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Abstract

Let R be a ring and let R[x] denote the polynomial ring over R. We study relations between
the set of annihilators in R and the set of annihilators in R[x]. (© 2002 Elsevier Science B.V.
All rights reserved.

MSC: Primary 16S36; secondary 16N60

1. Introduction

Let R be a ring. A left (right) annihilator of a subset U of R is defined by /x(U)=
{a € R|aU =0}(rg(U) = {a € R|Ua = 0}). Consider the polynomial ring R[x] over
R. Let I = {rg(U)|U C R} and let 4 = {rgpy(¥V)|V C R[x]}. For a polynomial
f(x) € R[x], Cy denotes the set of coeflicients of f(x) and for a subset V' of R[x],
Cy denotes the set UfEV Cy. Then rr(V)NR =rr(V) =rr(Cy). Hence we have a
map ¥ : 4 — I defined by Y(/)=1NR for each I € 4. Obviously ¥ is surjective.

McCoy [9] proved that if R is a commutative ring, then whenever g(x) is a zero-
divisor in R[x] there exists a nonzero element ¢ € R such that cg(x) = 0. That is; if
rrix(g(x)) # 0 then W(rg(g(x))) # 0. We first generalize this result as follows: Let
f(x) be an element of the polynomial ring R[x] over a (not necessarily commutative)
ting R. If repy(f(0RIX]) # 0, then ¥ (g (£ (¥IRIXD)) = ragey(f (XRIK]) MR # 0.

If U is a subset of R, then rgj(U) = rr(U)R[x]. Hence we also have a map @ :
I' — A defined by @(I) = IR[x] for every I € I'. Obviously @ is injective. We
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consider the case when @ is bijective. Clearly if @ is bijective, then its inverse is V.
Following [11], a ring R is called an Armendariz ring if whenever two polynomials
f) =300 ax', g(x) = 371 b/ € RIx] satisfy f(x)g(x) =0 we have a;b; =0
for every i and j. We show that @ is bijective if and only if R is Armendariz. We
define a ring R to be quasi-Armendariz if whenever two polynomials f(x)=Y 7", aix',
g(x)=>"7_ b’ € RIx] satisfy f(x)R[x]g(x) =0 we have a;Rb; =0 for every i and
J. Let I" ={rr(U)| U is an ideal of R} and let A" = {rgy(V) |V is an ideal of R[x]}.
Consider the map ¥/ : I' — A’, the restriction of ¥ to I'’. We show that ¥’ is
bijective if and only if R is quasi-Armendariz. We give a sufficient condition for a
ring to be quasi-Armendariz and show that quasi-Baer rings are quasi-Armendariz. We
show that some extensions of a quasi-Armendariz ring are quasi-Armendariz. Finally,
we consider a ring all of whose homomorphic images are quasi-Armendariz.

2. A generalization of McCoy’s theorem

McCoy [9] proved that if R is a commutative ring, then whenever g(x) is a zero-
divisor in R[x] there exists a nonzero element ¢ € R such that cg(x) = 0. We shall
generalize this result. We begin with the following lemma.

Lemma 2.1. Let f(x) and g(x) be two elements of R[x]. Then f(x)Rg(x)=0 if and
only if f(x)R[x]g(x) = 0.

Proof. Assume that f(x)Rg(x) =0 and take an arbitrary element > -, cix' of R[x].

Then f(x)(}_ i, cix )g(x)=>"1", f(x)cig(x)x'=0. This implies f(x)R[x]g(x)=0. The
“only if part” is clear. [

Theorem 2.2. Let f(x) be an element of R[x]. If rrw(f(x)R[x]) # 0, then
rrp (S (OR[X]) N R # 0.

Proof. We freely use Lemma 2.1 without mention. Let f(x)=) 1, a;x’. If deg(f)=0
or f =0, then the assertion is clear. So, let deg(f) =m > 0. Assume, to the con-
trary, that rz(f(x)R[x]) = 0 and let g(x) = 7, b/ € R[x] be a nonzero ele-
ment of minimal degree in rppq(f(¥)R[x]). Since (37, ax )R[XI(3), bix/) = 0,
(i axR(3—y bx/)=0, and so a,,Rb,=0. Hence a,R[x]g(x)=anR[x](b,_1x" "'+
-+ -+bo) and we see (f(X)R[xX]an)R[x)(by—1x" " +- - -+bo)=(f(x)R[x]an)R[x]g(x)=0.
By hypothesis, we have a,,R[x](b,_1x"~! +---+by)=0. Therefore a,, € [r(R[x]b,x" +
R[x)(by—1x""" 4 -+ + by)). Hence (an_1x""" + -+ + ao)R[x](bpx" + - -- + by) = 0,
and so a,_ Rb, = 0. Thus we obtain f(x)R[x](@n_1R[x](bp_1x""" + -+ + by)) =
(f(x)(R[x]am—1R[x])g(x) = 0. Since g(x) is a nonzero element of minimal degree in
rrp(f(X)R[x]), we obtain a1 R[x](by—1x"~" + -+ + by) = 0. Therefore we obtain
Ay Am—1 € IR(R[X]DX" + R[x](by—1x"~" 4 - -+ by)). Repeating this process, we obtain
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Ay, ... a0 € [p(R[x]b, + R[x](by_1x"~' 4 --- + bg)). This implies that by,...,b, €
rr(f (x)R[x]). This is a contradiction. [

A ring R is semi-commutative if whenever elements a,b € R satisfy ab = 0 then
aRb =0. We can easily see that reduced rings are semi-commutative.

Corollary 2.3. Let R be a semi-commutative ring. If f(x) is a zero-divisor in R[x]
then there exists a nonzero element ¢ € R such that f(x)c=0.

3. Armendariz rings and quasi-Armendariz rings

For a ring R, put 7Anng(2R8)={rr(U)| U C R} and lAnng(2®)={Ix(U)|U C R}. If
U is a subset of R, then rgp(U)=rr(U)R[x]. Hence we have a map @ : rdnng(2?) —
rAnng(28) defined by @(7)=1IR[x] for every I € rdnn(R). For a polynomial f(x) €
R[x], Cr denotes the set of coefficients of f(x) and for a subset ' of R[x], Cy denotes
the set UfeV Cy. Then rpp (V) N R =rg(V) = rr(Cy). Hence we also have a map
Y : rAnngpg(28%) — rdnng(2R) defined by (1) =1NR for every I € A. Obviously
@ is injective and ¥ is surjective. Clearly @ is surjective if and only if ¥ is injective,
and in this case @ and ¥ are the inverses of each other.

We consider the case when @ is surjective.

Following Rege and Chhawchharia [11] a ring R is called an Armendariz ring if
whenever two polynomials f(x)=>_7" ax’, g(x)=)"7_, bjx’ € R[x] satisfy f(x)g(x)=
0 we have a;b; = 0 for every i and j. This name is connected with the work of
Armendariz [3]. The following proposition shows that @ is bijective if and only if R
is Armendariz.

Proposition 3.1. Let R be a ring. The following statements are equivalent:
(1) R is Armendariz.

(2) rdnng(2®) — rAnnR[x](ZR[x]);A — AR[x] is bijective.

(3) 1Anng(2®) — 1Anng(2RN); B — R[x]B is bijective.

Proof. (1) = (2). For a polynomial f(x) € R[x], C; denotes the set of coefficients
of f(x) and for a subset S of R[x], Cs denotes the set UfeS Cyr. Let S be a subset
of R[x] and let f(x) € S. Since R is Armendariz, rgp(f) = rr(Cr) = rr(Cr)R[x].
Hence I’R[x](S) = meS rR[x](f) = ﬂfeS I’R[x](cf) = }"R(Cs)R[x].

(2) = (1). Let f(x)=)_1", aix' be a polynomial in R[x]. By hypothesis, rgp(f)=
BR[x] for some right ideal B of R. If g(x) = Z;LO bjx/ € R[x] satisfies f(x)g(x)=0
then g(x) € BR[x], and hence by,...,b, € B C rgyq(f). Therefore a;b; =0 for every i
and j.

Similarly we can prove (1) & (3). O

Following Kaplansky [6], a ring R is called a Baer ring if the left annihilator of
each subset is generated by an idempotent. We note that the definition of Baer rings is
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left-right symmetric. A ring R is called a left (resp. right) p.p. ring if the left (resp.
right) annihilator of each element of R is generated by an idempotent. A left and right
p.p. ring is called a p.p. ring.

We obtain [8, Theorems 9 and 10] as an immediate corollary of Theorem 3.1.

Corollary 3.2. Let R be an Armendariz ring. Then R is a Baer ring (resp. p.p. ring)
if and only if R[x] is a Baer ring (resp. p.p. ring).

Kerr [7] constructed an example of a commutative Goldie ring R whose polynomial
ring R[x] has an infinite ascending chain of annihilator ideals.

Corollary 3.3. Let R be an Armendariz ring. Then R satisfies the ascending chain
condition on right annihilators if and only if so does R[x].

A ring R is called a quasi-Armendariz ring if whenever f(x)= > ax', g(x) =
> im0 bi¥ € R[x] satisfy f(x)R[x]g(x) =0, we have a;Rb; =0 for every i and j. Put
rAnng(id(R))={rr(U)| U is an ideal of R} and I4Anng(id(R))={Iz(U)| U is an ideal
of R}. In a similar way as in the proof of Proposition 3.1, we can prove the following.

Proposition 3.4. Let R be a ring. The following statements are equivalent:
(1) R is quasi-Armendariz.

(2) rAnng(id(R)) — rAnng(id(R[x])); A — AR[x] is bijective.

(3) Anng(id(R)) — IAnngp(id(R[x])); B — R[x]B is bijective.

For semi-commutative rings, in particular, for reduced rings, we have the following.

Corollary 3.5. Let R be a semi-commutative ring. Then R is Armendariz if and only
if R is quasi-Armendariz.

Proof. Since R is semi-commutative, R[x] is semi-commutative as well. Hence our
assertion is clear. [

We shall give an example of a noncommutative ring which is not quasi-Armendariz.

Example 3.6. Let K be a field of characteristic 2 and let K[x, y] be a polynomial
ring over K. Consider the factor ring R = K[x, y]/(x?,y*) of K[x,y] by the ideal
(x%, %) generated by x> and »?. Then, for any positive integer n, M,(R) is not a
quasi-Armendariz ring.

A ring R is a subdirect sum of a family of rings {R;};c; if there is an injective
homomorphism f : R — [[,.,;R; such that, for each j € I, m;f : R — R; is a
surjective homomorphism, where ; : [[,.; R — R; is the jth projection. Clearly if R
is a subdirect sum of Armendariz rings, then R is an Armendariz ring. Similarly we
have the following.
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Proposition 3.7. If R is a subdirect sum of quasi-Armendariz rings, then R is a
quasi-Armendariz ring.

Proof. Let [; (k € K) be ideals of R such that each R/I; is quasi-Armendariz and
(Miex Ik =0. Suppose that two polynomials f(x)=>"" ax’, g(x)= Zj‘:o bx/ € R[x]
satisfy f(x)R[x]g(x) = 0. Since R/I; is quasi-Armendariz for each j € J, we have
a;Rb; C I, for every i and j. Hence a;Rb; C (,cx Ix =0. O

Since a semiprime ring is a subdirect sum of prime rings and since prime rings are
quasi-Armendariz rings, we have the following corollary.

Corollary 3.8. A4 semiprime ring is a quasi-Armendariz ring.

A submodule N of a left R-module M is called a pure submodule if LRN — L&rM
is a monomorphism for every right R-module L. Following Tominaga [13], an ideal /
of R is said to be right s-unital if, for each a € I there is an x € I such that ax = a.
By [12, Proposition 11.3.13], for an ideal 7, the following conditions are equivalent:
(1) I is pure as a left ideal in R;

(2) R/I is flat as a left R-module;
(3) I is right s-unital.

Theorem 3.9. The following are equivalent:

(1) Ir(Ra) is pure as a left ideal in R for any element a € R,

(2) Irm(R[x]f") is pure as a left ideal in R[x] for any element f € R[x];
In this case R is a quasi-Armendariz ring.

Proof. Assume that condition (1) holds. First we shall prove that R is quasi-Armendariz.
Suppose (ap + aix + - -+ + anx")R[x](bo + b1x + - - - + b,x") = 0 with a;,b; € R. We
shall prove that a;Rb; =0 for all i, ;.

Let ¢ be an arbitrary element of R. Then we have the following equation:

0=(ap+ax+ -+ anx™)c(by + b1x + - - - + bx")
= aochy + - + (amen73 + ap—1¢by—3 + am_och,—1 + ay_3cb, )xm+n—3
+ (amChy—s + Ap_1Cby_1 + ap_ochy)x" "2

+ (dmen,1 + amflcbn )xm+n—l + amenxm+n' (T)
Then a,,cb, = 0. Hence a,, € [z(Rb,). By hypothesis, /r(Rb,) is right s-unital, and
hence there exists e, € [g(Rb,) such that a,e, = a,.
Replacing ¢ by e,c in Eq. (), we obtain
agenchy + - - - + (amenchy_s + am_1e4chy_ X" "2 + ae,ch,_ 1 x" 1 = 0.

Then we obtain a,,cb,_; =ae,cb,—; =0. Hence a,, € Ig(Rb,+Rb,_1). Since Ig(Rb,_)
is right s-unital, there exists f € /p(Rb,_1) such that a,, f =a,. If we put e,_1=e,f,
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then a,e,_1 =a,, and e,_; € Ix(Rb, + Rb,_1). Next, replacing ¢ by e,_;c in Eq. (}),
we obtain a,cb,_, = 0 in the same way as above. Hence we have a,, € Ip(Rb, +
Rb,_1 + Rb,_»). Continuing this process, we obtain a,Rb; =0 for all k =0,1,...,n
Thus we get (ap+ - - - + am_1xX" " DHR[x](bo + - - - + b,x") =0. Using induction on m +n,
we obtain a;Rb; =0 for all 7,j. Thus we proved that R is quasi-Armendariz. Using [13,
Theorem 1] we can see that condition (2) holds.

Conversely, suppose that condition (2) holds. Let a be an element of R.
Then /g(R[x]a) is right s-unital. Hence, for any b € [g(Ra), there exists a poly-
nomial f € R[x] such that bf = b. Let ayp be the constant term of f. Then ay €
Ir(Ra) and bay = b. This implies that /z(Ra) is right s-unital. Therefore condition (1)
holds. [

Corollary 3.10. Let R be a commutative ring. Then each principal ideal of R is flat
if and only if each principal ideal of R[x] is flat. In this case R is an Armendariz
ring.

Proof. For each a € R, R/Iz(a) = Ra holds. Hence this corollary follows from Theo-
rem 3.9. [

A ring R is called quasi-Baer if the left annihilator of every left ideal of R is
generated by an idempotent. Note that this definition is left-right symmetric. Some
results of a quasi-Baer ring can be found in [5] and [10]. Let R be a quasi-Baer ring
and let @ € R. Then [z(Ra)=Re for some idempotent e € R, and so R/Ig(Ra) = R(1—e)
is projective. Therefore a quasi-Baer ring satisfies the hypothesis of Theorem 3.9. The
first statement of the following corollary is a special case of [4, Theorem 1.8].

Corollary 3.11. A ring R is a quasi-Baer ring if and only if R[x] is a quasi-Baer ring.
In this case R is a quasi-Armendariz ring.

Now we consider some extensions of quasi-Armendariz rings. Let R be a ring and
let n be a positive integer. Let M,,(R) denote the ring of n x n matrices over R and e;;
denote the (i, /)-matrix unit.

Theorem 3.12. If R is a quasi-Armendariz ring and let S be a subring of M,(R) such
that e;Se;; C S for all i,j € {1,...,n}. Then S is also a quasi-Armendariz ring.

Proof. Let a(x) =Y ,a*x* and B(x)=>]_,b*x* be two polynomials in x over S
and suppose o(x)S[x]B(x) =0. We can consider S[x] as a subset of M,,(R[x]). Then,
for any ce,, € e,,Se,, where ¢ € R, a(x)ce,qf(x) =0 in M,(R[x]). Considering the
(i, j)-components of both sides of this equation, we have ZVH" (O —A by )x =
(0N a,px Ne(Xi, qjx *)=0. Since {c¢ € R|ce,; € €,pSeqq} forms an 1deal of R,
(Xorto @, X IRe(Y o5y bYx*) =0. Since R is quasi-Armendariz, a,cbj; =0 for all r,s.
By hypothesis on S, every element of S is a sum of such cepq, we conclude that
a'Sh* =0 for all r,s. [
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To prove that the class of quasi-Armendariz rings is Morita stable, we need the
following.

Proposition 3.13. If R is a quasi-Armendariz ring, then, for any nonzero idempotent
e € R, eRe is a quasi-Armendariz ring.

Proof. Let f(x) = Y ", a', g(x) = >/ b/ € eRe[x] be polynomials satisfying
f(x)eRe[x]g(x)=0. Since f(x)e= f(x) and eg(x)=g(x), we obtain f(x)R[x]g(x)=0,
and hence a;Rb; =0 for each i and j. Also since a;e = a; and eb; = b; for each i and
J> we conclude that a;eReb; = 0 for each i and j. [

Corollary 3.14. If R is a quasi-Armendariz ring and if R is Morita equivalent to a
ring S, then S is a quasi-Armendariz ring.

For any ring R and any positive integer n, T,(R) denotes the ring of all n x n upper
triangular matrices over R.

Corollary 3.15. If R is a quasi-Armendariz ring, then, for any positive integer n,
T.(R) is also a quasi-Armendariz ring.

In the same way as in [2, Theorem 2] we can prove the following.

Theorem 3.16. If R is a quasi-Armendariz ring, then the polynomial ring R[X] is a
quasi-Armendariz ring for any set X of commutative indeterminates.

4. Quasi-Gaussian rings

For f € R[x], the content A, of f is the ideal of R generated by the coefficients of
f. For any subset S of R[x], 4s denotes the ideal Zfes Ar. A commutative ring R is
Gaussian if 4, =ArA, for all f,g € R[x]. We extend this notion to noncommutative
rings as follows. A ring R is said to be quasi-Gaussian if Apg, = AsA, for all f,g €
R[x].

Theorem 4.1. A4 ring R is quasi-Gaussian if and only if every homomorphic image of
R is quasi-Armendariz.

Proof. Obviously if R is a quasi-Gaussian ring then every homomorphic image of R
is quasi-Armendariz. [

Suppose that every homomorphic image of R is quasi-Armendariz. Let f,g € R[x].
Then fRG=0 in (R/A sry)[x]. Since R/A sz, is quasi-Armendariz, A7;43=0 in R/Ary.
This implies that 4,4, = A rgy.



52 Y. Hirano ! Journal of Pure and Applied Algebra 168 (2002) 45-52

Corollary 4.2. If R is a quasi-Gaussian ring and if R is Morita equivalent to a ring
S, then S is a quasi-Gaussian ring.

Proof. Clearly a homomorphic image of R is Morita equivalent to a homomorphic
image of the ring S. Hence this corollary follows from Theorem 4.1 and Corollary
3.14. O

Example 4.3. An ideal / of a commutative ring is said to be locally principal if IRy, =
Iy is a principal ideal for each maximal ideal M of R. A commutative ring R is said
to be arithmetical if its lattice of ideals is distributive, or equivalently, if every finitely
generated ideal of R is locally principal. It is well-known that an arithmetical ring is
Gaussian, and so, in particular a principal ideal ring is Gaussian (see [1, p. 83] and
[2, p. 2269]). Therefore, a ring R which is Morita equivalent to an arithmetical ring,
is quasi-Gaussian.

Example 4.4. A ring R is fully idempotent if I =1 for every two-sided ideal / of R.
Obviously a ring R is fully idempotent if and only if every homomorphic image of R
is semiprime. Von Neumann regular rings are fully idempotent. By Theorem 4.1 and
Corollary 3.8, a fully idempotent ring is a quasi-Gaussian ring.
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