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Abstract

We present an inversion algorithm for nonsingular n x n matrices whose entries are degree d
polynomials over a field. The algorithm is deterministic and, when n is a power of two,
requires O~ (nd) field operations for a generic input; the soft-O notation O~ indicates some
missing log(nd) factors. Up to such logarithmic factors, this asymptotic complexity is of the
same order as the number of distinct field elements necessary to represent the inverse matrix.
© 2004 Elsevier Inc. All rights reserved.
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1. Introduction

Let K be an abstract commutative field and, for two positive integers n and d,
consider a nonsingular 4eK[x]"*" of degree d. Since the determinant of A4 is a
polynomial of degree up to nd, it follows from Cramer’s rule that the number of field
elements necessary to represent the inverse of 4 can be of the order of #’d. Assuming
that n is a power of two, we present in this paper a deterministic inversion algorithm
whose complexity is generically O~ (n’d) field operations on an algebraic random
access machine. Here and in the following, the O™ notation indicates some missing
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log(nd) factors. By generically, we mean that the algorithm has the above asymptotic

complexity for every n x n matrix polynomial of degree d whose coefficients do not

form a point of a certain hypersurface of K@+,

The best previously known complexity estimate for computing the polynomial
matrix inverse was O~ (n”*'d), where o is the exponent for multiplying two n x n
matrices over K [10, Chapter 1]. If > 2, we thus improve the complexity for most
n x n inputs with n a power of two; the improvement is by a factor of n when
considering classical matrix multiplication (w = 3).

Let us recall how the above classical estimate O~ (n”*!d) for matrix inversion over
K(x) is obtained. The determinant and the entries of the adjoint, whose degrees are
bounded by nd, may be recovered for instance using evaluation/interpolation at
nd + 1 points [16, Section 5.5]. A randomized Las Vegas algorithm—a4 must be
invertible at the nd + 1 evaluation points—may thus rely on recursive matrix
inversion over K in O(n®) [9,28,32] and on a fast evaluation/interpolation scheme for
univariate polynomials of degree nd in O~ (M(nd)) [24], [16, Section 10]. Here and in
the rest of the paper, M(d) is the number of operations in K sufficient for multiplying
two polynomials of degree d in K[x]. The method in [11] (over any ring) allows
M(d) = O(dlogdloglogd). Many other inversion approaches may be considered
such as direct Gauss-Jordan elimination on truncated power series, Newton iteration
[25], Hensel lifting a la Dixon [12], or linearization (see for instance [23] and the
references therein). A deterministic O~ (n°*!d) algorithm is given in [29, Section 2].
This algorithm is a fraction-free version over K[x] (Bareiss’ approach [1]) of the
recursive inversion algorithms over K cited above. We see that none of these methods
seems to reduce the complexity estimate over K below the order of n”*!'d. With
classical matrix multiplication (w = 3) the cost of inversion was still about n times
higher than the typical size of the inverse.

Our motivation for this work is the fact that some other basic linear algebra
problems on polynomial matrices have much lower complexity estimates. It is
known, since more than two decades, that a linear system can be solved exactly in
O~ (n’d) operations [12,25], and it has been shown more recently that the solution
can be computed using fast matrix multiplication in O~ (n®d) operations [30,31].
Concerning the problem of computing the determinant, the classical techniques seen
above also lead to the cost O~ (n”*!d). In the last years, this estimate has been
reduced using rank perturbations by Eberly et al. [13], basis reduction by Mulders
and Storjohann [26], or a Krylov—Lanczos approach by Kaltofen [19], Kaltofen and
Villard [21,22]. By Hensel lifting with jumps to high order it is possible to compute
the determinant in O~ (n”d) operations in K [30,31], and the same estimate is valid
for the Smith normal form. An application of the latter method further gives an
algorithm for column reduction in O~ (n®d) operations [17]. We may also point out
that for w = 3, the approach of Kaltofen and Villard [22] gives an algorithm for
computing the characteristic polynomial and the Frobenius normal form of a
polynomial matrix in O~ (n3*!/3d) operations in K. Under the algebraic complexity
model for matrices over an abstract field, the problems of computing the
determinant, the characteristic polynomial and the inverse have the same exponent
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(we refer for instance to the survey in [10, Chapter 16]). Nevertheless, in spite of the
recent advances just mentioned, the same is not known in the polynomial case. The
essentially optimal algorithm for inversion in the generic case that we propose here
gives a new insight into the links between the problems.

Our approach, described in Section 2, consists in computing a nonsingular
UeK|[x]"™" and a diagonal BeK[x]"" such that UA = B. The inverse of 4 is then
recovered as A~! = B~'U. In order to achieve the announced O~ (n*d) complexity,
we shall make three remarks. First, with n a power of two, 4 can be diagonalized in
log n block elimination steps, starting with

UAy

A=A AR]>UA =
[AL AR] Udg

[AL Ar] = (1)

Here Ay, Ar have dimensions n x n/2 and U, UeK[x]"/**" are bases of the left

kernels ker Ar, ker Ay considered as K[x]-submodules of K[x]". The blank areas
in matrices are assumed to be filled with zeros. We then observe in Section 3.1
that among all the possible kernel bases U and U, those with rows of lowest
degree typically have degree exactly d, the degree of A. Hence, choosing such
minimal bases yields two square blocks of order n/2 and degree 2d. The third and key
point is that this property generically carries over from one step to the next one. In
particular, we show in Section 3.2 that if the input matrix A of degree d is generic
enough then all the minimal bases at step i of the computation of 47! have degree
exactly 2'~'d, regardless of the way these bases are computed. Therefore, the degree
of the working polynomial matrices only doubles at each step, whereas their order is
divided by two. As we shall finally see in Sections 4 and 5, combining deterministic
O~ (n*d) minimal basis computations with steps of type (1) eventually allows for
A" to be computed in O~ (n’d) field operations by using only classical matrix
multiplication.

Notation: All matrix kernels are left kernels. We write K* for K\{0} and |K] for the
cardinality of K. Also, for any real number y, | y | (resp. [ ¥]) is the greatest (resp.
smallest) integer less than (resp. greater than) or equal to y. As already used in (1), if
M is an n x m matrix then My is the n x | m/2 | matrix that consists of the leftmost
[m/2 ] columns of M and My is the n x [m/2] matrix that consists of the
rightmost [m/2] columns of M. Submatrices M and M are defined similarly by
considering top and bottom rows instead.

2. Inversion algorithm

Algorithm Inverse is described below. Here MinimalKernelBasis is any
subroutine for computing a minimal basis of the left kernel of a polynomial matrix.
(We give in Section 4 an example of such a subroutine that is appropriate to our
complexity purposes.) Furthermore, when entering step #, the polynomial matrix B is

block-diagonal with jth block B,w of order n/2~! for 1<j<2-1.
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Algorithm Inverse(4)

Input: 4 eK[x]"*" of degree d

Output: A~!

Condition: det 4 #0 and n = 27 with peN
(a) B := copy(4);

U=1;
(®) for i from 1 to p do' //B= diag(B,(.l)7 ...,B,QH))
for j from 1 to 2°~! do
QE‘” = MinimalKernelBasis(BE“Q); //Ql(/)Bl(f =0
Ugj) = MinimalKernelBasis(BE_’Q); //UEﬂB,("‘Q =0
od;
ae(U o _ |0
U, =diag(U;”’,...,U;" '); [/U7 = 0
B = U;B;
U=UU,
od;

(c) return B~'U.

We now prove that algorithm Inverse is correct. For i =1, it follows from

det A#0 that Q(ll) and U(ll) have full row rank. Additionally, U; = U1<1> is
nonsingular for otherwise ker A, N ker Ag2{0} which contradicts det 4#0. There-
fore, the two blocks of order n/2 of U;A are nonsingular. Repeating the argument
for i=2,...,p, we see that the pth step of stage (b) produces a nonsingular
UeK[x]"" and a diagonal BeK|x]"*" such that U4 = B. Correctness follows from
identity A=' = B~ U.

In fact, the kernel bases need not be minimal for the algorithm to return 4. On
the other hand, it is not hard to modify the algorithm so that it computes the inverse
of any nonsingular polynomial matrix A: if n is not a power of two, the first step
should yield two square blocks of respective orders | n/2 | and [#n/27] and so on.
However, both minimality and n» =27 are necessary in our cost analysis of the

algorithm when the input is generic. Indeed, the polynomial matrices B,gj) and Ui(j )
then have order 1/2"~! and, as we shall prove in Section 3, minimality further implies

that they typically have degree 2'~'d for 1<j<2~!. In other words, each of these
polynomial matrices satisfies order x degree = nd.

3. Minimal kernel bases and genericity

We first recall in Section 3.1 the definition and some needed properties of minimal
kernel bases of polynomial matrices. We also give an explicit formula for the
construction of such bases in the generic case. This formula will then allow us
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to characterize in Section 3.2 the degrees produced by algorithm Inverse for a
generic input.

3.1. Definition, degree characterization and explicit construction

For a positive integer m, let M eK[x]*"" with rank m and let UeK[x]"**" with
rows forming a basis of the K[x]-submodule ker M. It is sufficient for our purpose to
restrict ourselves to matrices having twice as many rows as columns. We further
denote by d; the ith row degree of U, that is, the highest degree of all the entries of
the ith row of U. The polynomial matrix U is a minimal basis of ker M when Y 1" | d;
is minimal among all the polynomial bases of ker M [14]. Here we shall use only two
properties of minimal kernel bases but we refer to Forney [14] and Kailath [18,
Section 6] for a comprehensive treatment. First, although minimal kernel bases are
not unique, their row degrees {d;}, .,,, are unique up to ordering; such indices are
usually called the minimal row degrees of ker M or the left Kronecker indices of M,
for when M has degree one they coincide with some block dimensions in the
Kronecker canonical form of M [18, Section 6.5.4]. Second, if d is the degree of M,
one has the upper bound

m

> di<md. (2)
i=1

Some minimal row degrees can thus be of the order of md. However, in most cases,
all of them are equal to d. To verify this typical behaviour, let us associate with

M =3 Mix' the block-Toeplitz matrix

MO Ml Md
T(M) = . ) .. ) .. ) eKZmdemd. (3)
My My - My

To any nonzero vector u = Zf;ol u;x' in ker M of degree less than d corresponds the

nonzero vector [ul, ...,ul ]” in ker 7(M). Thus if det7(M)#0 then d;>d for
1 <i<m and, using (2), d; = d. It is not hard to verify that det 7 (M) is a nonzero
polynomial in the 2m?(d + 1) coefficients of the entries of M; therefore the minimal
kernel bases of M generically have degree d.

For algorithm Inverse with generic input A, this means that the minimal bases

U (11), Uil) at the first step both have degree d. In addition, by uniqueness of the
minimal degrees, the latter is true independently of the way the bases are computed.
Now what about the minimal basis degrees at the remaining steps? In order to show
in Section 3.2 below that in general the degrees at step i are 2°~!d, we shall further
use the following explicit construction of a minimal kernel basis of M when
det 7 (M) +#0. Indeed, it follows from identifying the matrix coefficients in both sides
of polynomial matrix equation UM = 0 that a minimal kernel basis is given by any
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of the m x 2m matrices N = Y% | Nyx' such that

Ny is a basis of ker M, (4a)

[No| -+ [Ny-1] = —Ng[O|Mo|-++| My_1]T (M) " (4b)

The fact below is an immediate consequence of the block structure of 7 (M) which
we shall use to prove Proposition 3.

Fact 1. If det 7 (M)+#O0 then matrices M and N as in (4) have degree d exactly, and
their leading matrix coefficients My and Ny have full rank.

One can take for N; in (4a) the particular kernel basis obtained by applying
Gaussian elimination with pivoting (GEP) to the rows of M,. Here, by pivoting—at
the start of the ith stage of elimination—we mean exchanging rows i and k& where
k=1 is the smallest index such that the (k, i) entry is nonzero. The main point is that
when replacing (4a) with

Ny is the basis of ker M; computed by GEP, (4c)

the entries of Ny,...,N; given by (4b and c¢) are now uniquely defined as
rational functions over K of the entries of M, ...,M; (see for example [I5,
Section 2.4]).

3.2. Typical degrees of minimal kernel bases during inversion

Consider n?*(d +1) indeterminates o; ;x for 1<i,j<n, 0<k<d, and let

AEK[O11 0y oo Wi ks - O] [X]" have its (i,/) entry equal to S2¢_, oy ;4 x*. Recall
that n = 27 for some peN and let

vi=n/2"" and ¢, =2""d for 1<i<p. (5)

First, assume that algorithm Inverse is runned formally with subroutine
MinimalKernelBasis replaced with minimal basis formula (4b and c). We show
in Lemma 2 below that this construction leads to successive block-Toeplitz
matrices as in (3) that are invertible. We link the invertibility of these matrices
to a well defined and nonzero rational function @ in the o; ;«’s. This means that
(4b and c) with (m,d) = (v;,0;) reflects the degrees of the matrices computed
at the ith step of the algorithm in the generic case. As a consequence of the
uniqueness of the minimal degrees, we then show in Proposition 3 that, if @ is well
defined and nonzero for a given input A, these degrees are still 6; for any choice of
minimal bases.
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For 1<i<p, 1<j<2"’1 let the matrices 4\ N ')eK[ """ be of degree 6; and
such that: A(1 = 4; N ' is the minimal basis of ker A,  of the form (4b and c); N

is the minimal basis of ker Al._L of the form (4b and c); and

(2/-1) (
A1+/1 _ Nzl
N(/)

Then let @ = [7, [, detT(A\{)det T(4}).

i . i—1 .
@) [AEJ) AE’{{)] for 1<j<27, 1<i<p. (6)
A

Lemma 2. For n=2, @ is a nonzero element of K(at1,1,0, ..., 0% jky v Cnnd)-

Proof. We prove the statement by recurrence on the ith stage of the construction. To
prove both the existence of ®—matrix inversions in (4b)—and the fact that @0, it
suffices to show that the successive determinants det 7 (4 l*’L) and det 7 (4 ,{{) are

nonzero for a particular matrix 4 over K[x]; we shall denote this particular matrix by
A, 4 and define it as follows. For n a power of two, let

d Jupa | .
Apag =x"1,—J,, where J,= I if n=2 and J;=1.
n/2

Let also N,q =x9I,+J,. We show that the determinants used to define @&

. (1)
are nonzero by proving that, when starting with A4,

yields

= Apgq, construction (6)

AV = 4,5 and NV =N, ;. (7)

1

For i = 1 one can verify by inspection that T(A () ) and T(Agll){) are invertible, of
determinant +1; for example,
(0]

]
o In/2

Ty - ek

{ ~Ju)2 } 0
o In/2

To obtain N 1(1) = N4, notice further that applying (4c) to the leading term [O I, /Z]T

of A<1}1){ yields for N(ll) the leading term [/, , O]. Notice also that T(Ag}l){)fl is equal
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to the transpose of ’T([—Jn’/l2 | x"I,,/z]T):
[~k 0]
—-JL 0
/2
T(A(&)_l _ [ " } cKndxnd_
[0 L]

[0 L] |

It then follows from (4b) that N\" = N, ; similarly, N\" = N, ; because (4c) gives
the leading term [O 1, »] and 'Z'(A(I}])d)f1 equals the transpose of T ([x?1,, | — In/z]T).

Hence, Nl(l) = N, 4 and (7) holds for i = 1. Now, if (7) holds forie {1, ...,p — 1}, this
is still true for i + 1. Indeed, the block-diagonalization scheme (6) and identity

Aps24
NnA,dAnﬁd = "/

An/Z,Zd]

imply that Al(ﬁ =4 for 1<j<2". We further obtain detT(AEJ{)l’L);éO,

det T(A) z)#0 and N/} = N,

Vigl,0ir1

1,0, 10 the same way as fori=1. [

Proposition 3. Let AeK[x]"" be nonsingular of degree d. If ®(A)eK* then the
matrices Bl(i) B,(’Q, Qlw, Ulw in Inverse(A) have degree 0;.
Proof. Let Bg‘i), Ui(j) be the polynomial matrices involved during stage (b) of

algorithm Inverse(A4) and, since ®(A4)eK*, consider AE*”, N,(j) as in (6).
(J)

It suffices to show that there exists invertible constant matrices C;”’ of order
vi = n/2""! such that, for 1<j<2""! and 1<i<p,
A - o @-1) 4
B =l and, it i<p, U = | T N, ®)
G

Indeed, the target degree bound ¢, for B,('j) and U,.(j) then follows from &(A4)eK*
and Fact 1 which gives the bound ¢; for Al(j) and Ni(j).

We proceed by recurrence on i. When i =1, BEU = A<11> =4 and Cfl) =1,. To see
why U 1(1) is an invertible constant multiple of N 1(1), notice that both U<11> and Nil) are
minimal kernel bases of B(lh){ = A&){ = Ar. Hence there exists a unimodular
DeK[x]"/*"/* such that U<11> = Dﬁil). Now, it follows from the assumption on @

and from Fact 1 applied to A(lfl){, N(ll) that D must have degree zero. We can thus take
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2)

Cél) = D. Similarly, U 5” = Cg N g” for some invertible constant matrix Cf) and (8)

holds for i = 1.
Assume that (8) holds for i <p. It follows from BN U<'/)Bl( {), (6) and (8) that

i+1
Bﬁjfl) = Cl(fl V4 2j Y (and similarly for B,H) Now consider UI(Jrl and, for
simplicity, let X sta.nd for XY for X {4, B, C, N, U} and let 6 stand for &,,. To

show that UC = DN for some invertible constant matrix D, recall first that U is a
minimal kernel basis for B = CAg. Therefore, UC is a kernel basis for Ag; it is
further minimal, as we explain now. By assumption on @, det 7 (Bg) = (det C)°
det 7(Ar)#0 and then all the rows of U have degree & (see Section 3.1).
Consequently, UC is a kernel basis for Ar of degree at most & and, since the minimal
row degrees of ker Ag are J,...,0, UC is minimal. We conclude as for i = 1 that
UC = DN for some invertible constant matrix D. Using similar arguments, we
obtain UC = D'N for another invertible constant matrix D’ and (8) therefore holds
fori+1. O

The zeros of numerator(®) x denominator(®) define a hypersurface of K7(@+h),

By identifying the matrix set {4 eK[x]"": deg 4 <d} with K" @+ we therefore get
the following corollary.

Corollary 4. The matrices BEJL) , BE_VQ, uV, U,(-'/ " in Inverse(A) have degree d; for all

nonsingular AeK[x]""

of degree d except those in a certain hypersurface of K (d+1),

Again, the typical degrees o, in Proposition 3 and Corollary 4 are independent of
the way minimal kernel bases are computed. The next section deals with the cost of
computing such bases.

4. Minimal kernel basis computation

In algorithm Inverse the degrees of the successive minimal bases are not known
in advance. To get a low complexity estimate in the favorable cases where the bases
actually have small degrees (the generic case), we thus use a minimal basis algorithm
whose cost is sensitive to these degrees. In particular, for a 2m x m input matrix M
of degree d, the algorithm detects whether the genericity condition det 7 (M)+#0 is
satisfied. If so, a minimal basis of ker M is returned in O~ (m>d) operations in K.

Several approaches exist for computing minimal polynomial bases of matrix
polynomial kernels. Most of them are based on matrix pencil normal forms, see for
example [5,6] and references therein, but it is unclear whether they lead to the target
complexity estimate O~ (m’d). Following the characterization (4), another
possibility is structured linear system solving. In particular, the block-Toeplitz
linear system (4b) can be solved in O~ (m’d) field operations [20]. Such a fast
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structured solver uses preconditioning with random matrices in order to prevent
some particular minors to vanish during recursions [20, Appendix A]. However, for
the whole inversion algorithm, this should amount to replacing condition @(4)eK*
with another generically satisfied condition of the same nature, say, ®(4)¥(4)eK".

We now recall in detail another deterministic O~ (m’d) approach that relies only
on rational function @. It is based on matrix Hermite—Padé approximation. We
compute a minimal basis of ker M as a submatrix of a suitable minimal approximant
basis for M, called a o-basis in [2]. This follows the idea of [27, Chapter 4] as applied

in [3,4]. Intuitively, a left minimal approximant basis for M eK[x]*" is a
nonsingular ¥ eK[x]*"**" such that
VM = 0mod x* for some 7eN 9)

and whose row degrees are as small as possible among all such approximants. More
2m

precisely, let ceN and, following [2, p. 809], let for veK|x]
ord v = sup{reN: o7 (x") - M(x") - [1,x,...,x"']" = 0mod x°}.

Denote further by degv the highest degree of all the entries of v. A o-basis for the
rows of M is a matrix ¥ eK[x]*"*" such that

(D for 1<i<2m, ord V%) =g, where V(*) is the ith row of V;

(D) every polynomial vector veK[x]*" such that ordv=¢ admits a unique

decomposition o7 = 37 ¢ Y (*) where, for 1<i<2m, ¢ eK[x] and deg ) +
deg V) <deg .

This definition coincides with [2, Definition 3.2] when the m components of the
multiindex in [2] are the same. Also, approximation (9) follows from (I) by taking
6 = mr, and regularity and minimality of V' follow from (II). Note that, in
particular, V" has degree no more than 7. Proposition 5 below shows that if the
approximation order ¢ = mr is large enough compared to the minimal row degrees
of ker M then there are exactly m rows of V' forming a minimal basis for ker M.
Although a more general version not restricted to the 2m x m case can be found in
[27], we give a proof here for the sake of completeness.

Proposition 5. Ler M eK[x]*"™ with rank m, degree d and left Kronecker indices
{di} ) <i<m» and let V be a o-basis for the rows of M. If e >m(max; d; + d + 1) then the
m rows of V with smallest degrees form a minimal basis of ker M.

Proof. For 1<i<2m, VU= (x™). M(x™)-[1,x,...,x"']" =0mod x* where the
left-hand side is a polynomial of degree at most

m(deg V) +d+1) - 1. (10)
It thus follows from (10) and from o>m(max; d; + d + 1) that a row of ¥ whose

degree is no more than max; d; is a vector of ker M. Let us now show that ' has m
rows of respective degrees d|, ..., d,,. By definition, a vector u; of ker M of degree d,
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can be written as u; = 32" V) with degcl” + deg V") <d,. Hence, there
exists /; such that deg V" <d,. Now assume that ¥ has i—1 rows
yUnx i) of respective degrees di, ...,di—; and let u; be a vector of

ker M that does not belong to the submodule generated by these i — 1 rows and
such that degu; =d;. As for i=1, there exists h;¢{hy,...,h_1} such that
deg Vi) <d;. Therefore, V contains m distinct rows (indexed by hy, ...,h,) such
that the A;th row belongs to ker M and has degree at most d;. These m rows are
linearly independent in ker M and, since Y ;- d; is minimal for any such set of rows,
they must form a minimal basis. Notice that the remaining m rows of V' cannot
belong to ker M and therefore have degrees greater than max; d;. The choice of the m
rows with smallest degrees in the statement of the proposition is thus well
defined. O

Because of the bound (2) on the Kronecker indices, Proposition 5 implies that
every o-basis for the rows of M such that o=m(md + d + 1) contains a minimal
kernel basis for M. However, notice that if max; d; is known to be no more than d
then ¢ can be decreased to m(2d + 1). We make the algorithm sensitive to the output
degree in the following straightforward way. If a first attempt with the
approximation order m(2d + 1) is sufficient then we stop and output the basis.
Otherwise we increase the order. We remark that this test on the order could be
included in the approximation algorithm itself.

Algorithm MinimalKernelBasis(M)
Input: M eK[x]*"" of degree d

Output: a minimal basis U eK|[x]"**" of ker M
o =m(2d + 1);
(%) V= a g-basis for the rows of M;
U = the m rows of V' with smallest degrees;
if 0 =m(2d + 1) and UM #0 then go to (%) with ¢ = m(md + d + 1) fi;
return U.

In algorithm MinimalKernelBasis above, o-bases can be computed determinis-
tically with the method of [2] or its counterpart using fast matrix multiplication [17].
For our generic inversion purposes, it is sufficient to show that the algorithm has
cost O~ (m*d) when U has degree no more than d, i.e. when taking ¢ = m(2d + 1) is
enough to get UM = 0.

For ¢ =m(2d + 1), the matrix U has degree O(d) and testing for “UM #0”
therefore costs O(MM(m, d)), where MM(m, d) is the complexity of multiplying two
m x m polynomial matrices of degree O(d). Recall that @ is the exponent for
multiplying two m x m matrices over K and that multiplying two degree d
polynomials in K[x] can be done in M(d) = O(d logd loglogd) operations in K.
From [11] we have MM(m,d) = O(m® - M(d)), thus

MM(m,d) = O(m”d logdloglogd). (11)
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When the field K has at least 2d + 1 elements, polynomial matrix multiplication can
be done by multipoint evaluation/interpolation; in this case, the best known estimate
is from [7,8] and gives

MM(m,d) = O(m”d + m*dlog dloglogd) if |K|>2d. (12)

Let B(m, d) be the complexity of computing a o-basis for the rows of M such that the
approximation order ¢ = m(2d + 1) is sufficient. Theorem 2.4 of [17] gives the
estimate

log &
B(m,d) = 0(2 2f|v||v|(m,2f5)>, (13)
i=0

where ¢ is the smallest integer power of two such that 6>2d + 1. Since 6 = O(d), it
follows from (11) and (13) that B(m,d) = O(m®dlog” dloglogd) and, for large
enough fields, B(m,d) = O(m®“d logd) + O~ (m*d) follows from (12) and (13). Using
classical matrix multiplication only (w =3), we thus obtain the following
consequence of Proposition 5.

Proposition 6. Ler M eK[x]*™" with rank m and degree d. If the left Kronecker
indices of M are bounded by d, then Algorithm MinimalKernelBasis returns a
minimal basis of ker M in O(m3dlog2dlog logd) field operations; if |K|>2d, this
bound becomes O(m3dlogd) + O~ (m*d).

If Algorithm MinimalKernelBasis does not detect that ¢ =m(2d + 1) is
sufficient, then a higher approximation order m(md +d + 1) is used. Hence, a
minimal kernel basis can always be computed in O~ (m®“*'d) operations in K.

5. Cost analysis of inversion for a generic input

We study the cost of algorithm Inverse when the input matrix 4 is such that
&(A) eK*. In particular, v; and 0; are as in (5). We assume that MinimalKernelBasis
implements the method of the previous section, and the matrix polynomial
multiplication complexity MM(m, d) is as in (11) and (12).

The asymptotic complexity of algorithm Inverse can be bounded as follows.
First, Propositions 3 and 6 imply that the 2/ minimal bases at step 7 can be computed
at cost 2/ x O(v}9; log® 3, log log 8;), that is

02 'n*d log* (nd)log log(nd)). (14)
This becomes O(2~'n*d log(nd)) + O~ (n*d) if |K| > 2d. The update B := U;B consists
in multiplying two block-diagonal matrices, each of them having 2/~! diagonal
blocks of order v; and degree §;. This costs 2°~! x O(MM(v;,;)). To update the dense

matrix U, we update each of its 2/~! block-rows with 2/~! matrix products of order v;
and degree ;. This costs 2/~! x O(2"'"MM(v;, §;)). The total cost of matrix updates at
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step i is thus bounded by this latter quantity; with (11) and w = 3, this gives

O(rn*d log(nd) log log(nd)). (15)
With (12) and w = 3, this gives instead

O(n*d + 2'n*d log(nd)log log(nd)) if |K|>2d. (16)
The total costs induced by (14)-(16) follow from Y 18" 2~ = O(1) and Y 18" 2/ =

O(n); hence the cost of stage (b) of algorithm Inverse is bounded by
O(n*d log* (nd)log log(nd)), and if |K|>2d, this reduces to
O(n*dlog(nd)loglog(nd)) + O~ (n*d). Stage (c) consists in reducing n*> fractions
whose numerators and denominators have degrees bounded by nd —d and nd,
respectively; this can be done by O(n’d log?(nd)log log(nd)) field operations as well.
We give the conclusion of this analysis in the theorem below.

Theorem 7. Let AeK[x|"" be nonsingular of degree d, with n a power of 2. If
®(A)eK*, algorithm Inverse computes A~' in O(n’dlog*(nd)loglog(nd)) +
O~ (n*d) field operations.

Corollary 8. Algorithm Inverse computes A~ in O~ (n’d) field operations for all
nonsingular A eK[x ]"X" of degree d and with n a power of 2, except those in a certain

hypersurface of K@+,

When ignoring logarithmic factors but assuming fast matrix multiplication over K,
(14) and (15) become, respectively, O~ (22~®n®d) and O~ (28-“Vn“d). When i
ranges from 1 to logn, the cost of computing minimal kernel bases therefore
decreases from O~ (n”d) to O~ (n’d); simultaneously, the cost of matrix updates
increases from O~ (n”d) to O~ (n’d). Hence, asymptotically and regardless of
logarithmic factors, basis computations dominate at early stages of the algorithm
whereas matrix updates dominate at the end.

Clearly, it remains to remove the assumption that n is a power of two. The
assumption is used in Proposition 3 and thus Theorem 7. For general dimensions,
similar results should follow from inverting

A= [A }, 2l ap<or,
X Izp_n

with X a generic polynomial matrix of degree d. If 4 is generic, then the degrees of

the minimal kernel bases in Inverse(.A) should still be bounded by the J,’s, although

not equal to them anymore. It also remains to get rid of the genericity condition

&(A4) eK*, and to develop a method for handling minimal kernel bases with possibly

unbalanced degrees.

We have noticed in [17] that Algorithm Inverse may be specialized for computing
the determinant of a generic matrix 4 in O~ (n”d) operations. In the generic case this
yields an alternative approach to the determinant algorithm in [30,31]. These two
different methods for the determinant are respectively based on Hermite—Padé
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approximation and Newton—Hensel lifting: how do they compare? As we have seen,
recent advances show that several problems on polynomial matrices can be solved in
O~ (n”d) operations. The latter is also the cost of polynomial matrix multiplication.
For inversion we get an algorithm whose cost is essentially the size of the output. The
extension of the list of polynomial matrix problems that can be solved in
asymptotically O~ (n”d) algebraic operations plus the input/output size should be
pursued.
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