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Abstract

Let R be a ring and let R[x] denote the polynomial ring over R. We study relations between
the set of annihilators in R and the set of annihilators in R[x]. c© 2002 Elsevier Science B.V.
All rights reserved.

MSC: Primary 16S36; secondary 16N60

1. Introduction

Let R be a ring. A left (right) annihilator of a subset U of R is de;ned by lR(U )=
{a ∈ R | aU = 0}(rR(U ) = {a ∈ R |Ua = 0}). Consider the polynomial ring R[x] over
R. Let � = {rR(U ) |U ⊆ R} and let � = {rR[x](V ) |V ⊆ R[x]}. For a polynomial
f(x) ∈ R[x], Cf denotes the set of coe>cients of f(x) and for a subset V of R[x],
CV denotes the set

⋃
f∈V Cf. Then rR[x](V ) ∩ R= rR(V ) = rR(CV ). Hence we have a

map � : �→ � de;ned by �(I) = I ∩ R for each I ∈ �. Obviously � is surjective.
McCoy [9] proved that if R is a commutative ring, then whenever g(x) is a zero-

divisor in R[x] there exists a nonzero element c ∈ R such that cg(x) = 0. That is; if
rR[x](g(x)) �= 0 then �(rR[x](g(x))) �= 0. We ;rst generalize this result as follows: Let
f(x) be an element of the polynomial ring R[x] over a (not necessarily commutative)
ring R. If rR[x](f(x)R[x]) �= 0, then �(rR[x](f(x)R[x])) = rR[x](f(x)R[x]) ∩ R �= 0.
If U is a subset of R, then rR[x](U ) = rR(U )R[x]. Hence we also have a map � :

� → � de;ned by �(I) = IR[x] for every I ∈ �. Obviously � is injective. We
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consider the case when � is bijective. Clearly if � is bijective, then its inverse is �.
Following [11], a ring R is called an Armendariz ring if whenever two polynomials
f(x) =

∑m
i=0 aix

i; g(x) =
∑n
j=0 bjx

j ∈ R[x] satisfy f(x)g(x) = 0 we have aibj = 0
for every i and j. We show that � is bijective if and only if R is Armendariz. We
de;ne a ring R to be quasi-Armendariz if whenever two polynomials f(x)=

∑m
i=0 aix

i,
g(x) =

∑n
j=0 bjx

j ∈ R[x] satisfy f(x)R[x]g(x) = 0 we have aiRbj = 0 for every i and
j. Let �′= {rR(U ) |U is an ideal of R} and let �′= {rR[x](V ) |V is an ideal of R[x]}.
Consider the map �′ : �′ → �′, the restriction of � to �′. We show that �′ is
bijective if and only if R is quasi-Armendariz. We give a su>cient condition for a
ring to be quasi-Armendariz and show that quasi-Baer rings are quasi-Armendariz. We
show that some extensions of a quasi-Armendariz ring are quasi-Armendariz. Finally,
we consider a ring all of whose homomorphic images are quasi-Armendariz.

2. A generalization of McCoy’s theorem

McCoy [9] proved that if R is a commutative ring, then whenever g(x) is a zero-
divisor in R[x] there exists a nonzero element c ∈ R such that cg(x) = 0. We shall
generalize this result. We begin with the following lemma.

Lemma 2.1. Let f(x) and g(x) be two elements of R[x]. Then f(x)Rg(x) = 0 if and
only if f(x)R[x]g(x) = 0:

Proof. Assume that f(x)Rg(x) = 0 and take an arbitrary element
∑m
i=0 cix

i of R[x].
Then f(x)(

∑m
i=0 cix

i)g(x)=
∑m
i=0 f(x)cig(x)x

i=0. This implies f(x)R[x]g(x)=0. The
“only if part” is clear.

Theorem 2.2. Let f(x) be an element of R[x]. If rR[x](f(x)R[x]) �= 0; then
rR[x](f(x)R[x]) ∩ R �= 0.

Proof. We freely use Lemma 2.1 without mention. Let f(x)=
∑m
i=0 aix

i. If deg(f)=0
or f = 0, then the assertion is clear. So, let deg(f) = m¿ 0. Assume, to the con-
trary, that rR(f(x)R[x]) = 0 and let g(x) =

∑n
j=0 bjx

j ∈ R[x] be a nonzero ele-
ment of minimal degree in rR[x](f(x)R[x]). Since (

∑m
i=0 aix

i)R[x](
∑n
j=0 bjx

j) = 0,
(
∑m
i=0 aix

i)R(
∑n
j=0 bjx

j)=0, and so amRbn=0. Hence amR[x]g(x)=amR[x](bn−1xn−1+
· · ·+b0) and we see (f(x)R[x]am)R[x](bn−1xn−1+· · ·+b0)=(f(x)R[x]am)R[x]g(x)=0.
By hypothesis, we have amR[x](bn−1xn−1 + · · ·+b0)=0. Therefore am ∈ lR(R[x]bnxn+
R[x](bn−1xn−1 + · · · + b0)). Hence (am−1xm−1 + · · · + a0)R[x](bnxn + · · · + b0) = 0,
and so am−1Rbn = 0. Thus we obtain f(x)R[x](am−1R[x](bn−1xn−1 + · · · + b0)) =
(f(x)(R[x]am−1R[x])g(x) = 0. Since g(x) is a nonzero element of minimal degree in
rR[x](f(x)R[x]), we obtain am−1R[x](bn−1xn−1 + · · · + b0) = 0. Therefore we obtain
am; am−1 ∈ lR(R[x]bnxn+R[x](bn−1xn−1 + · · ·+ b0)). Repeating this process, we obtain
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am; : : : ; a0 ∈ lR(R[x]bn + R[x](bn−1xn−1 + · · · + b0)). This implies that b0; : : : ; bn ∈
rR(f(x)R[x]). This is a contradiction.

A ring R is semi-commutative if whenever elements a; b ∈ R satisfy ab = 0 then
aRb= 0. We can easily see that reduced rings are semi-commutative.

Corollary 2.3. Let R be a semi-commutative ring. If f(x) is a zero-divisor in R[x]
then there exists a nonzero element c ∈ R such that f(x)c = 0.

3. Armendariz rings and quasi-Armendariz rings

For a ring R, put rAnnR(2R)={rR(U ) |U ⊆ R} and lAnnR(2R)={lR(U ) |U ⊆ R}. If
U is a subset of R, then rR[x](U )=rR(U )R[x]. Hence we have a map � : rAnnR(2R)→
rAnnR[x](2R[x]) de;ned by �(I)=IR[x] for every I ∈ rAnn(R). For a polynomial f(x) ∈
R[x], Cf denotes the set of coe>cients of f(x) and for a subset V of R[x], CV denotes
the set

⋃
f∈V Cf. Then rR[x](V ) ∩ R = rR(V ) = rR(CV ). Hence we also have a map

� : rAnnR[x](2R[x]) → rAnnR(2R) de;ned by �(I) = I ∩ R for every I ∈ �. Obviously
� is injective and � is surjective. Clearly � is surjective if and only if � is injective,
and in this case � and � are the inverses of each other.
We consider the case when � is surjective.
Following Rege and Chhawchharia [11] a ring R is called an Armendariz ring if

whenever two polynomials f(x)=
∑m
i=0 aix

i; g(x)=
∑n
j=0 bjx

j ∈ R[x] satisfy f(x)g(x)=
0 we have aibj = 0 for every i and j. This name is connected with the work of
Armendariz [3]. The following proposition shows that � is bijective if and only if R
is Armendariz.

Proposition 3.1. Let R be a ring. The following statements are equivalent:
(1) R is Armendariz.
(2) rAnnR(2R)→ rAnnR[x](2R[x]);A→ AR[x] is bijective.
(3) lAnnR(2R)→ lAnnR[x](2R[x]);B→ R[x]B is bijective.

Proof. (1) ⇒ (2). For a polynomial f(x) ∈ R[x], Cf denotes the set of coe>cients
of f(x) and for a subset S of R[x], CS denotes the set

⋃
f∈S Cf. Let S be a subset

of R[x] and let f(x) ∈ S. Since R is Armendariz, rR[x](f) = rR[x](Cf) = rR(Cf)R[x].
Hence rR[x](S) =

⋂
f∈S rR[x](f) =

⋂
f∈S rR[x](Cf) = rR(CS)R[x].

(2) ⇒ (1). Let f(x)=
∑m
i=0 aix

i be a polynomial in R[x]. By hypothesis, rR[x](f)=
BR[x] for some right ideal B of R. If g(x) =

∑n
j=0 bjx

j ∈ R[x] satis;es f(x)g(x) = 0
then g(x) ∈ BR[x], and hence b0; : : : ; bn ∈ B ⊆ rR[x](f). Therefore aibj = 0 for every i
and j.
Similarly we can prove (1) ⇔ (3).

Following Kaplansky [6], a ring R is called a Baer ring if the left annihilator of
each subset is generated by an idempotent. We note that the de;nition of Baer rings is
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left–right symmetric. A ring R is called a left (resp. right) p.p. ring if the left (resp.
right) annihilator of each element of R is generated by an idempotent. A left and right
p.p. ring is called a p.p. ring.
We obtain [8, Theorems 9 and 10] as an immediate corollary of Theorem 3:1.

Corollary 3.2. Let R be an Armendariz ring. Then R is a Baer ring (resp. p.p. ring)
if and only if R[x] is a Baer ring (resp. p.p. ring).

Kerr [7] constructed an example of a commutative Goldie ring R whose polynomial
ring R[x] has an in;nite ascending chain of annihilator ideals.

Corollary 3.3. Let R be an Armendariz ring. Then R satis<es the ascending chain
condition on right annihilators if and only if so does R[x].

A ring R is called a quasi-Armendariz ring if whenever f(x) =
∑m
i=0 aix

i, g(x) =
∑n
j=0 bjx

j ∈ R[x] satisfy f(x)R[x]g(x) = 0, we have aiRbj = 0 for every i and j. Put
rAnnR(id(R))={rR(U ) |U is an ideal of R} and lAnnR(id(R))={lR(U ) |U is an ideal
of R}. In a similar way as in the proof of Proposition 3.1, we can prove the following.

Proposition 3.4. Let R be a ring. The following statements are equivalent:
(1) R is quasi-Armendariz.
(2) rAnnR(id(R))→ rAnnR[x](id(R[x]));A→ AR[x] is bijective.
(3) lAnnR(id(R))→ lAnnR[x](id(R[x]));B→ R[x]B is bijective.

For semi-commutative rings, in particular, for reduced rings, we have the following.

Corollary 3.5. Let R be a semi-commutative ring. Then R is Armendariz if and only
if R is quasi-Armendariz.

Proof. Since R is semi-commutative, R[x] is semi-commutative as well. Hence our
assertion is clear.

We shall give an example of a noncommutative ring which is not quasi-Armendariz.

Example 3.6. Let K be a ;eld of characteristic 2 and let K[x; y] be a polynomial
ring over K . Consider the factor ring R = K[x; y]=(x2; y2) of K[x; y] by the ideal
(x2; y2) generated by x2 and y2. Then, for any positive integer n, Mn(R) is not a
quasi-Armendariz ring.

A ring R is a subdirect sum of a family of rings {Ri}i∈I if there is an injective
homomorphism f : R → ∏

i∈I Ri such that, for each j ∈ I , !jf : R → Rj is a
surjective homomorphism, where !j :

∏
i∈I Ri → Rj is the jth projection. Clearly if R

is a subdirect sum of Armendariz rings, then R is an Armendariz ring. Similarly we
have the following.
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Proposition 3.7. If R is a subdirect sum of quasi-Armendariz rings; then R is a
quasi-Armendariz ring.

Proof. Let Ik (k ∈ K) be ideals of R such that each R=Ik is quasi-Armendariz and⋂
k∈K Ik =0. Suppose that two polynomials f(x)=

∑m
i=0 aix

i, g(x)=
∑n
j=0 bjx

j ∈ R[x]
satisfy f(x)R[x]g(x) = 0. Since R=Ij is quasi-Armendariz for each j ∈ J , we have
aiRbj ⊆ Ik for every i and j. Hence aiRbj ⊆

⋂
k∈K Ik = 0.

Since a semiprime ring is a subdirect sum of prime rings and since prime rings are
quasi-Armendariz rings, we have the following corollary.

Corollary 3.8. A semiprime ring is a quasi-Armendariz ring.

A submodule N of a left R-module M is called a pure submodule if L⊗RN → L⊗RM
is a monomorphism for every right R-module L. Following Tominaga [13], an ideal I
of R is said to be right s-unital if, for each a ∈ I there is an x ∈ I such that ax = a.
By [12, Proposition 11:3:13], for an ideal I , the following conditions are equivalent:
(1) I is pure as a left ideal in R;
(2) R=I is Mat as a left R-module;
(3) I is right s-unital.

Theorem 3.9. The following are equivalent:
(1) lR(Ra) is pure as a left ideal in R for any element a ∈ R;
(2) lR[x](R[x]f) is pure as a left ideal in R[x] for any element f ∈ R[x];
In this case R is a quasi-Armendariz ring.

Proof. Assume that condition (1) holds. First we shall prove that R is quasi-Armendariz.
Suppose (a0 + a1x + · · · + amxm)R[x](b0 + b1x + · · · + bnxn) = 0 with ai; bj ∈ R. We
shall prove that aiRbj = 0 for all i; j.
Let c be an arbitrary element of R. Then we have the following equation:

0 = (a0 + a1x + · · ·+ amxm)c(b0 + b1x + · · ·+ bnxn)

= a0cb0 + · · ·+ (amcbn−3 + am−1cbn−2 + am−2cbn−1 + am−3cbn)xm+n−3

+ (amcbn−2 + am−1cbn−1 + am−2cbn)xm+n−2

+ (amcbn−1 + am−1cbn)xm+n−1 + amcbnxm+n: (†)
Then amcbn = 0. Hence am ∈ lR(Rbn). By hypothesis, lR(Rbn) is right s-unital, and
hence there exists en ∈ lR(Rbn) such that amen = am.
Replacing c by emc in Eq. (†), we obtain
a0encb0 + · · ·+ (amencbn−2 + am−1encbn−1)xm+n−2 + amencbn−1xm+n−1 = 0:

Then we obtain amcbn−1=anencbn−1=0. Hence am ∈ lR(Rbn+Rbn−1). Since lR(Rbn−1)
is right s-unital, there exists f ∈ lR(Rbn−1) such that amf= am. If we put en−1 = enf,
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then amen−1 = am and en−1 ∈ lR(Rbn + Rbn−1). Next, replacing c by en−1c in Eq. (†),
we obtain amcbn−2 = 0 in the same way as above. Hence we have am ∈ lR(Rbn +
Rbn−1 + Rbn−2). Continuing this process, we obtain amRbk = 0 for all k = 0; 1; : : : ; n.
Thus we get (a0 + · · ·+ am−1xm−1)R[x](b0 + · · ·+ bnxn)=0: Using induction on m+ n,
we obtain aiRbj=0 for all i; j. Thus we proved that R is quasi-Armendariz. Using [13,
Theorem 1] we can see that condition (2) holds.
Conversely, suppose that condition (2) holds. Let a be an element of R.

Then lR[x](R[x]a) is right s-unital. Hence, for any b ∈ lR(Ra), there exists a poly-
nomial f ∈ R[x] such that bf = b. Let a0 be the constant term of f. Then a0 ∈
lR(Ra) and ba0 = b. This implies that lR(Ra) is right s-unital. Therefore condition (1)
holds.

Corollary 3.10. Let R be a commutative ring. Then each principal ideal of R is =at
if and only if each principal ideal of R[x] is =at. In this case R is an Armendariz
ring.

Proof. For each a ∈ R; R=lR(a) ∼= Ra holds. Hence this corollary follows from Theo-
rem 3.9.

A ring R is called quasi-Baer if the left annihilator of every left ideal of R is
generated by an idempotent. Note that this de;nition is left–right symmetric. Some
results of a quasi-Baer ring can be found in [5] and [10]. Let R be a quasi-Baer ring
and let a ∈ R. Then lR(Ra)=Re for some idempotent e ∈ R, and so R=lR(Ra) ∼= R(1−e)
is projective. Therefore a quasi-Baer ring satis;es the hypothesis of Theorem 3.9. The
;rst statement of the following corollary is a special case of [4, Theorem 1:8].

Corollary 3.11. A ring R is a quasi-Baer ring if and only if R[x] is a quasi-Baer ring.
In this case R is a quasi-Armendariz ring.

Now we consider some extensions of quasi-Armendariz rings. Let R be a ring and
let n be a positive integer. Let Mn(R) denote the ring of n× n matrices over R and eij
denote the (i; j)-matrix unit.

Theorem 3.12. If R is a quasi-Armendariz ring and let S be a subring of Mn(R) such
that eiiSejj ⊆ S for all i; j ∈ {1; : : : ; n}. Then S is also a quasi-Armendariz ring.

Proof. Let '(x) =
∑m
k=0 a

kxk and ((x) =
∑n
k=0 b

kxk be two polynomials in x over S
and suppose '(x)S[x]((x) = 0. We can consider S[x] as a subset of Mn(R[x]). Then,
for any cepq ∈ eppSeqq where c ∈ R, '(x)cepq((x) = 0 in Mn(R[x]). Considering the
(i; j)-components of both sides of this equation, we have

∑m+n
t=0 (

∑
r+s=t a

r
ipcb

s
qj)x

t =
(
∑m
r=0 a

r
ipx

r)c(
∑n
s=0 b

s
qjx
s) = 0. Since {c ∈ R | cepq ∈ eppSeqq} forms an ideal of R,

(
∑m
r=0 a

r
ipx

r)Rc(
∑n
s=0 b

s
qjx
s) = 0. Since R is quasi-Armendariz, aripcb

s
qj = 0 for all r; s.

By hypothesis on S, every element of S is a sum of such cepq, we conclude that
arSbs = 0 for all r; s.
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To prove that the class of quasi-Armendariz rings is Morita stable, we need the
following.

Proposition 3.13. If R is a quasi-Armendariz ring; then; for any nonzero idempotent
e ∈ R; eRe is a quasi-Armendariz ring.

Proof. Let f(x) =
∑m
i=0 aix

i; g(x) =
∑n
j=0 bjx

j ∈ eRe[x] be polynomials satisfying
f(x)eRe[x]g(x)=0. Since f(x)e=f(x) and eg(x)=g(x), we obtain f(x)R[x]g(x)=0,
and hence aiRbj = 0 for each i and j. Also since aie= ai and ebj = bj for each i and
j, we conclude that aieRebj = 0 for each i and j.

Corollary 3.14. If R is a quasi-Armendariz ring and if R is Morita equivalent to a
ring S; then S is a quasi-Armendariz ring.

For any ring R and any positive integer n, Tn(R) denotes the ring of all n× n upper
triangular matrices over R.

Corollary 3.15. If R is a quasi-Armendariz ring; then; for any positive integer n;
Tn(R) is also a quasi-Armendariz ring.

In the same way as in [2, Theorem 2] we can prove the following.

Theorem 3.16. If R is a quasi-Armendariz ring; then the polynomial ring R[X ] is a
quasi-Armendariz ring for any set X of commutative indeterminates.

4. Quasi-Gaussian rings

For f ∈ R[x], the content Af of f is the ideal of R generated by the coe>cients of
f. For any subset S of R[x], AS denotes the ideal

∑
f∈S Af. A commutative ring R is

Gaussian if Afg = AfAg for all f; g ∈ R[x]. We extend this notion to noncommutative
rings as follows. A ring R is said to be quasi-Gaussian if AfRg = AfAg for all f; g ∈
R[x].

Theorem 4.1. A ring R is quasi-Gaussian if and only if every homomorphic image of
R is quasi-Armendariz.

Proof. Obviously if R is a quasi-Gaussian ring then every homomorphic image of R
is quasi-Armendariz.

Suppose that every homomorphic image of R is quasi-Armendariz. Let f; g ∈ R[x].
Then Of OR Og=0 in (R=AfRg)[x]. Since R=AfRg is quasi-Armendariz, A OfA Og=0 in R=AfRg.
This implies that AfAg = AfRg.
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Corollary 4.2. If R is a quasi-Gaussian ring and if R is Morita equivalent to a ring
S; then S is a quasi-Gaussian ring.

Proof. Clearly a homomorphic image of R is Morita equivalent to a homomorphic
image of the ring S. Hence this corollary follows from Theorem 4.1 and Corollary
3.14.

Example 4.3. An ideal I of a commutative ring is said to be locally principal if IRM =
IM is a principal ideal for each maximal ideal M of R. A commutative ring R is said
to be arithmetical if its lattice of ideals is distributive, or equivalently, if every ;nitely
generated ideal of R is locally principal. It is well-known that an arithmetical ring is
Gaussian, and so, in particular a principal ideal ring is Gaussian (see [1, p. 83] and
[2, p. 2269]). Therefore, a ring R which is Morita equivalent to an arithmetical ring,
is quasi-Gaussian.

Example 4.4. A ring R is fully idempotent if I 2 = I for every two-sided ideal I of R.
Obviously a ring R is fully idempotent if and only if every homomorphic image of R
is semiprime. Von Neumann regular rings are fully idempotent. By Theorem 4.1 and
Corollary 3.8, a fully idempotent ring is a quasi-Gaussian ring.
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