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Monika Žecová, Ján Terpák ⇑
Institute of Control and Informatization of Production Processes, Technical University of Košice, Košice, Slovak Republic
a r t i c l e i n f o

Keywords:
Fourier heat conduction equation
Heat conduction
Analytical and numerical methods
Derivatives of integer- and fractional-order
a b s t r a c t

The article deals with the heat conduction modeling. A brief historical overview of the
authors who have dealt with the heat conduction and overview of solving methods is listed
in the introduction of article. In the next section a mathematical model of one-dimensional
heat conduction with using derivatives of integer- and fractional-order is described. The
methods of solving models of heat conduction are described, namely analytical and numer-
ical methods. In the case of numerical methods regards the finite difference method by
using Grünwald–Letnikov definition for the fractional time derivative. Implementation of
these individual methods was realized in MATLAB. The two libraries of m-functions for
the heat conduction model have been created, namely Heat Conduction Toolbox and
Fractional Heat Conduction Toolbox. At the conclusion of the article the simulations
examples with using toolboxes are listed.

� 2015 Elsevier Inc. All rights reserved.
1. Introduction

Heat conduction process, described by partial differential equation, was first formulated by Jean Baptiste Joseph Fourier
(1768–1830). In 1807 he wrote an article ‘‘Partial differential equation for heat conduction in solids’’. The issue of heat
conduction was addressed by other scientists as well, such as Fick, Maxwell, Einstein, Richards, Taylor [1].

The various analytical and numerical methods are used to the solution the Fourier heat conduction equation [2,3]. In the
case of heat conduction in materials with non-standard structure, such as polymers, granular and porous materials, compos-
ite materials and so on, a standard description is insufficient and required the creation of more adequate models with using
derivatives of fractional-order [4–8]. The causes are mainly memory systems and ongoing processes [9–13], roughness or
porosity of the material [14–16] and also fractality and chaotic behavior of systems [17–26].

The issue of research and development methods and tools for processes modeling with using fractional-order derivatives
is very actual, since it means a qualitatively new level of modeling. Important authors of the first articles were Fourier, Abel,
Leibniz, Grünwald and Letnikov. Mathematicians like Liouville (1809–1882) [27,28] and Riemann (1826–1866) [29] made
major contributions to the theory of fractional calculus.

Nowadays there are a number of analytical [30–37] and numerical solutions of fractional heat conduction equation. In the
case of numerical methods are developed different methods based on the random walk models [38–41], the finite difference
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method (FDM) [42–44], the finite element method [45–48], numerical quadrature [49–51], the method of Adomian decom-
position [52,53], Monte Carlo simulation [54,55], matrix approach [4,5,56] or the matrix transform method [57,58]. The finite
difference method is an extended method where are used an explicit [42,59,60], an implicit [43,61–63], and a Crank–Nicol-
son scheme [44,64]. For the Crank–Nicolson scheme, the literature describes the use of Grünwald–Letnikov definition only
for a spatial derivative [62,65–67].

The work presented in this article is mainly aimed at the implementation of FDM for the fractional heat conduction equa-
tion in MATLAB and in the case of Crank–Nicolson scheme brings the use of Grünwald–Letnikov definition for the time deriv-
ative. The article does not address the questions of the stability and convergency because they are described in detail in
many works, e.g. [60,63,68].

2. Heat conduction models

A heat conduction is a molecular transfer of thermal energy in solids, liquids and gases due to the temperature difference.
The process of the heat conduction takes place between the particles of the substance when they directly touch each-other
and have different temperature. Existing models of heat conduction processes are divided according to various criterions. We
consider a division into two groups to models with using derivatives of integer and fractional order.

2.1. Models with using derivatives of integer order

Models with using derivatives of integer order are the non-stationary and stationary models. Non-stationary models are
described by Fourier heat conduction equation, where the temperature T (K) is a function of spatial coordinate x (m) and time
s (s). In the case of one-dimensional heat conduction it has the following form
@Tðx; sÞ
@s

¼
ffiffiffi
a
p� �2 @2Tðx; sÞ

@x2 for 0 < x < L and s > 0;

Tð0; sÞ ¼ T1; TðL; sÞ ¼ T2 for s > 0; ð1Þ
Tðx;0Þ ¼ f ðxÞ for 0 6 x 6 L;
where a ¼ k=ðq � cpÞ is thermal diffusivity (m2 s�1), q is density (kg m�3), cp is specific heat capacity (J kg�1 K�1) and k is ther-
mal conductivity (W m�1 K�1).

2.2. Models with using derivatives of fractional order

A more general formulation of the task for modeling not only one-dimensional heat conduction is based on the model in
which on the left-hand side of the Eq. (1) instead of the first derivative with respect to time, the derivative of order a occurs,
i.e. we can find it in the form
@aTðx; sÞ
@sa ¼ bð Þ2 @

2Tðx; sÞ
@x2 for 0 < x < L and s > 0;

Tð0; sÞ ¼ T1; TðL; sÞ ¼ T2 for s > 0; ð2Þ
Tðx;0Þ ¼ f ðxÞ for 0 6 x 6 L;
where b represents a constant coefficient with the unit m�s�a=2.

3. Methods of solution

Methods used to solve models (1) and (2) are divided into analytical methods and numerical methods.

3.1. Analytical methods

Analytical methods can be used for solving problems in a bounded, semi-bounded or unbounded interval. Analytical solu-
tion of heat conduction model (1) for a bounded interval 0; Lh i is given by the following function, which corresponds to the
sum of the product of trigonometric and exponential functions
Tðx; sÞ ¼
X1
k¼1

ck e�ðn
ffiffi
a
p
Þ2s sin nx

h i
þ 1

L
T2 � T1ð Þxþ T1; ð3Þ
where
ck ¼
2
L

Z L

0
f ðnÞ � 1

L
T2 � T1ð Þn� T1

� �
sin

kpn
L

dn� ð4Þ
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Analytical solution for a fractional diffusion-wave equation or model (2) can be described by the following relation, which
includes also the solution (1) and thus represents a more general form of analytical solution [31]
Tðx; sÞ ¼
X1
k¼1

ck Ea �ðnbÞ2sa
� �

sin nx
h i

þ 1
L

T2 � T1ð Þxþ T1; ð5Þ
where EaðzÞ is the Mittag–Leffler function, e.g. E1ð�zÞ ¼ e�z, resp. E2ð�z2Þ ¼ cosðzÞ; a is the order of fractional derivative.

In the case that we would like to consider different initial conditions, for example in the form of constant values, possibly
in a linear or quadratic shape, then it is appropriate to choose the initial condition in the form of a polynomial of second
order f ðnÞ ¼ a0 þ a1nþ a2n

2. For a given shape of the function the form of ck was subsequently derived as follows
ck ¼
2
nL

T2 � a0 � a1Lþ a2
2
n2 � L2
	 
� �

�1ð Þk � T1 þ a0 � a2
2
n2 ; ð6Þ
where n ¼ kp=L.

3.2. Numerical methods

The most famous numerical method for solving models (1) and (2) is FDM with explicit, implicit and Crank–Nicolson
scheme.

3.2.1. Explicit scheme
The temperature in a new time step Tpþ1 is calculated from the three temperatures at positions m� 1; mþ 1 and m in the

previous time step (Fig. 1(a)). Explicit scheme for solving the heat conduction model defined by Eq. (1) in the case of homo-
geneous material has the following form
Tm;p ¼ MTm�1;p�1 þ Tm;p�1 � 2MTm;p�1 þMTmþ1;p�1 ð7Þ
and in the case of non-homogeneous material has the form
Tm;p ¼ Mm�1Tm�1;p�1 þ Tm;p�1 � ðMm�1 þMmÞTm;p�1 þMmTmþ1;p�1; ð8Þ
where module M is determined by the relation
M ¼
ffiffiffi
a
p

Dx

	 
2

Ds; ð9Þ
while the value of M with respect to the stability of the solution must have values less or equal to 0.5.
Explicit scheme for the heat conduction model using derivative of fractional-order (2) for homogeneous material has the

form (Fig. 2(a))
Tm;p ¼ MTm�1;p�1 �
XNf

j¼1

bcjTm;p�j � 2MTm;p�1 þMTmþ1;p�1 ð10Þ
and for non-homogeneous material the form
Tm;p ¼ Mm�1Tm�1;p�1 �
XNf

j¼1

bcjTm;p�j � ðMm�1 þMmÞTm;p�1 þMmTmþ1;p�1: ð11Þ
The solution of the fractional derivative of temperature by time based on Grünwald–Letnikov definition
@aT
@sa ¼

PNf

j¼0bcjTm;p�j

Dsa ð12Þ
Fig. 1. A stencil for (a) an explicit, (b) an implicit, (c) a Crank–Nicolson scheme for an integer-order derivative.



Fig. 2. A stencil for (a) an explicit, (b) an implicit, (c) a Crank–Nicolson scheme for a fractional-order derivative.
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by using the principle of ‘‘short memory’’, where L is the ‘‘length memory’’ [9], h is the time step and the value of Nðf Þ shall be
determined by the following relation
Nðf Þ ¼ min
s
h

h i
;

L
h

� �� �
: ð13Þ
For the calculation of the binomial coefficients bcj we can use the relation
bc0 ¼ 1; bcj ¼ 1� 1þ a
j

	 

� bcj�1; for j P 1 ð14Þ
and module Mi is determined by the relation
Mi ¼
bi

Dx

	 
2

Dsa: ð15Þ
3.2.2. Implicit scheme
In the case of the implicit method usage for the homogeneous material the temperature at a given point m in the new

time step p (Fig. 1(b)) and in the case of the boundary condition of the first kind is calculated according to the formula
�MTm�1;p þ ð1þ 2MÞTm;p �MTmþ1;p ¼ Tm;p�1 ð16Þ
and for the non-homogeneous body by the formula
�Mm�1Tm�1;p þ ð1þMm�1 þMmÞTm;p � MmTmþ1;p ¼ Tm;p�1: ð17Þ
Fractional shape for the homogeneous material has the form (Fig. 2(b))
�MTm�1;p þ ð1þ 2MÞTm;p �MTmþ1;p ¼ �
XNf

j¼1

bcjTm;p�j ð18Þ
and for the non-homogeneous body the form
�Mm�1Tm�1;p þ ð1þMm�1 þMmÞTm;p �MmTmþ1;p ¼ �
XNf

j¼1

bcjTm;p�j: ð19Þ
3.2.3. Crank–Nicolson scheme
The Crank–Nicolson scheme is a combination of an explicit and an implicit scheme, i.e. when calculating shall be consid-

ered the temperature at that point and neighboring points in the current and previous time step (Fig. 1(c)).
For a homogeneous material it has the form
Tm;p ¼
M
2

Tm�1;p � 2Tm;p þ Tmþ1;p
� �

þM
2

Tm�1;p�1 � 2Tm;p�1 þ Tmþ1;p�1
� �

þ Tm;p�1 ð20Þ
and for a non-homogeneous material the form
Tm;p ¼
Mm

2
Tm�1;p � 2Tm;p þ Tmþ1;p
� �

þMm�1

2
Tm�1;p�1 � 2Tm;p�1 þ Tmþ1;p�1
� �

þ Tm;p�1: ð21Þ
The fractional shape for a homogeneous material is given by the following relation (Fig. 2(c))
Tm;p ¼
M
2

Tm�1;p � 2Tm;p þ Tmþ1;p
� �

þM
2

Tm�1;p�1 � 2Tm;p�1 þ Tmþ1;p�1
� �

�
XNf

j¼1

bcjTm;p�j ð22Þ
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and for a non-homogeneous material
Tm;p ¼
1
2

Mm�1Tm�1;p � Mm�1 þMmð ÞTm;p þMmTmþ1;p
� �

þ 1
2

Mm�1Tm�1;p�1 � Mm�1 þMmð ÞTm;p�1 þMmTmþ1;p�1
� �

�
XNf

j¼1

bcjTm;p�j: ð23Þ
4. Implementation

The implementation was realized in the programming environment MATLAB in which the functions for a model with
using integer- (1) and fractional-order (2) derivatives for homogeneous and non-homogeneous material have been created.

4.1. Heat Conduction Toolbox

A library of m-functions for the heat conduction model using integer-order derivative called Heat Conduction Toolbox
(HCT) is a tool that consists of 7 functions for solving one-dimensional heat conduction with using integer-order derivatives,
namely analytical method for a bounded interval and numerical methods (explicit, implicit, Crank–Nicolson scheme) for
homogeneous and non-homogeneous material. All implemented functions are published on Mathworks, Inc., Matlab Central
File Exchange as Heat Conduction Toolbox [69].

4.2. Fractional Heat Conduction Toolbox

A library of m-functions for the heat conduction model using fractional-order derivative called Fractional Heat
Conduction Toolbox (FHCT) consists of 7 functions for solving one-dimensional model. Functions include analytical method
for a bounded interval and numerical methods for homogeneous and non-homogeneous material. FHCT is published at
Mathworks, Inc., Matlab Central File Exchange as Fractional Heat Conduction Toolbox [70].

5. Simulations

Simulations model (1) for homogeneous material can be implemented by using a script HC_test_h.mwhich is a part of the
library HCT. The initial conditions, thermophysical properties of the material, spatial division and thickness of the material,
time step and the total simulation time, type and values of the boundary condition and the method of solving are defined
in the given script. Based on the above definitions the simulation, which is the result of courses temperatures in space and time,
can be implemented. As an illustration we give an example of a simulation, where the initial conditions have been defined in
the form of the same temperatures of 20 �C after cross-section, as the material was considered brass (k = 120 W m�1 K�1,
q = 8400 kg m�3, cp = 380 J kg�1 K�1), material thickness (0.03 m), material was divided into six parts in the space, time step
(0.1 s), total time simulation (10 s), boundary condition of the 1st kind and temperatures at the edges T1 = 20 �C and
T2 = 100 �C, and Crank–Nicolson scheme was chosen. Simulation results are shown on Figs. 3 and 4. This is a course of temper-
atures in time, at which the parameter is the position in space, i.e. 0.015 m (Fig. 3), then it is a course of temperatures in space,
wherein the parameter is the time (Fig. 3) and finally it is 3D display temperatures in space and time (Fig. 4).

The part of HCT library is also a script HC_test_nh.m which is intended to simulate non-homogeneous material, i.e.
material, which is made up of several layers of different materials. The difference between this and the previous script is only
in a different enter of the thermophysical properties. Due to the larger number of materials the individual properties are
Fig. 3. HCT – the course of temperatures in time and space for homogeneous material.



Fig. 4. HCT – 3D display temperatures in time and space for homogeneous material.

370 M. Žecová, J. Terpák / Applied Mathematics and Computation 257 (2015) 365–373
given as a vector, i.e. each component of the vector represents a property of a given layer. For example, in the case of the
thermal conductivity for six layers and three materials (brass, platinum and silver) of the same thickness it is defined a ther-
mal conductivity vector as follows k = (120, 120, 7, 7, 428, 428) W m�1 K�1. It is similar to the density and specific heat
capacity. Results of the simulations are shown on figures Figs. 5 and 6.

Another library of the functions, FHCT, is designed for the simulations model (2) where we can set up the derivative of the
temperature according to the time from the interval 0 to 2. For the setting, implementing and visualizing of the simulation
the script FHC_test_h.m is used. This script defines the initial conditions (Tðx;0Þ ¼ 0), order of the derivative of the temper-
Fig. 5. HCT – the course of temperatures in time and space for non-homogeneous material.

Fig. 6. HCT – 3D display temperatures in time and space for non-homogeneous material.



Fig. 7. FHCT – the course of temperatures in time and space for homogeneous material.

Fig. 8. FHCT – 3D display temperatures in time and space for homogeneous material.

Fig. 9. FHCT – the course of temperatures in time and space for non-homogeneous material.
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ature by time (a = 1.5), length memory to calculate the fractional derivative (Nðf Þ ¼ 200), material property (b ¼ 1 m s�3=4),
spatial division (20) and material thickness (2 m), time step (0.01 s) and total time simulation (2 s), boundary condition of
the 1st kind and values at the edges T1 ¼ T2 ¼ 1 �C and method of solving (Crank–Nicolson). The results of simulations for
the given settings are shown on figures Figs. 7 and 8.

The library FHCT also contains script FHC_test_nh.m, which enables to realize the simulations of heat conduction for sev-
eral layers of different materials. Definition of inputs is the same as for FHC_test_h.m with only one difference, i.e. the mate-
rial property given by a coefficient of b is a vector. Each item of the vector represents a value of the coefficient b of the
respective layer. The simulations for the values of the coefficients b ¼ 1 for the first half of the thickness and b ¼ 0:8 for
the second half are given on figures Figs. 9 and 10.



Fig. 10. FHCT – 3D display temperatures in time and space for non-homogeneous material.
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6. Conclusion

The models of the heat conduction with using integer and fractional derivatives are listed and described in this article.
They have been implemented in MATLAB as two libraries functions, i.e. HCT and FHCT. The possibilities how to use these
libraries that beside modeling of the process of the heat conduction allow also to model the processes of the diffusion, wave
and so on are illustrated on the examples.

Created more adequate models with using libraries HCT and FHCT have wide using mainly for analysis, design, and
control of processes. For these models of processes are characteristic memory systems and ongoing processes, roughness
or porosity of the material and also fractality and chaotic behavior of processes and systems.

Libraries are an appropriate tool for the creation of complex models in MATLAB, as evidenced the registered interest of
experts in terms of the number of downloaded libraries from the website Matlab Central File Exchange [69,70]. The asset of
this work is the use the Grünwald–Letnikov definition for the time derivative in the case of Crank–Nicolson scheme.
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M. Žecová, J. Terpák / Applied Mathematics and Computation 257 (2015) 365–373 373
[28] J. Liouville, Memoire sur l’integretion de l‘equation ðmx2 þ nxþ pÞd2y=dx2 þ ðqxþ rÞdy=dxþ sy ¼ 0 á l’aide des differentielles á indices quelconques, J.
Ecole Polytechn. 13 (163) (1832).

[29] B. Riemann, Versuch einer algemeinen Auffasung der Integration und Differentiation, in: H. Weber (Ed.), The Collected Works of Bernhard Riemann,
second ed., Dover, New York, 1953.

[30] R. Gorenflo, Y. Luchko, F. Mainardi, Wright functions as scale-invariant solutions of the diffusion-wave equation, J. Comput. Appl. Math. 118 (1–2)
(2000) 175–191.

[31] O.P. Agrawal, Solution for a fractional diffusion-wave equation defined in a bounded domain, Nonlinear Dyn. 29 (2002).
[32] F. Liu, V. Anh, I. Turner, P. Zhuang, Time fractional advection-dispersion equation, J. Appl. Math. Comput. 13 (2003).
[33] F. Mainardi, Y. Luchko, G. Pagnini, The fundamental solution of the space-time fractional diffusion equation, Fract. Calc. Appl. Anal. 4 (2) (2001) 153–

192.
[34] F. Huang, F. Liu, The time fractional diffusion equation and the advection–dispersion equation, ANZIAN J. 46 (2005).
[35] W. Wyss, The fractional diffusion equation, J. Math. Phys. 27 (11) (1986) 2782–2785.
[36] W.R. Schneider, W. Wyss, Fractional diffusion and wave equation, J. Math. Phys. 30 (1) (1989) 134–144.
[37] J.S. Duan, Time- and space-fractional partial differential equation, J. Math. Phys. 46 (1) (2005) 13504–13511.
[38] R. Gorenflo, F. Mainardi, D. Moretti, P. Paradisi, Time fractional diffusion: a discrete random walk approach, Nonlinear Dyn. 29 (2002).
[39] R. Gorenflo, A. Vivoli, Fully discrete random walks for space–time fractional diffusion equations, Signal Process. 83 (11) (2003) 2411–2420.
[40] F. Liu, S. Shen, V. Anh, I. Turner, Analysis of a discrete non-Markovian random walk approximation for the time fractional diffusion equation, ANZIAN J.

46 (E) (2005) 488–504.
[41] Q. Liu, F. Liu, I. Turner, V. Anh, Approximation of the Lévy–Feller advection–dispersion process by random walk and finite difference method, J. Comput.

Phys. 222 (1) (2007) 57–70.
[42] S. Shen, F. Liu, V. Anh, I. Turner, Error analysis of an explicit finite difference approximation for the space fractional diffusion equation with insulated

ends, ANZIAM J. 46 (E) (2005) 871–887.
[43] P. Zhuang, F. Liu, Implicit difference approximation for the time fractional diffusion equation, J. Appl. Math. Comput. 22 (3) (2006) 87–99.
[44] C. Tadjeran, M.M. Meerschaert, A second-order accurate numerical approximation for the two-dimensional fractional diffusion equation, J. Comput.

Phys. 220 (2) (2007) 813–823.
[45] J.P. Roop, Computational aspects of FEM approximation of fractional advection dispersion equation on bounded domains in R2, J. Comput. Appl. Math.

193 (1) (2006) 243–268.
[46] G.J. Fix, J.P. Roof, Least squares finite-element solution of a fractional order two-point boundary value problem, Comput. Math. Appl. 48 (7–8) (2004)

1017–1033.
[47] V.J. Ervin, J.P. Roop, Variational solution of the fractional advection dispersion equation, Numer. Methods PDE 22 (3) (2006) 558–576.
[48] V.J. Ervin, J.P. Roop, Variational solution of the fractional advection dispersion equation on bounded domains in rd , Numer. Methods PDE 23 (2) (2007)

256–281.
[49] P. Kumar, O.P. Agrawal, An approximate method for numerical solution of fractional differential equations, Signal Process. 86 (10) (2006) 2602–2610.
[50] O.P. Agrawal, A numerical scheme for initial compliance and creep response of a system, Mech. Res. Commun. 36 (4) (2009) 444–451.
[51] L. Yuan, O.P. Agrawal, A numerical scheme for dynamic systems containing fractional derivatives, J. Numer. Methods Eng. 74 (2002).
[52] S. Momani, Z. Odibat, Numerical solutions of the space-time fractional advection–dispersion equation, Numer. Methods Partial Differ. Equ. 24 (6)

(2008) 1416–1429.
[53] H. Jafari, V. Daftardar-Gejji, Solving linear and nonlinear fractional diffusion and wave equations by adomian decomposition, Appl. Math. Comput. 180

(2) (2006) 488–497.
[54] D. Fulger, E. Scalas, G. Germano, Monte carlo simulation of uncoupled continuous-time random walks yielding a stochastic solution of the space–time

fractional diffusion equation, Phys. Rev. E 77 (2) (2008) 1–7.
[55] M.M. Marseguerra, A. Zoia, Monte carlo evaluation of fade approach to anomalous kinetics, Math. Comput. Simul. 77 (4) (2008) 345–357.
[56] I. Podlubny, Matrix approach to discrete fractional calculus, J. Comput. Phys. 3 (4) (2000) 359–386.
[57] M. Ilic, I.W. Turner, D.P. Simpson, A restarted Lanczos approximation to functions of a symmetric matrix, IMA J. Numer. Anal. 30 (2007).
[58] Q. Yang, I. Turner, F. Liu, M. Ilic, Novel numerical methods for solving the time–space fractional diffusion equation in two dimensions, SIAM J. Sci.

Comput. 33 (3) (2011) 1159–1180.
[59] S.B. Yuste, L. Acedo, An explicit finite difference method and a new von Neumann-type stability analysis for fractional diffusion equations, SIAM J.

Numer. Anal. 42 (5) (2005) 1862–1875.
[60] R. Lin, F. Liu, V. Anh, I. Turner, Stability and convergence of a new explicit finite-difference approximation for the variable-order nonlinear fractional

diffusion equation, Appl. Comput. Math. 212 (2) (2009) 435–445.
[61] F. Liu, P. Zhuang, V. Anh, I. Turner, A fractional-order implicit difference approximation for the space–time fractional diffusion equation, ANZIAM J. 47

(E) (2006) 48–68.
[62] S. Chen, F. Liu, P. Zhuang, V. Anh, Finite difference approximations for the fractional Fokker–Planck equation, Appl. Math. Model. 33 (1) (2009) 256–

273.
[63] T.A.M. Langlands, B.I. Henry, The accuracy and stability of an implicit solution method for the fractional diffusion equation, J. Comput. Phys. 205 (2)

(2005) 719–736.
[64] C. Tadjeran, M.M. Meerschaert, H.P. Scheffler, A second-order accurate numerical approximation for the fractional diffusion equation, J. Comput. Phys.

213 (1) (2006) 205–213.
[65] E. Sousa, Numerical approximations for fractional diffusion equations via splines, Comput. Math. Appl. 62 (2011).
[66] C. Celik, M. Duman, Crank–Nicolson difference scheme for the fractional diffusion equation with the Riesz fractional derivative, J. Comput. Phys. 231

(2012).
[67] D. Wang, A. Xiao, W. Yang, Crank–Nicolson difference scheme for the coupled nonlinear Schrödinger equations with the Riesz space fractional

derivative, J. Comput. Phys. 242 (2013).
[68] A.M. Abu-Saman, A.M. Assaf, Stability and convergence of Crank–Nicolson method for the fractional advection dispersion equation, Adv. Appl. Math.

Anal. 2 (2007).
[69] M. Zecova, J. Terpak, Heat conduction toolbox – MATLAB central file exchange, 2013, <http://www.mathworks.com/matlabcentral/fileexchange/

43146-heat-conduction-toolbox>.
[70] M. Zecova, J. Terpak, Fractional heat conduction toolbox – MATLAB central file exchange, 2014, <http://www.mathworks.com/matlabcentral/

fileexchange/45491-fractional-heat-conduction-toolbox>.

http://refhub.elsevier.com/S0096-3003(14)01797-4/h0140
http://refhub.elsevier.com/S0096-3003(14)01797-4/h0140
http://refhub.elsevier.com/S0096-3003(14)01797-4/h0140
http://refhub.elsevier.com/S0096-3003(14)01797-4/h0145
http://refhub.elsevier.com/S0096-3003(14)01797-4/h0145
http://refhub.elsevier.com/S0096-3003(14)01797-4/h0145
http://refhub.elsevier.com/S0096-3003(14)01797-4/h0145
http://refhub.elsevier.com/S0096-3003(14)01797-4/h0150
http://refhub.elsevier.com/S0096-3003(14)01797-4/h0150
http://refhub.elsevier.com/S0096-3003(14)01797-4/h0155
http://refhub.elsevier.com/S0096-3003(14)01797-4/h0160
http://refhub.elsevier.com/S0096-3003(14)01797-4/h0165
http://refhub.elsevier.com/S0096-3003(14)01797-4/h0165
http://refhub.elsevier.com/S0096-3003(14)01797-4/h0170
http://refhub.elsevier.com/S0096-3003(14)01797-4/h0175
http://refhub.elsevier.com/S0096-3003(14)01797-4/h0180
http://refhub.elsevier.com/S0096-3003(14)01797-4/h0185
http://refhub.elsevier.com/S0096-3003(14)01797-4/h0190
http://refhub.elsevier.com/S0096-3003(14)01797-4/h0195
http://refhub.elsevier.com/S0096-3003(14)01797-4/h0200
http://refhub.elsevier.com/S0096-3003(14)01797-4/h0200
http://refhub.elsevier.com/S0096-3003(14)01797-4/h0205
http://refhub.elsevier.com/S0096-3003(14)01797-4/h0205
http://refhub.elsevier.com/S0096-3003(14)01797-4/h0210
http://refhub.elsevier.com/S0096-3003(14)01797-4/h0210
http://refhub.elsevier.com/S0096-3003(14)01797-4/h0215
http://refhub.elsevier.com/S0096-3003(14)01797-4/h0220
http://refhub.elsevier.com/S0096-3003(14)01797-4/h0220
http://refhub.elsevier.com/S0096-3003(14)01797-4/h0225
http://refhub.elsevier.com/S0096-3003(14)01797-4/h0225
http://refhub.elsevier.com/S0096-3003(14)01797-4/h0225
http://refhub.elsevier.com/S0096-3003(14)01797-4/h0230
http://refhub.elsevier.com/S0096-3003(14)01797-4/h0230
http://refhub.elsevier.com/S0096-3003(14)01797-4/h0235
http://refhub.elsevier.com/S0096-3003(14)01797-4/h0240
http://refhub.elsevier.com/S0096-3003(14)01797-4/h0240
http://refhub.elsevier.com/S0096-3003(14)01797-4/h0240
http://refhub.elsevier.com/S0096-3003(14)01797-4/h0245
http://refhub.elsevier.com/S0096-3003(14)01797-4/h0250
http://refhub.elsevier.com/S0096-3003(14)01797-4/h0255
http://refhub.elsevier.com/S0096-3003(14)01797-4/h0260
http://refhub.elsevier.com/S0096-3003(14)01797-4/h0260
http://refhub.elsevier.com/S0096-3003(14)01797-4/h0265
http://refhub.elsevier.com/S0096-3003(14)01797-4/h0265
http://refhub.elsevier.com/S0096-3003(14)01797-4/h0270
http://refhub.elsevier.com/S0096-3003(14)01797-4/h0270
http://refhub.elsevier.com/S0096-3003(14)01797-4/h0275
http://refhub.elsevier.com/S0096-3003(14)01797-4/h0280
http://refhub.elsevier.com/S0096-3003(14)01797-4/h0285
http://refhub.elsevier.com/S0096-3003(14)01797-4/h0290
http://refhub.elsevier.com/S0096-3003(14)01797-4/h0290
http://refhub.elsevier.com/S0096-3003(14)01797-4/h0295
http://refhub.elsevier.com/S0096-3003(14)01797-4/h0295
http://refhub.elsevier.com/S0096-3003(14)01797-4/h0300
http://refhub.elsevier.com/S0096-3003(14)01797-4/h0300
http://refhub.elsevier.com/S0096-3003(14)01797-4/h0305
http://refhub.elsevier.com/S0096-3003(14)01797-4/h0305
http://refhub.elsevier.com/S0096-3003(14)01797-4/h0310
http://refhub.elsevier.com/S0096-3003(14)01797-4/h0310
http://refhub.elsevier.com/S0096-3003(14)01797-4/h0315
http://refhub.elsevier.com/S0096-3003(14)01797-4/h0315
http://refhub.elsevier.com/S0096-3003(14)01797-4/h0320
http://refhub.elsevier.com/S0096-3003(14)01797-4/h0320
http://refhub.elsevier.com/S0096-3003(14)01797-4/h0325
http://refhub.elsevier.com/S0096-3003(14)01797-4/h0330
http://refhub.elsevier.com/S0096-3003(14)01797-4/h0330
http://refhub.elsevier.com/S0096-3003(14)01797-4/h0335
http://refhub.elsevier.com/S0096-3003(14)01797-4/h0335
http://refhub.elsevier.com/S0096-3003(14)01797-4/h0340
http://refhub.elsevier.com/S0096-3003(14)01797-4/h0340
http://www.mathworks.com/matlabcentral/fileexchange/43146-heat-conduction-toolbox
http://www.mathworks.com/matlabcentral/fileexchange/43146-heat-conduction-toolbox
http://www.mathworks.com/matlabcentral/fileexchange/45491-fractional-heat-conduction-toolbox
http://www.mathworks.com/matlabcentral/fileexchange/45491-fractional-heat-conduction-toolbox

	Heat conduction modeling by using fractional-order derivatives
	1 Introduction
	2 Heat conduction models
	2.1 Models with using derivatives of integer order
	2.2 Models with using derivatives of fractional order

	3 Methods of solution
	3.1 Analytical methods
	3.2 Numerical methods
	3.2.1 Explicit scheme
	3.2.2 Implicit scheme
	3.2.3 Crank–Nicolson scheme


	4 Implementation
	4.1 Heat Conduction Toolbox
	4.2 Fractional Heat Conduction Toolbox

	5 Simulations
	6 Conclusion
	References


