gilkey [16], that ηθ (s,D) has a meromorphic extension to the whole complex
plane C with isolated simple poles, and that it is regular at 0. Moreover, the number ηθ (0,D) is
independent of the Agmon angle θ .

Since the leading symbol of D is self-adjoint, the angles ±π/2 are principal angles for D.
Hence, there are at most finitely many eigenvalues of D on the imaginary axis. Let m+(D)

(respectively, m−(D)) denote the number of eigenvalues of D, counted with their algebraic mul-
tiplicities, on the positive (respectively, negative) part of the imaginary axis. Let m0(D) denote
the algebraic multiplicity of 0 as an eigenvalue of D.

Definition 5.2. The η-invariant η(D) of D is defined by the formula

η(D) = ηθ (0,D) + m+(D) − m−(D) + m0(D)

2
. (5.44)

As ηθ (0,D) is independent of the choice of the Agmon angle θ for D, cf. [16], so is η(D).

Remark 5.3. Note that our definition of η(D) is slightly different from the one proposed by
Gilkey in [16]. In fact, in our notation, Gilkey’s η-invariant is given by η(D) + m−(D). Hence,
reduced modulo integers, the two definitions coincide. However, the number eiπη(D) will be
multiplied by (−1)m−(D) if we replace one definition by the other. In this sense, Definition 5.2
can be viewed as a sign refinement of the definition given in [16].
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Let α ∈ Rep(π1(M),C
n) be a representation of the fundamental group of M and let Eα → M

be the vector bundle defined by α, cf. Section 3.1. We denote by ∇α the flat connection on Eα .
Fix a Riemannian metric gM on M and denote by

ηα = η
(
Beven

(∇α, gM
))

(5.45)

the η-invariant of the corresponding odd signature operator B(∇α, gM), cf. Definition 2.5.

5.4. The number rC

For every integer homology class ξ ∈ H1(M,Z) and every α ∈ Rep(π1(M),C
n), we denote

by detα(ξ) the determinant of the value of α on any closed curve γ representing ξ , [γ ] = ξ .
Let Ld−1(p) ∈ Hd−1(M,Z) denote the component in dimension d − 1 of the Hirzebruch L-

polynomial L(p) in the Pontrjagin classes of M and let L̂1 ∈ H1(M,Z) denote the Poincaré dual
of Ld−1(p).

Lemma 5.5. The function

α �→ r(α) := ∣∣detα( L̂1)
∣∣1/2 · eπ Imηα ∈ R+ (5.46)

is locally constant on Rep(π1(M),Cn). In particular, if C ⊂ Rep(π1(M),Cn) is a connected
component of Rep(π1(M),C

n), which contains a unitary representation α0, then ηα0 is real and
|detα( L̂1)| = 1, hence, r(α) = 1 for all α ∈ C.

Proof. Following Farber [13] we denote by Argα the unique cohomology class in H 1(M,C/Z)

such that for every closed curve γ ∈ M we have

det
(
α
([γ ])) = exp

(
2πi

〈
Argα, [γ ]〉), (5.47)

where 〈·,·〉 denotes the natural pairing H 1(M,C/Z) × H1(M,Z) → C/Z. Then

log r(α) = π Im
(
ηα − 〈Argα, L̂1〉

)
.

Suppose αt (t ∈ [0,1]) is a smooth family of representations. From [5, Theorem 12.3 and
Lemma 12.6] we conclude that

d

dt
ηαt = d

dt
〈Argαt

, L̂1〉.

Hence, d
dt

r(αt ) = 0. �
Definition 5.6. For each connected component C ⊂ Rep(π1(M),C

n) we denote by rC the value
of the function r on C.

Lemma 5.5 implies that rC = 1 if C contains a unitary representation.
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5.7. The homology class βε

We need the following

Lemma 5.8. Let M be a closed oriented manifold of odd dimension d = 2n − 1. Let Ld−1(p) ∈
Hd−1(M,Z) denote the component in dimension d − 1 of the Hirzebruch L-polynomial L(p) in
the Pontrjagin classes of M . Then the reduction of Ld−1(p) modulo 2 is equal to the (d − 1)-
Stiefel–Whitney class wd−1(M) ∈ Hd−1(M,Z2) of M .

Proof. For any homology class ξ ∈ Hd−1(M,Z) there exists a smooth oriented submanifold
Xξ ⊂ M , representing ξ . Then 〈Ld−1(p), ξ 〉 is equal to the signature σ(Xξ ) of Xξ . The parity
of σ(Xξ ) is equal to the parity of the Euler characteristic χ(Xξ ) of Xξ , which, in turn, is equal
to 〈wd−1(M),Xξ 〉 = 〈wd−1(Xξ ),Xξ 〉. Thus we conclude that〈

Ld−1(p) − wd−1(M), ξ
〉 = 0 mod 2,

for any homology class ξ ∈ Hd−1(M,Z). �
We denote by L̂1 ∈ H1(M,Z) the Poincaré dual of Ld−1(p) and by c(ε) ∈ H1(M,Z) the

characteristic class of the Euler structure ε, cf. [23] or [15, Section 5.2].

Corollary 5.9. The class L̂1(p) + c(ε) ∈ H1(M,Z) is divisible by 2, i.e., there exists a (not
necessarily unique) homology class βε ∈ H1(M,Z) such that

−2βε = L̂1(p) + c(ε). (5.48)

Proof. It is shown on [15, p. 209] that the reduction of c(ε) modulo 2 is equal to the Poincaré
dual of the Stiefel–Whitney class wd−1(M). Hence, it follows from Lemma 5.8 that the reduction
of L̂1(p) + c(ε) is the zero element of H1(M,Z2). �

The equality (5.48) defines βε modulo two-torsion elements in H1(M,Z). We fix a solution
of (5.48) and for the rest of the paper βε denotes this solution.

5.10. Comparison between the Farber–Turaev and the refined analytic torsions

One of the main results of this paper is the following extension of the Cheeger–Müller theorem
about the equality between the Reidemeister and the Ray–Singer torsions.

Theorem 5.11. Suppose M is a closed oriented odd-dimensional manifold. Let ε be an Euler
structure on M and let o be a cohomological orientation of M . Then, for each connected compo-
nent C of Rep(π1(M),C

n), there exists a constant θC = θCo ∈ R/2πZ, depending on o (but not
on ε), such that,

θC−o ≡ θCo + nπ mod 2π, (5.49)

and for any representation α ∈ C,

ρan(α) = eiθCo · rC · detα(βε), (5.50)

ρε,o(α)
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where βε ∈ H1(M,Z) is the homology class defined in (5.48) and rC > 0 is defined in Defini-
tion 5.6. If the connected component C contains a unitary representation α0, then rC = 1.

As an immediate corollary of Theorem 5.11 we obtain

Corollary 5.12. If the representations α1, α2 belong to the same connected component of
Rep(π1(M),C

n) then

ρan(α1)

ρan(α2)
= ρε,o(α1)

ρε,o(α2)
· detα1(βε)

detα2(βε)
. (5.51)

5.13. Proof of Theorem 4.1

Before proving Theorem 5.11 let us note that, since the right-hand side of the equality (5.50)
is obviously holomorphic in α, it follows from this equality that ρan(α) is a holomorphic section
of Det, cf. Definition 3.4. Hence, Theorem 4.1 is proven.

5.14. Proof of Theorem 5.11

In Section 5.15 below, we use the calculations of the Ray–Singer norm of the Farber–Turaev
torsion from [15] and the calculation of the Ray–Singer norm of the refined analytic torsion
from [6] to compute the absolute value of the left-hand side of (5.50). More precisely we conclude
that (cf. (5.58)) ∣∣∣∣detα(βε)

−1 · ρan(α)

ρε,o(α)

∣∣∣∣ = rC . (5.52)

By Proposition 4.2, ρan(α)/ρε,o(α) is an analytic function on the set

Rep
(
π1(M),C

n
) ∖

Σ(M)

of non-singular points of Rep(π1(M),C
n). Further, detα(βε) is obviously a polynomial function

on Rep(π1(M),C
n). Hence, the function

α �→ detα(βε)
−1 · ρan(α)

ρε,o(α)

is holomorphic on Rep(π1(M),C
n) \ Σ(M). By (5.52) the absolute value of this function is

locally constant Rep(π1(M),C
n) \ Σ(M). It follows that the function itself is locally constant,

i.e., there exists a locally constant real-valued function θε,o : Rep(π1(M),C
n)\Σ(M) → R/2πZ

such that

ρan(α)

ρε,o(α)
= eiθε,o(α) · rC · detα(βε), α ∈ Rep

(
π1(M),C

n
) \ Σ(M). (5.53)

In Lemma 5.16, we show that the function ρan(α)/ρε,o(α) is continuous on Rep(π1(M),C
n).

Hence, θε,o(α) extends to a continuous function on Rep(π1(M),C
n). Since θε,o is locally con-

stant on the open dense subset Rep(π1(M),C
n)\Σ(M), which has only finitely many connected
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components, it is also locally constant on Rep(π1(M),C
n). In other words, θε,o(α) depends only

on the connected component C containing α.
To finish the proof of Theorem 5.11 it remains to prove that θε,o is independent of ε and

satisfies (5.49). This is done in Section 5.17.

5.15. The Ray–Singer norm of the Farber–Turaev and the refined analytic torsions

Let ‖ · ‖RS
Det(H •(M,Eα)) denote the Ray–Singer norm on the determinant line Det(H •(M,Eα)),

cf. [4,6,15,21]. Theorem 10.2 of [15] states that

∥∥ρε,o(α)
∥∥RS

Det(H •(M,Eα))
= ∣∣detα

(
c(ε)

)∣∣1/2
. (5.54)

Further, by Theorem 11.3 of our previous paper [6],

‖ρan‖RS
Det(H •(M,Eα)) = eπ Imηα . (5.55)

Combining (5.54) and (5.55) we obtain∣∣∣∣ ρan(α)

ρε,o(α)

∣∣∣∣ = ∣∣detα
(
c(ε)

)∣∣−1/2 · eπ Imηα . (5.56)

Since for any two homology classes a, b ∈ H1(M,Z) we have detα(a + b) = detα(a) ·
detα(b), in view of (5.48) we obtain

∣∣detα
(
c(ε)

)∣∣ = ∣∣detα
(
c(ε) + L̂1

)∣∣ · ∣∣detα( L̂1)
∣∣−1

= ∣∣detα(βε)
∣∣−2 · ∣∣detα( L̂1)

∣∣−1
. (5.57)

Substituting (5.57) into (5.56) we obtain, using (5.46),

∣∣∣∣ ρan(α)

ρε,o(α)

∣∣∣∣ = ∣∣detα(βε)
∣∣ · (∣∣detα( L̂1)

∣∣1/2 · eπ Imηα
)

= ∣∣detα(βε)
∣∣ · rC . (5.58)

Lemma 5.16. The function α �→ ρan(α)
ρε,o(α)

is continuous on Rep(π1(M),C
n).

Proof. The proof is similar (but easier) to the proof of Proposition 4.2. The only difference is
that we now assume that α0 ∈ Rep(π1(M),C

n) is an arbitrary (possibly singular) point and that
the connection ∇z depends merely continuously on z. Correspondingly, throughout the proof,
one should replace the words “complex differentiable” by “continuous.” �
5.17. Dependence of θε,o on the Euler structure and the cohomological orientation

From Lemma 5.16 we conclude that θε,o is locally constant on Rep(π1(M),C
n). For each

connected component C of Rep(π1(M),C
n) denote by θCε,o the value of θε,o on C. To finish

the proof of Theorem 5.11 it remains to show that θCε,o is independent of ε and satisfies (5.49).
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In the case of acyclic representations the independence of θCε,o of ε was first established by
R.-T. Huang [19].

Recall that the group H1(M,Z) acts freely and transitively on the set Eul(M) of all Euler
structures on M , cf. [15,23]. Suppose ε1, ε2 ∈ Eul(M) are two Euler structures and let h ∈
H1(M,Z) be such that

ε2 = h + ε1,

where h + ε1 denotes the action of h on ε1. By [15, formula (5.3)]

c(ε2) = 2h + c(ε1) ∈ H1(M,Z). (5.59)

Further, by the first displayed formula on [15, p. 211]

ρε2,o(α) = detα(h) · ρε1,o(α). (5.60)

Combining (5.59) and (5.60) with (5.48), we conclude that

detα(βε2)

detα(βε1)
= detα(βε2 − βε1) = detα(h)−1 = ρε1,o(α)

ρε2,o(α)
. (5.61)

Comparing (5.61) with (5.50) we conclude that θCε,o is independent of ε.
It is shown in [15, Section 6.3] that

ρε,−o(α) = (−1)nρε,o(α). (5.62)

Comparing this equality with (5.50) we conclude that eiθCε,−o = (−1)n · eiθCε,o , which is equivalent
to (5.49). The proof of Theorem 5.11 is now complete.

5.18. Comparison with the Farber–Turaev absolute torsion

An immediate application of Theorem 5.11 concerns the notion of the absolute torsion in-
troduced by Farber and Turaev in [14]. Suppose that the Stiefel–Whitney class wd−1(M) ∈
Hd−1(M,Z2) vanishes, a condition always satisfied if dimM ≡ 3 (mod 4), cf. [20]. Then, by
[14, Section 3.2], there exists an Euler structure ε such that c(ε) = 0. Assume, in addition, that the
first Stiefel–Whitney class w1(Eα), viewed as a homomorphism H1(M,Z) → Z2, vanishes on
the 2-torsion subgroup of H1(M,Z). In this case there is also a canonical choice of the cohomo-
logical orientation o, cf. [14, Section 3.3]. Then the Farber–Turaev torsion ρε,o(α) corresponding
to any ε with c(ε) = 0 and the canonically chosen o will be the same.

If the above assumptions on wd−1(M) and w1(Eα) are satisfied, then the number

ρabs(α) := ρε,o(α) ∈ C
(
c(ε) = 0

)
(5.63)

is canonically defined, i.e., is independent of any choices. It was introduced by Farber and Tu-
raev [14], who called it the absolute torsion.

In view of (5.48) and the fact that L̂1 vanishes if dimM ≡ 3 (mod 4), Theorem 5.11 leads to
the following corollary.
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Corollary 5.19. In addition to the assumptions made in Theorem 5.11 suppose that dimM ≡
3 (mod 4) and that the 2-torsion subgroup of H1(M,Z) is trivial. Then the ratio ρan(α)/ρabs(α)

is a locally constant function on Rep(π1(M),Cn) and its absolute value is equal to 1.8

6. Application to the eta-invariant

As an application of Theorem 5.11 we establish a relationship between the η-invariant and
the phase of the Farber–Turaev torsion which improves and generalizes a theorem of Farber [13]
and an earlier result of ours, cf. Remark 6.5 below.

6.1. Phase of the Farber–Turaev torsion of a unitary representation

Recall that if α ∈ Rep0(π1(M),C
n) is an acyclic representation, then we view the re-

fined analytic torsion ρan(α) as a non-zero complex number, via the canonical isomorphism
Det(H •(M,Eα))  C. We denote the phase of a complex number z by Ph(z) ∈ [0,2π) so that
z = |z|ei Ph(z).

Proposition 6.2. Suppose that α1, α2 ∈ Rep0(π1(M),C
n) are acyclic unitary representations

which lie in the same connected component of Rep(π1(M),C
n). Then, modulo 2πZ,

Ph
(
ρε,o(α1)

) + πηα1 + 2π〈Argα1
, βε〉 ≡ Ph

(
ρε,o(α2)

) + πηα2 + 2π〈Argα2
, βε〉. (6.64)

Proof. By [5, formula (14.10)], for any acyclic unitary representation α we have

Ph
(
ρan(α)

) = −πηα + π(rankα)ηtrivial mod 2πZ. (6.65)

Hence,

Ph
(
ρan(α1)

) − Ph
(
ρan(α2)

) = π(ηα2 − ηα1) mod 2πZ. (6.66)

From (5.51) and (5.47) we obtain, mod 2πZ,

Ph
(
ρan(α1)

) − Ph
(
ρan(α2)

) ≡ Ph
(
ρε,o(α1)

) − Ph
(
ρε,o(α2)

)
+ 2π〈Argα1

, βε〉 − 2π〈Argα2
, βε〉. (6.67)

Combining (6.66) with (6.67) we obtain (6.64). �
6.3. Sign of the absolute torsion

Suppose that the Stiefel–Whitney class wd−1(M) = 0 and that the first Stiefel–Whitney class
w1(Eα), viewed as a homomorphism H1(M,Z) → Z2, vanishes on the 2-torsion subgroup of

8 Added in proof. Recently, Huang [19] proved that if there exists a continuous path of representations, connecting α

with a unitary representation, then ρan(α)/ρabs(α) = ±e−iπρα , where ρα = ηα − (rankα)ηtrivial is the ρ-invariant
of Eα .
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H1(M,Z). Then the Farber–Turaev absolute torsion (5.63) is defined. If α ∈ Repu
0(π1(M),C

n)

is an acyclic unitary representation, then ρabs(α) is real, cf. [14, Theorem 3.8] and, hence,

ei Ph(ρabs(α)) = sign
(
ρabs(α)

)
.

Note also, that since c(ε) = 0 it follows from (5.48) that 2βε = −L̂1. Therefore,

2π〈Argα,βε〉 ≡ −π〈Argα, L̂1〉 mod 2πZ. (6.68)

Recall that L̂1 vanishes if dimM ≡ 3 (mod 4).
From Proposition 6.2 and (6.68) we now obtain the following corollary.

Corollary 6.4. Suppose that α1, α2 ∈ Rep0(π1(M),C
n) are acyclic unitary representations

which lie in the same connected component of Rep(π1(M),C
n). Suppose that he first Stiefel–

Whitney class w1(Eα1) = w1(Eα2) vanishes on the 2-torsion subgroup of H1(M,Z).

(1) If dimM ≡ 3 (mod 4), then

sign
(
ρabs(α1)

) · eiπηα1 = sign
(
ρabs(α2)

) · eiπηα2 .

(2) If dimM ≡ 1 (mod 4) and wd−1(M) = 0, then

sign
(
ρabs(α1)

) · eiπ(ηα1−〈Argα1
,L̂1〉) = sign

(
ρabs(α2)

) · eiπ(ηα2−〈Argα2
,L̂1〉).

Remark 6.5. For the special case when there is a real analytic path αt of unitary representations
connecting α1 and α2 such that αt is acyclic for all but finitely many values of t , Corollary 6.4
was established by Farber, using a completely different method,9 see [13, Theorems 2.1 and
3.1]. In [5, Section 14.11] we succeeded in eliminating the assumption of the existence of a real
analytic path αt and assumed only that the representations α1 and α2 lie in the same connected
component of a certain subset of the set of acyclic representations. Corollary 6.4 improves on this
result by showing that it is enough to assume that α1 and α2 lie in the same connected component
of Rep(π1(M),Cn).
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