JOURNAL OF
PURE AND APPLIED ALGEBRA

On annihilator ideals of a polynomial ring over a noncommutative ring

Yasuyuki Hirano
Department of Mathematics, Okayama University, Okayama 700-8530, Japan

Received 1 September 2000; received in revised form 1 February 2001
Communicated by G.M. Kelly

Abstract

Let R be a ring and let $R[x]$ denote the polynomial ring over R. We study relations between the set of annihilators in R and the set of annihilators in $R[x]$. © 2002 Elsevier Science B.V. All rights reserved.

MSC: Primary 16S36; secondary 16N60

1. Introduction

Let R be a ring. A left (right) annihilator of a subset U of R is defined by $l_{R}(U)=$ $\{a \in R \mid a U=0\}\left(r_{R}(U)=\{a \in R \mid U a=0\}\right)$. Consider the polynomial ring $R[x]$ over R. Let $\Gamma=\left\{r_{R}(U) \mid U \subseteq R\right\}$ and let $\Delta=\left\{r_{R[x]}(V) \mid V \subseteq R[x]\right\}$. For a polynomial $f(x) \in R[x], C_{f}$ denotes the set of coefficients of $f(x)$ and for a subset V of $R[x]$, C_{V} denotes the set $\bigcup_{f \in V} C_{f}$. Then $r_{R[x]}(V) \cap R=r_{R}(V)=r_{R}\left(C_{V}\right)$. Hence we have a map $\Psi: \Delta \rightarrow \Gamma$ defined by $\Psi(I)=I \cap R$ for each $I \in \Delta$. Obviously Ψ is surjective.

McCoy [9] proved that if R is a commutative ring, then whenever $g(x)$ is a zerodivisor in $R[x]$ there exists a nonzero element $c \in R$ such that $c g(x)=0$. That is; if $r_{R[x]}(g(x)) \neq 0$ then $\Psi\left(r_{R[x]}(g(x))\right) \neq 0$. We first generalize this result as follows: Let $f(x)$ be an element of the polynomial ring $R[x]$ over a (not necessarily commutative) ring R. If $r_{R[x]}(f(x) R[x]) \neq 0$, then $\Psi\left(r_{R[x]}(f(x) R[x])\right)=r_{R[x]}(f(x) R[x]) \cap R \neq 0$.

If U is a subset of R, then $r_{R[x]}(U)=r_{R}(U) R[x]$. Hence we also have a map Φ : $\Gamma \rightarrow \Delta$ defined by $\Phi(I)=I R[x]$ for every $I \in \Gamma$. Obviously Φ is injective. We

[^0]consider the case when Φ is bijective. Clearly if Φ is bijective, then its inverse is Ψ. Following [11], a ring R is called an Armendariz ring if whenever two polynomials $f(x)=\sum_{i=0}^{m} a_{i} x^{i}, g(x)=\sum_{j=0}^{n} b_{j} x^{j} \in R[x]$ satisfy $f(x) g(x)=0$ we have $a_{i} b_{j}=0$ for every i and j. We show that Φ is bijective if and only if R is Armendariz. We define a ring R to be quasi-Armendariz if whenever two polynomials $f(x)=\sum_{i=0}^{m} a_{i} x^{i}$, $g(x)=\sum_{j=0}^{n} b_{j} x^{j} \in R[x]$ satisfy $f(x) R[x] g(x)=0$ we have $a_{i} R b_{j}=0$ for every i and j. Let $\Gamma^{\prime}=\left\{r_{R}(U) \mid U\right.$ is an ideal of $\left.R\right\}$ and let $\Delta^{\prime}=\left\{r_{R[x]}(V) \mid V\right.$ is an ideal of $\left.R[x]\right\}$. Consider the map $\Psi^{\prime}: \Gamma^{\prime} \rightarrow \Delta^{\prime}$, the restriction of Ψ to Γ^{\prime}. We show that Ψ^{\prime} is bijective if and only if R is quasi-Armendariz. We give a sufficient condition for a ring to be quasi-Armendariz and show that quasi-Baer rings are quasi-Armendariz. We show that some extensions of a quasi-Armendariz ring are quasi-Armendariz. Finally, we consider a ring all of whose homomorphic images are quasi-Armendariz.

2. A generalization of McCoy's theorem

McCoy [9] proved that if R is a commutative ring, then whenever $g(x)$ is a zerodivisor in $R[x]$ there exists a nonzero element $c \in R$ such that $\operatorname{cg}(x)=0$. We shall generalize this result. We begin with the following lemma.

Lemma 2.1. Let $f(x)$ and $g(x)$ be two elements of $R[x]$. Then $f(x) R g(x)=0$ if and only if $f(x) R[x] g(x)=0$.

Proof. Assume that $f(x) R g(x)=0$ and take an arbitrary element $\sum_{i=0}^{m} c_{i} x^{i}$ of $R[x]$. Then $f(x)\left(\sum_{i=0}^{m} c_{i} x^{i}\right) g(x)=\sum_{i=0}^{m} f(x) c_{i} g(x) x^{i}=0$. This implies $f(x) R[x] g(x)=0$. The "only if part" is clear.

Theorem 2.2. Let $f(x)$ be an element of $R[x]$. If $r_{R[x]}(f(x) R[x]) \neq 0$, then $r_{R[x]}(f(x) R[x]) \cap R \neq 0$.

Proof. We freely use Lemma 2.1 without mention. Let $f(x)=\sum_{i=0}^{m} a_{i} x^{i}$. If $\operatorname{deg}(f)=0$ or $f=0$, then the assertion is clear. So, let $\operatorname{deg}(f)=m>0$. Assume, to the contrary, that $r_{R}(f(x) R[x])=0$ and let $g(x)=\sum_{j=0}^{n} b_{j} x^{j} \in R[x]$ be a nonzero element of minimal degree in $r_{R[x]}(f(x) R[x])$. Since $\left(\sum_{i=0}^{m} a_{i} x^{i}\right) R[x]\left(\sum_{j=0}^{n} b_{j} x^{j}\right)=0$, $\left(\sum_{i=0}^{m} a_{i} x^{i}\right) R\left(\sum_{j=0}^{n} b_{j} x^{j}\right)=0$, and so $a_{m} R b_{n}=0$. Hence $a_{m} R[x] g(x)=a_{m} R[x]\left(b_{n-1} x^{n-1}+\right.$ $\left.\cdots+b_{0}\right)$ and we see $\left(f(x) R[x] a_{m}\right) R[x]\left(b_{n-1} x^{n-1}+\cdots+b_{0}\right)=\left(f(x) R[x] a_{m}\right) R[x] g(x)=0$. By hypothesis, we have $a_{m} R[x]\left(b_{n-1} x^{n-1}+\cdots+b_{0}\right)=0$. Therefore $a_{m} \in l_{R}\left(R[x] b_{n} x^{n}+\right.$ $R[x]\left(b_{n-1} x^{n-1}+\cdots+b_{0}\right)$). Hence $\left(a_{m-1} x^{m-1}+\cdots+a_{0}\right) R[x]\left(b_{n} x^{n}+\cdots+b_{0}\right)=0$, and so $a_{m-1} R b_{n}=0$. Thus we obtain $f(x) R[x]\left(a_{m-1} R[x]\left(b_{n-1} x^{n-1}+\cdots+b_{0}\right)\right)=$ $\left(f(x)\left(R[x] a_{m-1} R[x]\right) g(x)=0\right.$. Since $g(x)$ is a nonzero element of minimal degree in $r_{R[x]}(f(x) R[x])$, we obtain $a_{m-1} R[x]\left(b_{n-1} x^{n-1}+\cdots+b_{0}\right)=0$. Therefore we obtain $a_{m}, a_{m-1} \in l_{R}\left(R[x] b_{n} x^{n}+R[x]\left(b_{n-1} x^{n-1}+\cdots+b_{0}\right)\right)$. Repeating this process, we obtain
$a_{m}, \ldots, a_{0} \in l_{R}\left(R[x] b_{n}+R[x]\left(b_{n-1} x^{n-1}+\cdots+b_{0}\right)\right)$. This implies that $b_{0}, \ldots, b_{n} \in$ $r_{R}(f(x) R[x])$. This is a contradiction.

A ring R is semi-commutative if whenever elements $a, b \in R$ satisfy $a b=0$ then $a R b=0$. We can easily see that reduced rings are semi-commutative.

Corollary 2.3. Let R be a semi-commutative ring. If $f(x)$ is a zero-divisor in $R[x]$ then there exists a nonzero element $c \in R$ such that $f(x) c=0$.

3. Armendariz rings and quasi-Armendariz rings

For a ring R, put $r A n n_{R}\left(2^{R}\right)=\left\{r_{R}(U) \mid U \subseteq R\right\}$ and $\operatorname{lAnn}_{R}\left(2^{R}\right)=\left\{l_{R}(U) \mid U \subseteq R\right\}$. If U is a subset of R, then $r_{R[x]}(U)=r_{R}(U) R[x]$. Hence we have a map $\Phi: r \operatorname{Ann}_{R}\left(2^{R}\right) \rightarrow$ $r A n n_{R[x]}\left(2^{R[x]}\right)$ defined by $\Phi(I)=I R[x]$ for every $I \in \operatorname{rAnn}(R)$. For a polynomial $f(x) \in$ $R[x], C_{f}$ denotes the set of coefficients of $f(x)$ and for a subset V of $R[x], C_{V}$ denotes the set $\bigcup_{f \in V} C_{f}$. Then $r_{R[x]}(V) \cap R=r_{R}(V)=r_{R}\left(C_{V}\right)$. Hence we also have a map $\Psi: r A n n_{R[x]}\left(2^{R[x]}\right) \rightarrow r A n n_{R}\left(2^{R}\right)$ defined by $\Psi(I)=I \cap R$ for every $I \in \Delta$. Obviously Φ is injective and Ψ is surjective. Clearly Φ is surjective if and only if Ψ is injective, and in this case Φ and Ψ are the inverses of each other.

We consider the case when Φ is surjective.
Following Rege and Chhawchharia [11] a ring R is called an Armendariz ring if whenever two polynomials $f(x)=\sum_{i=0}^{m} a_{i} x^{i}, g(x)=\sum_{j=0}^{n} b_{j} x^{j} \in R[x]$ satisfy $f(x) g(x)=$ 0 we have $a_{i} b_{j}=0$ for every i and j. This name is connected with the work of Armendariz [3]. The following proposition shows that Φ is bijective if and only if R is Armendariz.

Proposition 3.1. Let R be a ring. The following statements are equivalent:
(1) R is Armendariz.
(2) $r \operatorname{Ann}_{R}\left(2^{R}\right) \rightarrow r A n n_{R[x]}\left(2^{R[x]}\right) ; A \rightarrow A R[x]$ is bijective.
(3) lAnn $_{R}\left(2^{R}\right) \rightarrow$ lAnn $_{R[x]}\left(2^{R[x]}\right) ; B \rightarrow R[x] B$ is bijective.

Proof. (1) \Rightarrow (2). For a polynomial $f(x) \in R[x], C_{f}$ denotes the set of coefficients of $f(x)$ and for a subset S of $R[x], C_{S}$ denotes the set $\bigcup_{f \in S} C_{f}$. Let S be a subset of $R[x]$ and let $f(x) \in S$. Since R is Armendariz, $r_{R[x]}(f)=r_{R[x]}\left(C_{f}\right)=r_{R}\left(C_{f}\right) R[x]$. Hence $r_{R[x]}(S)=\bigcap_{f \in S} r_{R[x]}(f)=\bigcap_{f \in S} r_{R[x]}\left(C_{f}\right)=r_{R}\left(C_{S}\right) R[x]$.
(2) \Rightarrow (1). Let $f(x)=\sum_{i=0}^{m} a_{i} x^{i}$ be a polynomial in $R[x]$. By hypothesis, $r_{R[x]}(f)=$ $B R[x]$ for some right ideal B of R. If $g(x)=\sum_{j=0}^{n} b_{j} x^{j} \in R[x]$ satisfies $f(x) g(x)=0$ then $g(x) \in B R[x]$, and hence $b_{0}, \ldots, b_{n} \in B \subseteq r_{R[x]}(f)$. Therefore $a_{i} b_{j}=0$ for every i and j.

Similarly we can prove (1) \Leftrightarrow (3).
Following Kaplansky [6], a ring R is called a Baer ring if the left annihilator of each subset is generated by an idempotent. We note that the definition of Baer rings is
left-right symmetric. A ring R is called a left (resp. right) p.p. ring if the left (resp. right) annihilator of each element of R is generated by an idempotent. A left and right p.p. ring is called a p.p. ring.

We obtain [8, Theorems 9 and 10] as an immediate corollary of Theorem 3.1.
Corollary 3.2. Let R be an Armendariz ring. Then R is a Baer ring (resp. p.p. ring) if and only if $R[x]$ is a Baer ring (resp. p.p. ring).

Kerr [7] constructed an example of a commutative Goldie ring R whose polynomial ring $R[x]$ has an infinite ascending chain of annihilator ideals.

Corollary 3.3. Let R be an Armendariz ring. Then R satisfies the ascending chain condition on right annihilators if and only if so does $R[x]$.

A ring R is called a quasi-Armendariz ring if whenever $f(x)=\sum_{i=0}^{m} a_{i} x^{i}, g(x)=$ $\sum_{j=0}^{n} b_{j} x^{j} \in R[x]$ satisfy $f(x) R[x] g(x)=0$, we have $a_{i} R b_{j}=0$ for every i and j. Put $\operatorname{rAnn}_{R}(\operatorname{id}(R))=\left\{r_{R}(U) \mid U\right.$ is an ideal of $\left.R\right\}$ and $\operatorname{lAnn}_{R}(i d(R))=\left\{l_{R}(U) \mid U\right.$ is an ideal of $R\}$. In a similar way as in the proof of Proposition 3.1, we can prove the following.

Proposition 3.4. Let R be a ring. The following statements are equivalent:
(1) R is quasi-Armendariz.
(2) $r A n n_{R}(i d(R)) \rightarrow \operatorname{rAnn}_{R[x]}(i d(R[x])) ; A \rightarrow A R[x]$ is bijective.
(3) $l A n n_{R}(i d(R)) \rightarrow l A n n_{R[x]}(i d(R[x])) ; B \rightarrow R[x] B$ is bijective.

For semi-commutative rings, in particular, for reduced rings, we have the following.
Corollary 3.5. Let R be a semi-commutative ring. Then R is Armendariz if and only if R is quasi-Armendariz.

Proof. Since R is semi-commutative, $R[x]$ is semi-commutative as well. Hence our assertion is clear.

We shall give an example of a noncommutative ring which is not quasi-Armendariz.
Example 3.6. Let K be a field of characteristic 2 and let $K[x, y]$ be a polynomial ring over K. Consider the factor ring $R=K[x, y] /\left(x^{2}, y^{2}\right)$ of $K[x, y]$ by the ideal $\left(x^{2}, y^{2}\right)$ generated by x^{2} and y^{2}. Then, for any positive integer $n, M_{n}(R)$ is not a quasi-Armendariz ring.

A ring R is a subdirect sum of a family of rings $\left\{R_{i}\right\}_{i \in I}$ if there is an injective homomorphism $f: R \rightarrow \prod_{i \in I} R_{i}$ such that, for each $j \in I, \pi_{j} f: R \rightarrow R_{j}$ is a surjective homomorphism, where $\pi_{j}: \prod_{i \in I} R_{i} \rightarrow R_{j}$ is the j th projection. Clearly if R is a subdirect sum of Armendariz rings, then R is an Armendariz ring. Similarly we have the following.

Proposition 3.7. If R is a subdirect sum of quasi-Armendariz rings, then R is a quasi-Armendariz ring.

Proof. Let $I_{k}(k \in K)$ be ideals of R such that each R / I_{k} is quasi-Armendariz and $\bigcap_{k \in K} I_{k}=0$. Suppose that two polynomials $f(x)=\sum_{i=0}^{m} a_{i} x^{i}, g(x)=\sum_{j=0}^{n} b_{j} x^{j} \in R[x]$ satisfy $f(x) R[x] g(x)=0$. Since R / I_{j} is quasi-Armendariz for each $j \in J$, we have $a_{i} R b_{j} \subseteq I_{k}$ for every i and j. Hence $a_{i} R b_{j} \subseteq \bigcap_{k \in K} I_{k}=0$.

Since a semiprime ring is a subdirect sum of prime rings and since prime rings are quasi-Armendariz rings, we have the following corollary.

Corollary 3.8. A semiprime ring is a quasi-Armendariz ring.
A submodule N of a left R-module M is called a pure submodule if $L \otimes_{R} N \rightarrow L \otimes_{R} M$ is a monomorphism for every right R-module L. Following Tominaga [13], an ideal I of R is said to be right s-unital if, for each $a \in I$ there is an $x \in I$ such that $a x=a$. By [12, Proposition 11.3.13], for an ideal I, the following conditions are equivalent:
(1) I is pure as a left ideal in R;
(2) R / I is flat as a left R-module;
(3) I is right s-unital.

Theorem 3.9. The following are equivalent:
(1) $l_{R}(R a)$ is pure as a left ideal in R for any element $a \in R$;
(2) $l_{R[x]}(R[x] f)$ is pure as a left ideal in $R[x]$ for any element $f \in R[x]$;

In this case R is a quasi-Armendariz ring.
Proof. Assume that condition (1) holds. First we shall prove that R is quasi-Armendariz. Suppose $\left(a_{0}+a_{1} x+\cdots+a_{m} x^{m}\right) R[x]\left(b_{0}+b_{1} x+\cdots+b_{n} x^{n}\right)=0$ with $a_{i}, b_{j} \in R$. We shall prove that $a_{i} R b_{j}=0$ for all i, j.

Let c be an arbitrary element of R. Then we have the following equation:

$$
\begin{align*}
0= & \left(a_{0}+a_{1} x+\cdots+a_{m} x^{m}\right) c\left(b_{0}+b_{1} x+\cdots+b_{n} x^{n}\right) \\
= & a_{0} c b_{0}+\cdots+\left(a_{m} c b_{n-3}+a_{m-1} c b_{n-2}+a_{m-2} c b_{n-1}+a_{m-3} c b_{n}\right) x^{m+n-3} \\
& +\left(a_{m} c b_{n-2}+a_{m-1} c b_{n-1}+a_{m-2} c b_{n}\right) x^{m+n-2} \\
& +\left(a_{m} c b_{n-1}+a_{m-1} c b_{n}\right) x^{m+n-1}+a_{m} c b_{n} x^{m+n} .
\end{align*}
$$

Then $a_{m} c b_{n}=0$. Hence $a_{m} \in l_{R}\left(R b_{n}\right)$. By hypothesis, $l_{R}\left(R b_{n}\right)$ is right s-unital, and hence there exists $e_{n} \in l_{R}\left(R b_{n}\right)$ such that $a_{m} e_{n}=a_{m}$.

Replacing c by $e_{m} c$ in Eq. (\dagger), we obtain

$$
a_{0} e_{n} c b_{0}+\cdots+\left(a_{m} e_{n} c b_{n-2}+a_{m-1} e_{n} c b_{n-1}\right) x^{m+n-2}+a_{m} e_{n} c b_{n-1} x^{m+n-1}=0 .
$$

Then we obtain $a_{m} c b_{n-1}=a_{n} e_{n} c b_{n-1}=0$. Hence $a_{m} \in l_{R}\left(R b_{n}+R b_{n-1}\right)$. Since $l_{R}\left(R b_{n-1}\right)$ is right s-unital, there exists $f \in l_{R}\left(R b_{n-1}\right)$ such that $a_{m} f=a_{m}$. If we put $e_{n-1}=e_{n} f$,
then $a_{m} e_{n-1}=a_{m}$ and $e_{n-1} \in l_{R}\left(R b_{n}+R b_{n-1}\right)$. Next, replacing c by $e_{n-1} c$ in Eq. (\dagger), we obtain $a_{m} c b_{n-2}=0$ in the same way as above. Hence we have $a_{m} \in l_{R}\left(R b_{n}+\right.$ $R b_{n-1}+R b_{n-2}$). Continuing this process, we obtain $a_{m} R b_{k}=0$ for all $k=0,1, \ldots, n$. Thus we get $\left(a_{0}+\cdots+a_{m-1} x^{m-1}\right) R[x]\left(b_{0}+\cdots+b_{n} x^{n}\right)=0$. Using induction on $m+n$, we obtain $a_{i} R b_{j}=0$ for all i, j. Thus we proved that R is quasi-Armendariz. Using [13, Theorem 1] we can see that condition (2) holds.

Conversely, suppose that condition (2) holds. Let a be an element of R. Then $l_{R[x]}(R[x] a)$ is right s-unital. Hence, for any $b \in l_{R}(R a)$, there exists a polynomial $f \in R[x]$ such that $b f=b$. Let a_{0} be the constant term of f. Then $a_{0} \in$ $l_{R}(R a)$ and $b a_{0}=b$. This implies that $l_{R}(R a)$ is right s-unital. Therefore condition (1) holds.

Corollary 3.10. Let R be a commutative ring. Then each principal ideal of R is flat if and only if each principal ideal of $R[x]$ is flat. In this case R is an Armendariz ring.

Proof. For each $a \in R, R / l_{R}(a) \cong R a$ holds. Hence this corollary follows from Theorem 3.9.

A ring R is called quasi-Baer if the left annihilator of every left ideal of R is generated by an idempotent. Note that this definition is left-right symmetric. Some results of a quasi-Baer ring can be found in [5] and [10]. Let R be a quasi-Baer ring and let $a \in R$. Then $l_{R}(R a)=R e$ for some idempotent $e \in R$, and so $R / l_{R}(R a) \cong R(1-e)$ is projective. Therefore a quasi-Baer ring satisfies the hypothesis of Theorem 3.9. The first statement of the following corollary is a special case of [4, Theorem 1.8].

Corollary 3.11. A ring R is a quasi-Baer ring if and only if $R[x]$ is a quasi-Baer ring. In this case R is a quasi-Armendariz ring.

Now we consider some extensions of quasi-Armendariz rings. Let R be a ring and let n be a positive integer. Let $\mathrm{M}_{n}(R)$ denote the ring of $n \times n$ matrices over R and $e_{i j}$ denote the (i, j)-matrix unit.

Theorem 3.12. If R is a quasi-Armendariz ring and let S be a subring of $M_{n}(R)$ such that $e_{i i} S e_{j j} \subseteq S$ for all $i, j \in\{1, \ldots, n\}$. Then S is also a quasi-Armendariz ring.

Proof. Let $\alpha(x)=\sum_{k=0}^{m} a^{k} x^{k}$ and $\beta(x)=\sum_{k=0}^{n} b^{k} x^{k}$ be two polynomials in x over S and suppose $\alpha(x) S[x] \beta(x)=0$. We can consider $S[x]$ as a subset of $\mathrm{M}_{n}(R[x])$. Then, for any $c e_{p q} \in e_{p p} S e_{q q}$ where $c \in R, \alpha(x) c e_{p q} \beta(x)=0$ in $\mathrm{M}_{n}(R[x])$. Considering the (i, j)-components of both sides of this equation, we have $\sum_{t=0}^{m+n}\left(\sum_{r+s=t} a_{i p}^{r} c b_{q j}^{s}\right) x^{t}=$ $\left(\sum_{r=0}^{m} a_{i p}^{r} x^{r}\right) c\left(\sum_{s=0}^{n} b_{q j}^{s} j^{s}\right)=0$. Since $\left\{c \in R \mid c e_{p q} \in e_{p p} S e_{q q}\right\}$ forms an ideal of R, $\left(\sum_{r=0}^{m} a_{i p}^{r} x^{r}\right) R c\left(\sum_{s=0}^{n} b_{q j}^{s} s^{s}\right)=0$. Since R is quasi-Armendariz, $a_{i p}^{r} c b_{q j}^{s}=0$ for all r, s. By hypothesis on S, every element of S is a sum of such $c e_{p q}$, we conclude that $a^{r} S b^{s}=0$ for all r, s.

To prove that the class of quasi-Armendariz rings is Morita stable, we need the following.

Proposition 3.13. If R is a quasi-Armendariz ring, then, for any nonzero idempotent $e \in R$, eRe is a quasi-Armendariz ring.

Proof. Let $f(x)=\sum_{i=0}^{m} a_{i} x^{i}, g(x)=\sum_{j=0}^{n} b_{j} x^{j} \in e R e[x]$ be polynomials satisfying $f(x) \operatorname{Re}[x] g(x)=0$. Since $f(x) e=f(x)$ and $e g(x)=g(x)$, we obtain $f(x) R[x] g(x)=0$, and hence $a_{i} R b_{j}=0$ for each i and j. Also since $a_{i} e=a_{i}$ and $e b_{j}=b_{j}$ for each i and j, we conclude that $a_{i} e R e b_{j}=0$ for each i and j.

Corollary 3.14. If R is a quasi-Armendariz ring and if R is Morita equivalent to a ring S, then S is a quasi-Armendariz ring.

For any ring R and any positive integer $n, T_{n}(R)$ denotes the ring of all $n \times n$ upper triangular matrices over R.

Corollary 3.15. If R is a quasi-Armendariz ring, then, for any positive integer n, $T_{n}(R)$ is also a quasi-Armendariz ring.

In the same way as in [2, Theorem 2] we can prove the following.
Theorem 3.16. If R is a quasi-Armendariz ring, then the polynomial ring $R[X]$ is a quasi-Armendariz ring for any set X of commutative indeterminates.

4. Quasi-Gaussian rings

For $f \in R[x]$, the content A_{f} of f is the ideal of R generated by the coefficients of f. For any subset S of $R[x], A_{S}$ denotes the ideal $\sum_{f \in S} A_{f}$. A commutative ring R is Gaussian if $A_{f g}=A_{f} A_{g}$ for all $f, g \in R[x]$. We extend this notion to noncommutative rings as follows. A ring R is said to be quasi-Gaussian if $A_{f R g}=A_{f} A_{g}$ for all $f, g \in$ $R[x]$.

Theorem 4.1. A ring R is quasi-Gaussian if and only if every homomorphic image of R is quasi-Armendariz.

Proof. Obviously if R is a quasi-Gaussian ring then every homomorphic image of R is quasi-Armendariz.

Suppose that every homomorphic image of R is quasi-Armendariz. Let $f, g \in R[x]$. Then $\bar{f} \bar{R} \bar{g}=0$ in $\left(R / A_{f R g}\right)[x]$. Since $R / A_{f R g}$ is quasi-Armendariz, $A_{\bar{f}} A_{\bar{g}}=0$ in $R / A_{f R g}$. This implies that $A_{f} A_{g}=A_{f R g}$.

Corollary 4.2. If R is a quasi-Gaussian ring and if R is Morita equivalent to a ring S, then S is a quasi-Gaussian ring.

Proof. Clearly a homomorphic image of R is Morita equivalent to a homomorphic image of the ring S. Hence this corollary follows from Theorem 4.1 and Corollary 3.14 .

Example 4.3. An ideal I of a commutative ring is said to be locally principal if $I R_{M}=$ I_{M} is a principal ideal for each maximal ideal M of R. A commutative ring R is said to be arithmetical if its lattice of ideals is distributive, or equivalently, if every finitely generated ideal of R is locally principal. It is well-known that an arithmetical ring is Gaussian, and so, in particular a principal ideal ring is Gaussian (see [1, p. 83] and [2, p. 2269]). Therefore, a ring R which is Morita equivalent to an arithmetical ring, is quasi-Gaussian.

Example 4.4. A ring R is fully idempotent if $I^{2}=I$ for every two-sided ideal I of R. Obviously a ring R is fully idempotent if and only if every homomorphic image of R is semiprime. Von Neumann regular rings are fully idempotent. By Theorem 4.1 and Corollary 3.8, a fully idempotent ring is a quasi-Gaussian ring.

Acknowledgements

The author would like to thank the referee for his helpful suggestions.

References

[1] D.D. Anderson, B.G. Kang, Contents formulas for polynomials and power series and complete integral closure, J. Algebra 181 (1996) 82-94.
[2] D.D. Anderson, V. Camillo, Armendariz rings and Gaussian rings, Comm. Algebra 26 (7) (1998) 2265-2272.
[3] E.P. Armendariz, A note on extensions of Baer and p.p. rings, Austral. Math. Soc. 18 (1974) 470-473.
[4] G.F. Birkenmeier, J.Y. Kim, J.K. Park, Polynomial extension of Baer and quasi-Baer rings, J. Pure Appl. Algebra, to appear.
[5] W.E. Clark, Twisted matrix units semigroup algebras, Duke Math. J. 34 (1967) 417-424.
[6] I. Kaplansky, Rings of Operators, Mathematics Lecture Notes Series, Benjamin, New York, 1965.
[7] J.W. Kerr, The polynomial ring over a Goldie ring need not be a Goldie ring, J. Algebra 134 (1990) 344-352.
[8] N.K. Kim, Y. Lee, Armendariz rings and reduced rings, J. Algebra 223 (2000) 477-488.
[9] N.H. McCoy, Remarks on divisors of zero, Amer. Math. Monthly 49 (1942) 286-295.
[10] P. Pollingher, A. Zaks, On Baer and quasi-Baer rings, Duke Math. J. 37 (1970) 127-138.
[11] M.B. Rege, S. Chhawchharia, Armendariz rings, Proc. Japan Acad. Ser. A Math. Sci. 73 (1997) 14-17.
[12] B. Stenström, Rings of Quotients, Springer, Berlin, 1975.
[13] H. Tominaga, On s-unital rings, Math. J. Okayama Univ. 18 (1976) 117-134.

[^0]: E-mail address: yhirano@math.okayama-u.ac.jp (Y. Hirano).

