
Computers and Mathematics with Applications 55 (2008) 116–129
www.elsevier.com/locate/camwa

A new backtracking inexact BFGS method for symmetric
nonlinear equationsI

Gonglin Yuan∗, Xiwen Lu

School of Science, East China University of Science and Technology, Shanghai, 200237, PR China

Received 9 November 2005; received in revised form 18 September 2006; accepted 12 December 2006

Abstract

A BFGS method, in association with a new backtracking line search technique, is presented for solving symmetric nonlinear
equations. The global and superlinear convergences of the given method are established under mild conditions. Preliminary
numerical results show that the proposed method is better than the normal technique for the given problems.
c© 2007 Elsevier Ltd. All rights reserved.

Keywords: BFGS method; Line search; Symmetric nonlinear equations; Global convergence; Superlinear convergence

1. Introduction

It’s well known that the quasi-Newton methods (see [1–7]) are very important methods for solving the
unconstrained optimization problems minx∈R n f (x), and some modified BFGS methods with global and superlinear
convergence have been proposed in [8–12] etc. For nonlinear equations, some techniques have been given [13–17].

In this paper, we consider the following system of nonlinear equations

g(x) = 0, x ∈ Rn (1.1)

where g : Rn
→ Rn is continuously differentiable, and the Jacobian ∇g(x) of g is symmetric for all x ∈ Rn . In fact,

this problem can come from an unconstrained optimization problem, a saddle point problem, and equality constrained
problems [14]. Let θ be the norm function defined by θ(x) =

1
2‖g(x)‖2. Then the nonlinear equations problem (1.1)

is equivalent to the following global optimization problem

min θ(x), x ∈ Rn . (1.2)

The BFGS method for solving (1.1) is to generate a sequence of iterates {xk} by letting xk+1 = xk + αkdk , where αk
is a steplength, and dk is a solution of the system of linear equations

Bkdk + gk = 0, (1.3)

I This work is supported by Guangxi University SF grands X061041.
∗ Corresponding author.

E-mail addresses: glyuan@tom.com (G. Yuan), xwlu@ecust.edu.cn (X. Lu).

0898-1221/$ - see front matter c© 2007 Elsevier Ltd. All rights reserved.
doi:10.1016/j.camwa.2006.12.081

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by Elsevier - Publisher Connector

https://core.ac.uk/display/82161642?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1
http://www.elsevier.com/locate/camwa
mailto:glyuan@tom.com
mailto:xwlu@ecust.edu.cn
http://dx.doi.org/10.1016/j.camwa.2006.12.081

G. Yuan, X. Lu / Computers and Mathematics with Applications 55 (2008) 116–129 117

where gk = g(xk), Bk is generated by the following BFGS update formula

Bk+1 = Bk −
BksksT

k Bk

sT
k Bksk

+
yk yk

T

yk
Tsk

, (1.4)

where sk = xk+1 − xk, yk = gk+1 − gk . Generally, one method is applied to find a steplength αk such that

‖g(xk + αkdk)‖
2

≤ ‖g(xk)‖
2
+ σαk gT

k ∇gT
k dk, (1.5)

where σ ∈ (0, 1) is a given constant. The drawback of the technique (1.5) is the need to compute the Jacobian matrix
∇g(x) at every iteration, which will increase the computing difficulty, especially for the large-scale problems. In order
to avoid computing the Jacobian matrix ∇g(x) when we find the steplength αk , the following line search technique is
used to get αk

‖g(xk + αkdk)‖
2

≤ ‖g(xk)‖
2
+ δα2

k gT
k dk, (1.6)

where δ ∈ (0, 1). In Section 3; we will show that (1.6) is reasonable.
The purpose of this paper is to propose a BFGS method with the above line search technique. The presented method

has a norm descent property, whose global and superlinear convergence will be given under suitable conditions.
Numerical results show that the method is very interesting.

This paper is organized as follows. In the next section, the backtracking inexact BFGS algorithm is stated. Under
some reasonable conditions, we establish the global and superlinear convergence of the algorithms in Section 3 and
in Section 4, respectively. Preliminary numerical results are proposed in Section 5.

2. Algorithms

This section will give the inexact BFGS method in association with the new backtracking line search technique
(1.6) for (1.1). The algorithm is stated as follows.

Algorithm 1. Step 0: Choose an initial point x0 ∈ Rn , an initial symmetric positive definite matrix B0 ∈ Rn×n , and
constants r, δ, ρ ∈ (0, 1), let k := 0.

Step 1: Stop if ‖gk‖ = 0. Otherwise solve the following linear equation to get dk

Bkd + gk = 0. (2.1)

Step 2: If

‖g(xk + dk)‖ ≤ ρ‖g(xk)‖, (2.2)

Then take αk = 1 and go to Step 4. Otherwise go to Step 3.
Step 3: Let ik be the smallest nonnegative integer i such that (1.6) holds for α = r i . Let αk = r ik .
Step 4: Let the next iteration be xk+1 = xk + αkdk .
Step 5: Put sk = xk+1 − xk = αkdk , yk = gk+1 − gk . If sT

k yk > 0, update Bk by (1.4), otherwise let Bk+1 = Bk .
Step 6: Let k := k + 1. Go to step 1.

We also give an algorithm based on the line search technique (1.5) for (1.1).

Algorithm 2. δ and (1.6) in the Step 0 and Step 3 of Algorithm 1 are replaced by: σ ∈ (0, 1) and (1.5), respectively.

From Algorithm 1, we have

Remark a. (i) By yk = gk+1 − gk , we have the approximate relations

yk = gk+1 − gk ≈ ∇gk+1sk .

Since Bk+1 satisfies the secant equation Bk+1sk = yk and ∇gk is symmetric, we have approximately

Bk+1sk ≈ ∇gk+1sk = ∇gT
k+1sk .

This means that Bk+1 approximates ∇gk+1 along direction sk .

118 G. Yuan, X. Lu / Computers and Mathematics with Applications 55 (2008) 116–129

(ii) The Step 5 of Algorithm 1 can ensure that Bk is always positive definite.
(iii) We call Step 3 inner circle in Algorithm 1.

Throughout this paper, we only discuss Algorithm 1. In the following section, we will concentrate on its global
convergence.

3. Global convergence

Let Ω be the level set defined by

Ω = {x |‖g(x)‖ ≤ ‖g(x0)‖}. (3.1)

In order to get the global convergence of Algorithm 1, we need the following assumptions.

Assumption A. (i) g is continuously differentiable on an open convex set Ω1 containing Ω .
(ii) The Jaconbian of g is symmetric, bounded and positive definite on Ω1, i.e., there exist positive constants

M ≥ m > 0 such that

‖∇g(x)‖ ≤ M ∀x ∈ Ω1 (3.2)

and

m‖d‖
2

≤ dT
∇g(x)d ∀x ∈ Ω1, d ∈ Rn . (3.3)

Remark b. (1) Conditions (ii) in Assumption A imply that there exist constants M ≥ m > 0 such that

m‖d‖ ≤ ‖∇g(x)d‖ ≤ M‖d‖ ∀x ∈ Ω1, d ∈ Rn, (3.4)

1
M

‖d‖ ≤ ‖∇g(x)−1d‖ ≤
1
m

‖d‖ ∀x ∈ Ω1, d ∈ Rn, (3.5)

m‖x − y‖ ≤ ‖g(x) − g(y)‖ ≤ M‖x − y‖ ∀x, y ∈ Ω1. (3.6)

In particular, for all x ∈ Ω1, we have

m‖x − x∗
‖ ≤ ‖g(x)‖ = ‖g(x) − g(x∗)‖ ≤ M‖x − x∗

‖, (3.7)

where x∗ stands for the unique solution of (1.1) in Ω1.

Since Bk approximates ∇gk along direction sk , we can give the following assumption.

Assumption B. Bk is a good approximation to ∇gk , i.e.,

‖(∇gk − Bk)dk‖ ≤ ε‖gk‖, (3.8)

where ε ∈ (0, 1) is a small quantity.

Lemma 3.1. Let Assumption B hold, and {αk, dk, xk+1, gk+1} be generated by Algorithm 1. Then dk is a descent
direction for θ(x) at xk , i.e.,

∇θ(xk)
Tdk < 0. (3.9)

Proof. By (2.1), we have

∇θ(xk)
Tdk = g(xk)

T
∇g(xk)dk

= g(xk)
T
[(∇g(xk) − Bk)dk − g(xk)]

= g(xk)
T(∇g(xk) − Bk)dk − g(xk)

Tg(xk). (3.10)

Therefore, taking the norm on the right-hand-side of (3.10), we have from (3.8) that

∇θ(xk)
Tdk ≤ ‖g(xk)‖‖(∇g(xk) − Bk)dk‖ − ‖g(xk)‖

2
≤ −(1 − ε)‖g(xk)‖

2. (3.11)

Hence, for ε ∈ (0, 1), this lemma is true. �

G. Yuan, X. Lu / Computers and Mathematics with Applications 55 (2008) 116–129 119

By the above lemma, we can deduce that the norm function θ(x) is descent along dk , which means that
‖gk+1‖ ≤ ‖gk‖ is true.

Lemma 3.2. Let Assumption B hold and {αk, dk, xk+1, gk+1} be generated by Algorithm 1. Then {xk} ⊂ Ω . Moreover,
{‖gk‖} converges.

Proof. By Lemma 3.1, we have ‖gk+1‖ ≤ ‖gk‖. Then we conclude from Lemma 3.3 in [19] that {‖gk‖} converges.
Moreover, we have for all k

‖gk+1‖ ≤ ‖gk‖ ≤ ‖gk−1‖ ≤ · · · ≤ ‖g(x0)‖.

This implies that {xk} ⊂ Ω . �

Lemma 3.3. Let Assumption A be satisfied and {αk, dk, xk+1, gk+1} be generated by Algorithm 1. Then there exists a
constant m1 > 0 such that for all k

yk
Tsk ≥ m1‖sk‖

2. (3.12)

Proof. By the mean-value theorem, we have

yk
Tsk = sT

k (gk+1 − gk) = sT
k ∇g(ξ)sk ≥ m‖sk‖

2, (3.13)

where ξ = xk + ς1(xk+1 − xk), ς1 ∈ (0, 1); the last inequality follows from (3.3). Let m1 = m, we get (3.12). The
proof is complete. �

Using yT
k sk ≥ m1‖sk‖

2 > 0, Bk+1 is always generated by the update formula (1.4), and we can deduce that Bk+1
inherits symmetric and positive definiteness of Bk . Then, (2.1) has a unique solution for each k. By the above lemma
and (3.6), we obtain

sT
k yk

‖sk‖
2 ≥ m,

‖yk‖
2

sT
k yk

≤
M2

m
. (3.14)

Lemma 3.4 (Theorem 2.1 in [1]). Let Bk be updated by BFGS formula (1.4), and let B0 be symmetric and positive
definite. For any k ≥ 0, sk and yk such that (3.14). Then there exist positive constants β1, β2 and β3 such that, for any
positive integer k′

β2‖dk‖
2

≤ dT
k Bkdk ≤ β3‖dk‖

2, ‖Bkdk‖ ≤ β1‖dk‖ (3.15)

hold for at least dk′/2e value of k ∈ {1, 2, . . . , k′
}.

According to Lemma 3.4, we can get

β2‖dk‖ ≤ ‖Bkdk‖ ≤ β1‖dk‖ (3.16)

and

gT
k dk = −dT

k Bkdk ≤ −β2‖dk‖
2, −β3‖dk‖

2
≤ −dT

k Bkdk = gT
k dk . (3.17)

Lemma 3.5. Let Assumptions A and B hold. Then Algorithm 1 will produce an iterate xk+1 = xk + αkdk in a finite
number of backtracking steps.

Proof. From Lemma 3.8 in [18], we have that in a finite number of backtracking steps, αk must satisfy

‖g(xk + αkdk)‖
2
− ‖g(xk)‖

2
≤ σαk g(xk)

T
∇g(xk)dk . (3.18)

120 G. Yuan, X. Lu / Computers and Mathematics with Applications 55 (2008) 116–129

By (3.11), (3.16), (3.17) and (2.1), we get

αk g(xk)
T
∇g(xk)dk ≤ −αk(1 − ε)‖g(xk)‖

2

= −αk(1 − ε)
gT

k dk

gT
k dk

‖Bkdk‖
2

≤ αk(1 − ε)
β2

2

β3
gT

k dk . (3.19)

By αk ≤ 1, we have

αk g(xk)
T
∇g(xk)dk ≤ αk(1 − ε)

β2
2

β3
gT

k dk ≤ α2
k (1 − ε)

β2
2

β3
gT

k dk . (3.20)

Let δ ∈ (0, min{1, σ (1 − ε)
β2

2
β3

}), then we get the line search (1.6). Thus we conclude the result of this lemma. The
proof is complete. �

Lemma 3.5 shows that the line search technique (1.6) is well-defined. Now we establish the global convergence
theorem for Algorithm 1.

Theorem 3.1. Let Assumptions A and B hold, and {αk, dk, xk+1, gk+1} be generated by Algorithm 1. Then

lim
k→∞

‖gk‖ = 0. (3.21)

Proof. By the acceptance rule (1.6) and (3.17), we have

‖g(xk+1)‖
2
− ‖g(xk)‖

2
≤ δα2

k gT
k dk ≤ −β2δ‖αkdk‖

2. (3.22)

By Lemma 3.2, {‖gk‖} is convergent. We obtain from (3.22) that

lim
k→∞

‖αkdk‖
2

= 0. (3.23)

This means that either

lim
k→∞

‖dk‖ = 0 (3.24)

or

lim
k→∞

αk = 0. (3.25)

If Eq. (3.24) holds, we have that from (2.1) and (3.16),

‖gk‖ = ‖Bkdk‖ ≤ β1‖dk‖ → 0. (3.26)

Then we get (3.21). If (3.25) holds, then acceptance rule (1.6) means that, for large enough k,∥∥∥g
(

xk +
αk

r
dk

)∥∥∥2
− ‖g(xk)‖

2 > δ
α2

k

r2 gT
k dk . (3.27)

Since ∥∥∥g
(

xk +
αk

r
dk

)∥∥∥2
− ‖g(xk)‖

2
= 2

αk

r
gT

k ∇g(xk)dk + o
(αk

r
‖dk‖

)
. (3.28)

Using this together with (3.27) and (3.19), we have(
2

δ

σ
− δ

αk

r

)
αk

r
gT

k dk + o
(αk

r
‖dk‖

)
≥ 0. (3.29)

G. Yuan, X. Lu / Computers and Mathematics with Applications 55 (2008) 116–129 121

Dividing (3.29) by αk
r ‖dk‖ and noting that 2 δ

σ
− δ

αk
r > 0 and gT

k dk ≤ 0, we get

lim
k→∞

gT
k dk

‖dk‖
= 0. (3.30)

Using (3.17), (3.30) implies (3.24) and therefore the conclusion of the theorem is true. �

By Lemma 3.2, {‖gk‖} converges. So, if (3.21) holds, then every accumulation point of {xk} is a solution of (1.1).
Since ∇g(x) is positive definite on Ω1, (1.1) has only one solution. Moreover, since Ω is bounded, {xk} ∈ Ω has at
least one accumulation point. Therefore {xk} itself converges to the unique solution x∗ of (1.1).

4. Superlinear convergence

In order to obtain the superlinear convergence of Algorithm 1, we also need the following assumption.

Assumption C. ∇g is Hölder continuous at x∗, i.e., there are positive constants M3 and γ such that for every x in a
neighborhood of x∗

‖∇g(x) − ∇g(x∗)‖ ≤ M3‖x − x∗
‖
γ . (4.1)

In the rest of the paper, we abbreviate g(x∗) and ∇g(x∗) as g∗ and ∇g∗, respectively.

Lemma 4.1. Let Assumption A hold. If

lim
k→0

‖(Bk − ∇g∗)dk‖

‖dk‖
= 0, (4.2)

then αk ≡ 1 for all k sufficiently large. Moreover, {xk} converges superlinearly.

Proof. Let

ηk =
‖(Bk − ∇g∗)dk‖

‖dk‖
. (4.3)

By (1.3) and (3.16), we have

‖dk‖ = ‖B−1
k gk‖ ≤

1
β2

‖gk‖. (4.4)

Using (1.3) again, we get

∇g∗(xk + dk − x∗) = ∇g∗(xk − x∗) + ∇g∗dk

= ∇g∗(xk − x∗) − gk + (∇g∗ − Bk)dk

= ∇g∗(xk − x∗) − (gk − g∗) + (∇g∗ − Bk)dk

= (∇g∗ − G ′

k)(xk − x∗) + (∇g∗ − Bk)dk

where G ′

k =
∫ 1

0 ∇g(x∗
+ τ(xk − x∗))dτ . It follows that

‖∇g∗(xk + dk − x∗)‖ ≤ ‖(∇g∗ − G ′

k)(xk − x∗)‖ + ‖(∇g∗ − Bk)dk‖

= ‖(∇g∗ − G ′

k)(xk − x∗)‖ + ηk‖dk‖

≤ ‖∇g∗ − G ′

k‖‖xk − x∗
‖ + ηk

1
β2

‖gk‖

≤ ‖∇g∗ − G ′

k‖‖xk − x∗
‖ + ηk

1
β2

M‖xk − x∗‖

= ηk
1
β2

M‖xk − x∗‖ + o(‖xk − x∗‖), (4.5)

122 G. Yuan, X. Lu / Computers and Mathematics with Applications 55 (2008) 116–129

where the second inequality follows (4.4) and the last inequality follows (3.7). Since ηk → 0 and ∇g∗ is positive,
(4.5) implies

‖xk + dk − x∗
‖

‖xk − x∗‖
→ 0. (4.6)

Moreover, we have

‖g(xk + dk)‖ = ‖g(xk + dk) − g∗‖

≤ M‖xk + dk − x∗
‖

=
M

m

‖xk + dk − x∗
‖

‖xk − x∗‖
m‖xk − x∗

‖

≤
M

m

‖xk + dk − x∗
‖

‖xk − x∗‖
‖gk‖, (4.7)

where the first and the last inequality follow (3.7). Combining (4.6) and (4.7), we obtain that (2.2) is satisfied for all
k sufficiently large. This means the unit step-length is always accepted for all k sufficiently large. Moreover, (4.6)
implies the superlinear convergence of {xk}. �

The lemma shows that the Dennis–Moré condition (4.2) [19,20] ensures the superlinear convergence of
Algorithm 1.

Lemma 4.2. Let Assumptions A and B hold. If αk 6= 1, then we have the following estimate for αk when k is
sufficiently large:

1 ≥ αk ≥ ε0, ε0 ∈ (0, 1). (4.8)

Proof. Since αk 6= 1, the step-size αk was determined by Step 3 of Algorithm 1. Then α′

k =
αk
r did not satisfy (1.6),

i.e.,

‖g(xk + α′

kdk)‖
2
− ‖g(xk)‖

2 > δα′
2

k gT
k dk,

This means that

−δα′
2

k gT
k dk > ‖g(xk)‖

2
− ‖g(xk + α′

kdk)‖
2. (4.9)

By (3.28), (3.10), (3.11) and (3.16), we have

‖g(xk)‖
2
− ‖g(xk + α′

kdk)‖
2

= −2α′

k gT
k ∇g(xk)dk + o(α′

k‖dk‖)

≥ 2α′

k(1 − ε)‖gk‖
2
+ o(α′

k‖dk‖)

≥ α′

kβ
2
2 (1 − ε)‖dk‖

2
+ o(α′

k‖dk‖). (4.10)

Combining (4.9), (4.10) and (3.17), we obtain

α′
2

k (2β2
2 (1 − ε) + δβ3)‖dk‖

2
= 2α′

2

k β2
2 (1 − ε)‖dk‖

2
+ δα′

2

k β3‖dk‖
2

≥ 2α′
2

k β2
2 (1 − ε)‖dk‖

2
− δα′

2

k gT
k dk

> ‖g(xk)‖
2
− ‖g(xk + α′

kdk)‖
2

≥ α′

kβ
2
2 (1 − ε)‖dk‖

2
+ o(α′

k‖dk‖), (4.11)

which means that for all k sufficiently large,

α′

k ≥
β2

2 (1 − ε)

2β2
2 (1 − ε) + δβ3

.

Let ε0 ∈ (0,
β2

2 (1−ε)r

2β2
2 (1−ε)+δβ3

). Then we complete the proof of this lemma. �

G. Yuan, X. Lu / Computers and Mathematics with Applications 55 (2008) 116–129 123

Lemma 4.3. Let Assumptions A and B hold. Then, for any fixed γ > 0, we have

∞∑
k=0

‖xk − x∗
‖
γ < ∞. (4.12)

Moreover, we have

∞∑
k=0

χk(γ) < ∞, (4.13)

where χk(γ) = max{‖xk − x∗
‖
γ , ‖xk+1 − x∗

‖
γ
}.

Proof. First, we show that there exists an index i0 and a constant ρ0 ∈ (0, 1) such that

‖g(xi+1)‖
2

≤ ρ0‖gi‖
2, ∀i ≥ i0. (4.14)

If the step-length αi is determined by Step 2 of Algorithm 1, we have

‖gi+1‖
2

≤ ρ2
‖gi‖

2. (4.15)

On the other hand, if αi is determined by Step 3 of Algorithm 1, then (1.6) is satisfied with k = i . Using Lemma 4.2,
(1.6), (3.16) and (3.17), we obtain

‖gi+1‖
2

≤ ‖gi‖
2
+ δα2

i gT
i di

≤ ‖gi‖
2
− δε2

0β2‖di‖
2

= ‖gi‖
2
− δε2

0β2
β2

1

β2
1

‖di‖
2

≤ ‖gi‖
2
− δε2

0β2
1

β2
1

‖gi‖
2. (4.16)

Then there exists a constant ρ′
∈ (0, 1) such that 1 − δε2

0β2
1
β2

1
≤ ρ′ holds for all i ≥ i0. Let ρ0 = min{ρ2, ρ′

}.

Therefore, (4.14) follows (4.15) and (4.16).
Let J denote the set of indices i for which (4.14) holds. Also, let hk denote the number of indices in J not exceeding

k. Then we have hk ≥ k − i0 for each k. Multiplying (4.14) for i ∈ J and (4.16) for i 6∈ J from i = i0 to i = k yields

‖gk+1‖
2

≤

k∏
i=i0,i 6∈J

ρ
hk
0 ‖g(xi0)‖

2

≤

k∏
i=0

ρ
k−i0
0 ‖g(xi0)‖

2

≤ ρ
k−(i0+1)
0 ‖g(xi0)‖

2

= c1ρ
k
0 ,

where c1 = ρ
−(i0+1)
0 ‖g(xi0)‖

2. This, together with (3.7), shows that ‖xk+1 − x∗
‖

2
≤ m−2c1ρ

k
0 holds for all k large

enough. Hence we have (4.12) for any γ .
Notice that χk(γ) ≤ ‖xk − x∗

‖
γ

+ ‖xk+1 − x∗
‖
γ , and from (4.12), we can get (4.13). �

Lemma 4.4. Let Assumptions A–C hold. Then, for all k sufficiently large, there exists a positive constant M4 such
that

‖yk − ∇g(x∗)sk‖ ≤ M4χk‖sk‖, (4.17)

where χk = max{‖xk − x∗
‖
γ , ‖xk+1 − x∗

‖
γ
}.

124 G. Yuan, X. Lu / Computers and Mathematics with Applications 55 (2008) 116–129

Proof. Since xk → x∗, (4.1) holds for all k large enough. For all k sufficiently large, using the mean value theorem
we have

‖yk − ∇g(x∗)sk‖ = ‖∇g(xk + t0(xk+1 − xk))sk − ∇g(x∗)sk‖

≤ ‖∇g(xk + t0(xk+1 − xk)) − ∇g(x∗)‖‖sk‖

≤ M3‖xk + t0(xk+1 − xk) − x∗
‖
γ
‖sk‖

≤ M4χk‖sk‖, (4.18)

where M4 = M3(2t0 + 1), t0 ∈ (0, 1). Therefore, the inequality of (4.17) holds. �

Denote Q = ∇g∗
−1/2. For an n × n matrix K , define a matrix norm ‖K‖Q,F = ‖QT K Q‖F , where ‖.‖F denotes

the Frobenius norm of the matrix. We let Hk and Hk+1 stand for the inverse matrices of Bk and Bk+1, respectively.

Lemma 4.5. Let Assumptions A–C hold. Then, there are positive constants ei , i = 1, 2, 3, 4, and η ∈ (0, 1) such that
for all large k,

‖Bk+1 − ∇g(x∗)‖Q,F ≤ (1 + e1χk)‖Bk − ∇g(x∗)‖Q,F + e2χk (4.19)

and

‖Hk+1 − ∇g(x∗)−1
‖Q−1,F ≤ (

√
1 − η$ 2

k + e3χk)‖Hk − ∇g(x∗)−1
‖Q−1,F + e4χk, (4.20)

where $k is defined as follows:

$k =
‖Q−1(Hk − ∇g(x∗)−1)yk‖

‖Hk − ∇g(x∗)−1‖Q−1,F‖Qyk‖
. (4.21)

In particular, {‖Bk‖}F and {‖Hk‖}F are bounded.

Proof. From the BFGS update formula (1.4), we have

‖Bk+1 − ∇g(x∗)‖Q,F =

∥∥∥∥∥Bk − ∇g(x∗) +
BksksT

k Bk

sT
k Bksk

+
yk yT

k

sT
k yk

∥∥∥∥∥
Q,F

≤ (1 + e1τk)‖Bk − ∇g(x∗)‖Q,F + e2χk,

where the last inequality follows the inequality (49) of [6]. Hence, (4.19) holds.
By (4.17), in a way similar to that of [19], we can prove that (4.20) holds and that ‖Bk‖ and ‖Hk‖ are bounded.

The proof is complete. �

Theorem 4.1. Let {xk} be generated by Algorithm 1 and let the conditions in Assumptions A–C hold. Then

lim
k→∞

‖(Bk − ∇g(x∗))sk‖

‖sk‖
= 0. (4.22)

Moreover, {xk} converges superlinearly and αk ≡ 1 for all k sufficiently large.

Proof. In a similar way to [19], it’s not difficult to get

lim
k→∞

‖Q−1(Hk − ∇g(x∗)−1)yk‖

‖Qyk‖
= 0. (4.23)

On the other hand, we obtain

‖Q−1(Hk − ∇g(x∗)−1)yk‖ = ‖Q−1 Hk(∇g(x∗) − Bk)∇g(x∗)−1 yk‖

≥ ‖Q−1 Hk(∇g(x∗) − Bk)sk‖ − ‖Q−1 Hk(∇g(x∗) − Bk)(sk − ∇g(x∗)−1 yk)‖

≥ ‖Q−1 Hk(∇g(x∗) − Bk)sk‖

− ‖Q−1
‖‖Hk‖(‖∇g(x∗)‖ + ‖Bk‖)‖∇g(x∗)−1(yk − ∇g(x∗)sk)‖

≥ ‖Q−1 Hk(∇g(x∗) − Bk)sk‖

G. Yuan, X. Lu / Computers and Mathematics with Applications 55 (2008) 116–129 125

− M2χk‖Q−1
‖‖Hk‖(‖∇g(x∗)‖ + ‖Bk‖)‖∇g(x∗)−1

‖‖sk‖

= ‖Q−1 Hk(∇g(x∗) − Bk)sk‖ − o(‖sk‖),

where the last inequality follows from (4.17). We know {‖Bk‖} and {‖Hk‖} are bounded and {Hk} is positive definite.
By (3.6), we get

‖Qyk‖ ≤ M‖Q‖‖sk‖. (4.24)

Combining this with (4.23) and (4.24), we conclude that (4.22) holds. In view of Lemma 4.1, the proof of this theorem
is complete. �

5. Numerical results

In this section, we report results of some preliminary numerical experiments with the two algorithms.

Problem 1. The discretized two-point boundary value problem such as the problem in [21]

g(x) , Ax +
1

(n + 1)2 F(x) = 0,

where A is the n × n tridiagonal matrix given by

A =

8 −1
−1 8 −1

−1 8 −1
. . .

. . .
. . .

. . .
. . . −1
−1 8

,

and F(x) = (F1(x), F2(x), . . . , Fn(x))T with Fi (x) = sin xi − 1, i = 1, 2, . . . , n.

Problem 2. Unconstrained optimization problem

min f (x), x ∈ Rn,

with Engval function [22] f : Rn
→ R defined by

f (x) =

n∑
i=2

[(x2
i−1 + x2

i)2
− 4xi−1 + 3].

The related symmetric nonlinear equation is

g(x) ,
1
4
∇ f (x) = 0,

where g(x) = (g1(x), g2(x), . . . , gn(x))T with

g1(x) = x1(x2
1 + x2

2) − 1,

gi (x) = xi (x2
i−1 + 2x2

i + x2
i+1) − 1, i = 2, 3, . . . , n − 1,

gn(x) = xn(x2
n−1 + x2

n).

In the experiments, the parameters in Algorithms 1 and 2 were chosen as r = 0.1, ρ = 0.5, δ = 0.9, σ = 0.95, B0
is the unit matrix. For the Problem 2, we take one technique in finding the stepsize αk , which is that the stepsize αk will
be accepted if the searching time is larger than fifteen in the inner circle. The program was coded in MATLAB 7.0.1.
We stopped the iteration when the condition ‖F(x)‖ ≤ 10−6 was satisfied. The columns of Tables 1–8 have the
following meaning:

x0: the starting point.
Dim: the dimension of the problem.

126 G. Yuan, X. Lu / Computers and Mathematics with Applications 55 (2008) 116–129

Table 1
Test results for small-scale Problem 1 (Test results for Algorithm 1)

x0 (10, . . . ,10) (30, . . . ,30) (−10, . . . ,−10) (−30, . . . ,−30) (−300, . . . ,−300)

Dim NI/NG/GF NI/NG/GF NI/NG/GF NI/NG/GF NI/NG/GF

n = 9 14/18/7.879692e−008 14/18/1.993201e−007 14/18/7.889470e−008 14/18/1.994682e−007 16/20/5.176458e−007

n = 45 47/83/6.173797e−008 47/83/1.852692e−007 47/83/6.173597e−008 47/83/1.852415e−007 48/83/2.650969e−007

n = 95 87/168/3.614283e−007 88/170/6.212520e−007 87/168/3.614297e−007 88/170/6.212528e−007 89/170/9.001837e−007

x0 (10, 0, 10, 0, . . .) (30, 0, 30, 0, . . .) (−10, 0, −10, 0, . . .) (−30, 0, −30, 0, . . .) (−300, 0, −300, 0, . . .)

Dim NI/NG/GF NI/NG/GF NI/NG/GF NI/NG/GF NI/NG/GF

n = 9 14/17/3.905388e−008 14/17/1.304219e−007 14/17/3.972696e−008 14/17/1.325971e−007 16/21/9.219813e−007

n = 45 45/80/3.991382e−007 46/80/3.528174e−008 45/80/3.992002e−007 46/80/3.526862e−008 46/80/3.505431e−007

n = 95 82/155/8.651499e−007 84/157/5.596651e−007 82/155/8.651552e−007 84/157/5.596663e−007 86/159/8.210399e−007

x0 (10, −10, 10, −10,
. . .)

(30, −30, 30, −30,
. . .)

(10, −10, 10, −10,
. . .)

(30, −30, 30, −30,
. . .)

(300, −300, 300, −300, . . .)

Dim NI/NG/GF NI/NG/GF NI/NG/GF NI/NG/GF NI/NG/GF

n = 9 13/16/2.467412e−007 13/16/7.416507e−007 13/16/2.540474e−007 13/16/7.490320e−007 14/16/7.042643e−007

n = 45 44/77/2.360594e−007 44/77/7.062676e−007 44/77/2.343698e−007 44/77/7.045795e−007 45/77/2.902385e−007

n = 95 80/155/5.860856e−007 82/157/4.104328e−007 80/155/5.867282e−007 82/157/4.106177e−007 84/159/6.296641e−007

Table 2
Test results for small-scale Problem 1 (Test results for Algorithm 2)

x0 (10, . . . , 10) (30, . . . , 30) (−10, . . . , −10) (−30, . . . , −30) (−300, . . . , −300)

Dim NI/NG/GF NI/NG/GF NI/NG/GF NI/NG/GF NI/NG/GF

n = 9 14/19/7.280334e−008 14/19/2.127969e−007 14/19/7.292168e−008 14/19/2.129578e−007 17/23/6.576030e−007

n = 45 47/85/8.178643e−008 47/85/2.453743e−007 47/85/8.178272e−008 47/85/2.453736e−007 48/85/1.226699e−007

n = 95 90/175/1.656006e−007 90/175/4.967783e−007 90/175/1.656012e−007 90/175/4.967789e−007 92/177/1.319851e−007

x0 (10, 0, 10, 0, . . .) (30, 0, 30, 0, . . .) (−10, 0, −10, 0, . . .) (−30, 0, −30, 0, . . .) (−300, 0, −300, 0, . . .)

Dim NI/NG/GF NI/NG/GF NI/NG/GF NI/NG/GF NI/NG/GF

n = 9 14/17/3.905388e−008 14/17/1.304219e−007 14/17/3.972696e−008 14/17/1.325971e−007 16/21/9.219813e−007

n = 45 46/85/9.015149e−007 47/85/2.707176e−007 46/85/9.015441e−007 47/85/2.878560e−007 48/87/9.358423e−007

n = 95 86/169/9.643953e−007 87/169/6.204024e−007 86/169/9.643939e−007 87/169/6.204024e−007 89/171/5.471261e−007

x0 (10, −10, 10, −10,
. . .)

(30, −30, 30, −30,
. . .)

(10, −10, 10, −10,
. . .)

(30, −30, 30, −30,
. . .)

(300, −300, 300, −300, . . .)

Dim NI/NG/GF NI/NG/GF NI/NG/GF NI/NG/GF NI/NG/GF

n = 9 13/17/2.215423e−007 13/17/6.590841e−007 13/17/2.169937e−007 13/17/6.545964e−007 14/17/6.334122e−007

n = 45 44/81/2.328138e−007 44/81/6.982990e−007 44/81/2.327392e−007 44/81/6.982242e−007 45/81/2.972791e−007

n = 95 80/159/5.785503e−007 82/161/4.056331e−007 80/159/5.788913e−007 82/161/4.057626e−007 84/163/6.228919e−007

NI: the total number of iterations.

NG: the number of the function evaluations.

GF: the function norm evaluations.

The numerical results indicate that the proposed method performs better than Algorithm 2 for Problems 1 and 2
from the tables. Moreover, the starting points and the inverse initial points don’t influence the performance of the two
Algorithms for Problem 1. The number of the iterations and the function iterations on Algorithm 1 are less than those
on Algorithm 2. However, we find that the numerical results of the two algorithms are not so good if the starting points
are large for Problem 2 in the experiment.

G. Yuan, X. Lu / Computers and Mathematics with Applications 55 (2008) 116–129 127

Table 3
Test results for large-scale Problem 1 (Test results for Algorithm 1)

x0 (10, . . . , 10) (30, . . . , 30) (−10, . . . , −10) (−30, . . . , −30) (−300, . . . , −300)

Dim NI/NG/GF NI/NG/GF NI/NG/GF NI/NG/GF NI/NG/GF

n = 300 97/193/8.917331e−007 102/203/9.269283e−007 97/193/8.917333e−007 102/203/9.269284e−007 115/229/7.744250e−007

n = 700 96/189/8.112812e−007 101/199/9.434648e−007 96/189/8.112812e−007 101/199/9.434648e−007 113/223/9.157224e−007

x0 (10, 0, 10, 0, . . .) (30, 0, 30, 0, . . .) (−10, 0, −10, 0, . . .) (−30, 0, −30, 0, . . .) (−300, 0, −300, 0, . . .)

Dim NI/NG/GF NI/NG/GF NI/NG/GF NI/NG/GF NI/NG/GF

n = 300 88/175/8.188536e−007 94/186/9.230209e−007 88/175/8.188541e−007 94/186/9.230211e−007 106/210/9.029710e−007

n = 700 88/174/8.425363e−007 94/186/8.855595e−007 88/174/8.425364e−007 94/186/8.855596e−007 106/210/8.638554e−007

x0 (10, −10, 10, −10,
. . .)

(30, −30, 30, −30,
. . .)

(10, −10, 10, −10,
. . .)

(30, −30, 30, −30,
. . .)

(300, −300, 300, −300, . . .)

Dim NI/NG/GF NI/NG/GF NI/NG/GF NI/NG/GF NI/NG/GF

n = 300 79/158/9.585768e−007 85/170/8.990782e−007 79/158/9.585768e−007 85/170/8.990782e−007 97/193/9.395395e−007

n = 700 79/158/9.327258e−007 85/170/8.786763e−007 79/158/9.327258e−007 85/170/8.786763e−007 97/193/9.210128e−007

Table 4
Test results for large-scale Problem 1 (Test results for Algorithm 2)

x0 (10, . . . , 10) (30, . . . , 30) (−10, . . . , −10) (−30, . . . , −30) (−300, . . . , −300)

Dim NI/NG/GF NI/NG/GF NI/NG/GF NI/NG/GF NI/NG/GF

n = 300 97/193/8.917331e−007 102/203/9.269283e−007 97/193/8.917333e−007 102/203/9.269284e−007 115/229/7.744250e−007

n = 700 95/189/9.681355e−007 101/201/8.682123e−007 95/189/9.681356e−007 101/201/8.682123e−007 113/225/8.413398e−007

x0 (10, 0, 10, 0, . . .) (30, 0, 30, 0, . . .) (−10, 0, −10, 0, . . .) (−30, 0, −30, 0, . . .) (−300, 0, −300, 0, . . .)

Dim NI/NG/GF NI/NG/GF NI/NG/GF NI/NG/GF NI/NG/GF

n = 300 88/175/8.188536e−007 94/187/8.610052e−007 88/175/8.188541e−007 94/187/8.610054e−007 106/211/8.381249e−007

n = 700 87/173/9.805530e−007 93/185/9.548218e−007 87/173/9.805532e−007 93/185/9.548219e−007 105/209/9.557750e−007

x0 (10, −10, 10, −10,
. . .)

(30, −30, 30, −30,
. . .)

(10, −10, 10, −10,
. . .)

(30, −30, 30, −30,
. . .)

(300, −300, 300, −300, . . .)

Dim NI/NG/GF NI/NG/GF NI/NG/GF NI/NG/GF NI/NG/GF

n = 300 80/161/7.762464e−007 85/171/9.460917e−007 80/161/7.762464e−007 85/171/9.460917e−007 97/195/9.201093e−007

n = 700 79/159/9.726889e−007 85/171/9.110739e−007 79/159/9.726889e−007 85/171/9.110739e−007 97/195/8.882303e−007

Table 5
Test results for small-scale Problem 2 (Test results for Algorithm 1)

x0 (0.01, . . . , 0.01) (0.1, . . . , 0.1) (0.5, . . . , 0.5) (−0.01, . . . , −0.01) (−0.1, . . . , −0.1)

Dim NI/NG/GF NI/NG/GF NI/NG/GF NI/NG/GF NI/NG/GF

n = 9 21/148/4.506782e−007 21/148/9.113969e−007 18/117/7.546387e−008 21/148/3.984029e−007 20/119/3.168731e−007

n = 45 45/340/4.376572e−007 43/338/5.855291e−007 35/274/9.742033e−007 45/340/4.826550e−007 43/338/8.673252e−007

n = 95 43/324/6.907839e−007 43/324/5.262386e−007 37/290/7.376250e−007 43/324/8.591994e−007 45/340/4.261069e−007

x0 (0.01, 0, 0.01, 0, . . .) (0.1, 0, 0.1, 0, . . .) (0.5, 0, 0.5, 0, . . .) (−0.01, 0, −0.01, 0, . . .) (−0.1, 0, −0.1, 0, . . .)

Dim NI/NG/GF NI/NG/GF NI/NG/GF NI/NG/GF NI/NG/GF

n = 9 21/120/4.980854e−007 22/121/1.563643e−007 20/133/9.367519e−008 21/134/2.988128e−007 21/148/7.952513e−007

n = 45 45/340/4.319686e−007 41/322/5.175941e−007 39/306/7.642885e−007 45/340/5.040646e−007 45/354/7.728349e−007

n = 95 43/324/6.756781e−007 43/324/5.053860e−007 43/324/4.823266e−007 43/324/8.202966e−007 45/340/6.921257e−007

128 G. Yuan, X. Lu / Computers and Mathematics with Applications 55 (2008) 116–129

Table 6
Test results for small-scale Problem 2 (Test results for Algorithm 2)

x0 (0.01, . . . , 0.01) (0.1, . . . , 0.1) (0.5, . . . , 0.5) (−0.01, . . . , −0.01) (−0.1, . . . , −0.1)

Dim NI/NG/GF NI/NG/GF NI/NG/GF NI/NG/GF NI/NG/GF
n = 9 21/316/4.506782e−007 21/316/9.113969e−007 18/271/7.546387e−008 21/316/3.984029e−007 20/301/3.168731e−007
n = 45 45/676/4.376572e−007 43/646/5.855291e−007 35/526/9.742033e−007 45/676/4.826550e−007 43/646/8.673252e−007
n = 95 43/646/6.907839e−007 43/646/5.262386e−007 37/556/7.376250e−007 43/646/8.591994e−007 45/676/4.261069e−007

x0 (0.01, 0, 0.01, 0, . . .) (0.1, 0, 0.1, 0, . . .) (0.5, 0, 0.5, 0, . . .) (−0.01, 0, −0.01, 0, . . .) (−0.1, 0, −0.1, 0, . . .)

Dim NI/NG/GF NI/NG/GF NI/NG/GF NI/NG/GF NI/NG/GF
n = 9 21/316/4.980854e−007 22/331/1.563643e−007 20/301/9.367519e−008 21/316/2.988128e−007 21/316/7.952513e−007
n = 45 45/676/4.319686e−007 41/616/5.175941e−007 39/586/7.642885e−007 45/676/5.040646e−007 45/676/7.728349e−007
n = 95 43/646/6.756781e−007 43/646/5.053860e−007 43/646/4.823266e−007 43/646/8.202966e−007 45/676/6.921257e−007

Table 7
Test results for large-scale Problem 2 (Test results for Algorithm 1)

x0 (0.01, . . . , 0.01) (0.1, . . . , 0.1) (0.5, . . . , 0.5) (−0.01, . . . , −0.01) (−0.1, . . . , −0.1)

Dim NI/NG/GF NI/NG/GF NI/NG/GF NI/NG/GF NI/NG/GF
n = 300 45/340/4.258015e−007 43/324/5.101157e−007 41/322/4.955111e−007 45/340/4.751995e−007 45/340/5.346625e−007
n = 700 45/340/9.111422e−007 46/341/6.231190e−007 43/338/5.600939e−007 45/340/9.062300e−007 47/370/4.749276e−007

x0 (0.01, 0, 0.01, 0, . . .) (0.1, 0, 0.1, 0, . . .) (0.5, 0, 0.5, 0, . . .) (−0.01, 0, −0.01, 0,
. . .)

(−0.1, 0, −0.1, 0, . . .)

Dim NI/NG/GF NI/NG/GF NI/NG/GF NI/NG/GF NI/NG/GF
n = 300 45/340/4.331731e−007 45/340/5.138086e−007 43/338/8.468113e−007 45/340/4.637890e−007 45/340/5.301334e−007
n = 700 45/340/8.771359e−007 43/324/8.721209e−007 43/324/6.196297e−007 45/340/9.798305e−007 46/355/4.514799e−007

Table 8
Test results for large-scale Problem 2 (Test results for Algorithm 2)

x0 (0.01, . . . , 0.01) (0.1, . . . , 0.1) (0.5, . . . , 0.5) (−0.01, . . . , −0.01) (−0.1, . . . , −0.1)

Dim NI/NG/GF NI/NG/GF NI/NG/GF NI/NG/GF NI/NG/GF
n = 300 45/676/4.258015e−007 43/646/5.101157e−007 41/616/4.955111e−007 45/676/4.751995e−007 45/676/5.346625e−007
n = 700 45/676/9.111422e−007 46/691/6.231190e−007 43/646/5.600939e−007 45/676/9.062300e−007 47/706/4.749276e−007

x0 (0.01, 0, 0.01, 0, . . .) (0.1, 0, 0.1, 0, . . .) (0.5, 0, 0.5, 0, . . .) (−0.01, 0, −0.01, 0,
. . .)

(−0.1, 0, −0.1, 0, . . .)

Dim NI/NG/GF NI/NG/GF NI/NG/GF NI/NG/GF NI/NG/GF
n = 300 45/676/4.331731e−007 45/676/5.138086e−007 43/646/8.468113e−007 45/676/4.637890e−007 45/676/5.301334e−007
n = 700 45/676/8.771359e−007 43/646/8.721209e−007 43/646/6.196297e−007 45/676/9.798305e−007 46/691/4.514799e−007

6. Conclusion

A new inexact backtracking line search technique is proposed for solving symmetric nonlinear equations in this
paper, which can ensure that the search direction is descending for the norm function. The method possesses global
and superlinear convergence, and the numerical results show that the method is successful for the test problems. We
hope the method can be a further topic for the symmetric nonlinear equations.

Acknowledgement

The authors would like to thank the referees for their helpful suggestions and comments.

References

[1] R. Byrd, J. Nocedal, A tool for the analysis of quasi-Newton methods with application to unconstrained minimization, SIAM Journal on
Numerical Analysis 26 (1989) 727–739.

G. Yuan, X. Lu / Computers and Mathematics with Applications 55 (2008) 116–129 129

[2] R. Byrd, J. Nocedal, Y. Yuan, Global convergence of a class of quasi-Newton methods on convex problems, SIAM Journal on Numerical
Analysis 24 (1987) 1171–1189.

[3] Y. Dai, Convergence properties of the BFGS algorithm, SIAM Journal on Optimization 13 (2003) 693–701.
[4] J.E. Dennis, R.B. Schnabel, Numerical Methods for Unconstrained Optimization and Nonlinear Equations, Pretice-Hall, Inc., Englewood

Cliffs, NJ, 1983.
[5] R. Fletcher, Practical Methods of Optimization, 2nd ed., John Wiley & Sons, Chichester, 1987.
[6] A. Griewank, Ph.L. Toint, Local convergence analysis for partitioned quasi-Newton updates, Numerische Mathematik 39 (1982) 429–448.
[7] Y. Yuan, W. Sun, Theory and Methods of Optimization, Science Press of China, 1999.
[8] D. Li, M. Fukushima, A modified BFGS method and its global convergence in nonconvex minimization, Journal of Computational and

Applied Mathematics 129 (2001) 15–35.
[9] M.J.D. Powell, A new algorithm for unconstrained optimation, in: J.B. Rosen, O.L. Mangasarian, K. Ritter (Eds.), Nonlinear Programming,

Academic Press, New York, 1970.
[10] Z. Wei, L. Qi, X. Chen, An SQP-type method and its application in stochastic programming, Journal of Optimization Theory and Applications

116 (2003) 205–228.
[11] Z. Wei, G. Yu, G. Yuan, Z. Lian, The superlinear convergence of a modified BFGS-type method for unconstrained optimization, Computational

Optimization and Applications 29 (2004) 315–332.
[12] Z. Wei, G. Li, L. Qi, New quasi-Newton methods for unconstrained optimization problems, Applied Mathematics and Computation 175

(2006) 1156–1188.
[13] A. Griewank, The ‘global’ convergence of Broyden-like methods with a suitable line search, Journal of the Australian Mathematical Society

Series B 28 (1986) 75–92.
[14] D. Li, M. Fukushima, A global and superlinear convergent Gauss–Newton-based BFGS method for symmetric nonlinear equations, SIAM

Journal on Numerical Analysis 37 (1999) 152–172.
[15] G. Yuan, X. Li, An approximate Gauss–Newton-based BFGS method with descent directions for solving symmetric nonlinear equations, OR

Transactions 8 (4) (2004) 10–26.
[16] G. Yuan, X. Lu, A nonmonotone Gauss–Newton-based BFGS method for solving symmetric nonlinear equations, Journal of Lanzhou

University (Natural Sciences) 41 (Suppl.) (2005) 851–855.
[17] D. Zhu, Nonmonotone backtracking inexact quasi-Newton algorithms for solving smmoth nonlinear equations, Applied Mathematics and

Computation 161 (2005) 875–895.
[18] P.N. Brown, Y. Saad, Convergence theorey of nonlinear Newton–Kryloy algorithms, SIAM Journal on Optimization 4 (1994) 297–330.
[19] J.E. Dennis, J.J. Moré, A characteization of superlinear convergence and its application to quasi-Newton methods, Mathematics of

Computation 28 (1974) 549–560.
[20] J.E. Dennis Jr., J.J. Moré, Quasi-Newton methods, motivation and theory, SIAM Review 19 (1977) 46–89.
[21] J.J. Moré, B.S. Garbow, K.E. Hillstrome, Testing unconstrained optimization software, Association for Computing Machinery. Transactions

on Mathematical Software 7 (1981) 17–41.
[22] E. Yamakawa, M. Fukushima, Testing parallel bariable transformation, Computational Optimization and Applications 13 (1999) 253–274.

	A new backtracking inexact BFGS method for symmetric nonlinear equations
	Introduction
	Algorithms
	Global convergence
	Superlinear convergence
	Numerical results
	Conclusion
	Acknowledgement
	References

