OBJECTIVES: Diabetes imposes a substantial health and economic burden to patients and society. This study analyzed the lifetime health care expenditures and life years lost associated with diabetes in the United States. METHODS: Data from the National Health Interview Survey (NHIS), the NHIS linked Mortality Public-use Files, and the Medical Expenditure Panel Survey from 1997 to 2000 were used to estimate age-, race-, sex-, and urban-rural-specific (T1D and T2D) and total annual health care expenditures for both diabetics and non-diabetics. A Markov model populated by the risk estimates was used to compute life expectancy and total lifetime health care expenditures for both diabetics and non-diabetics. Similarly to OLS, the type of diabetes did not have a significant impact on the total economic burden of diabetes and the associated comorbidities and complications cr

RESULTS: Predicted life expectancy was longer for females than males and whites and other races than blacks. Predicted life expectancy for diabetics and non-diabetics consistently demonstrated an inverted U-shape for BMI across all subgroups, with highest life expectancy being for the overweight. Using U.S. adults aged 50 years as a reference group, we found that the years life years lost associated with diabetes for white females with a BMI above 40 kg/m² was 12.3 years. Black females of the same age and degree of obesity lost 11.5 years, compared to 10.2 years for white males (BMI ≥ 30) and black males (BMI ≥ 25.0). Conclusions: Our results show that obesity is associated with large decreases in life expectancy and total lifetime health care expenditures for both diabetics and non-diabetics. Similarly to OLS, the type of diabetes did not have a significant impact on the total economic burden of diabetes and the associated comorbidities and complications.

PDG36
DIFFERENTIATION OF SUGAR VALUES FROM DIFFERENT LEVELS OF CARBOHYDRATE CONTENT
Basta M., Dzumhur P. (University of Sarajevo, BiH)

OBJECTIVES: The aim of the study was to determine the parameters that influence the rate of conversion of carbohydrates in the blood and the glycemic index. METHODS: The study included 50 healthy volunteers, with a mean age of 27.6 years. The study was divided into 4 groups: A) control group, B) high-carbohydrate group, C) high-fat group, and D) high-protein group. The intervention period lasted for 12 weeks. The main outcome measure was the glycemic index, which was calculated using the formula: glycemic index = ∑(g × GI) / ∑(g × 100)

RESULTS: The results showed that the glycemic index was significantly lower in the high-carbohydrate group compared to the control group. The high-protein group also showed a lower glycemic index compared to the control group. However, the high-fat group showed a higher glycemic index compared to the control group. Conclusions: The results of this study suggest that the glycemic index can be used as a tool to assess the quality of carbohydrates in different food items. Further research is needed to determine the optimal intake of carbohydrates for different age groups and with different health conditions.

PDG48
HEALTH EQUITY OF MEDICARE CARE COSTS AMONG MEDICARE ADVANTAGE PATIENTS WITH TYPE 1 DIABETES
Clare GS, Silhauh RL, Curtis BH, Fu H, Schuster DP

OBJECTIVES: The primary objective was to estimate the national burden of diabetes in Canada for diabetic foot ulcer (DFU) for 2011. Secondary objectives included estimating the national incidence and prevalence of DFU, and the 3-year average cost for DFU incident cases. METHODS: Analyses were conducted using four national databases for the period April 1, 2006 to March 31, 2011, with cases being identified by ICD-10 CA codes. Resource utilization and costs, expressed in 2011 Canadian dollars, were estimated for DFU-related hospitalizations, emergency care (EC), same day surgeries, home care, long term care, physician visits and caregiver time losses. RESULTS: In Canada in the year 2011, DFU was attributed to 20,149 hospital admissions (408,385 days), 32,174 ER or clinic visits, 110,924 rehabilitation clinic visits, and 26,493 interventions, including 6,036 amputations and 5,796 surgeries. The total economic burden of illness (T1D) was estimated to be $37.1 billion (€22.29 billion). Of these, 54% are associated with indirect costs (95% CI €18.10 - €22.29 billion) of the disease. This study aims to determine the total direct and indirect costs associated with DFU in Canada. METHODS: We created a one-year model to estimate the total economic burden of diabetes in Canada. We estimated the direct and indirect costs of diabetes using a probabilistic approach. Direct health care costs were primarily attributed to the cost of DFU-related hospitalizations and emergency care (EC) incurred by the patients with diabetes.

PDG49
BURDEN OF ILLNESS OF DIABETIC FOOT ULCERS IN CANADA
Hopkins R, Burke N, Harlock J, Jegathisawaran J, Goeree R

OBJECTIVES: The objective of the study was to estimate the direct and indirect economic burden of Type 1 diabetes (T1D) and the associated comorbidities and complications. The study analyzed the lifetime health care expenditures and life years lost for patients with diabetes. METHODS: Data from the National Health Interview Survey (NHIS), the NHIS linked Mortality Public-use Files, and the Medical Expenditure Panel Survey from 1997 to 2000 were used to estimate age-, race-, sex-, and urban-rural-specific (T1D and T2D) and total annual health care expenditures for both diabetics and non-diabetics. A Markov model populated by the risk estimates was used to compute life expectancy and total lifetime health care expenditures for both diabetics and non-diabetics. Similarly to OLS, the type of diabetes did not have a significant impact on the total economic burden of diabetes and the associated comorbidities and complications.

RESULTS: Predicted life expectancy was longer for females than males and whites and other races than blacks. Predicted life expectancy for diabetics and non-diabetics consistently demonstrated an inverted U-shape for BMI across all subgroups, with highest life expectancy being for the overweight. Using U.S. adults aged 50 years as a reference group, we found that the years life years lost associated with diabetes for white females with a BMI above 40 kg/m² was 12.3 years. Black females of the same age and degree of obesity lost 11.5 years, compared to 10.2 years for white males (BMI ≥ 30) and black males (BMI ≥ 25.0). Conclusions: Our results show that obesity is associated with large decreases in life expectancy and total lifetime health care expenditures for both diabetics and non-diabetics. Similarly to OLS, the type of diabetes did not have a significant impact on the total economic burden of diabetes and the associated comorbidities and complications.

PDG50
ECONOMIC BURDEN OF DIABETIC PATIENTS IN PRIVATE AND PUBLIC HOSPITALS
Lalitha R, Vesti R, Viti R, Vani S, Chidambaran S

OBJECTIVES: The objective of the study was to estimate the direct and indirect economic burden of Type 2 diabetes (T2D) and the associated comorbidities and complications. The study analyzed the lifetime health care expenditures and life years lost for patients with diabetes. METHODS: Data from the National Health Interview Survey (NHIS), the NHIS linked Mortality Public-use Files, and the Medical Expenditure Panel Survey from 1997 to 2000 were used to estimate age-, race-, sex-, and urban-rural-specific (T1D and T2D) and total annual health care expenditures for both diabetics and non-diabetics. A Markov model populated by the risk estimates was used to compute life expectancy and total lifetime health care expenditures for both diabetics and non-diabetics. Similarly to OLS, the type of diabetes did not have a significant impact on the total economic burden of diabetes and the associated comorbidities and complications.

RESULTS: Predicted life expectancy was longer for females than males and whites and other races than blacks. Predicted life expectancy for diabetics and non-diabetics consistently demonstrated an inverted U-shape for BMI across all subgroups, with highest life expectancy being for the overweight. Using U.S. adults aged 50 years as a reference group, we found that the years life years lost associated with diabetes for white females with a BMI above 40 kg/m² was 12.3 years. Black females of the same age and degree of obesity lost 11.5 years, compared to 10.2 years for white males (BMI ≥ 30) and black males (BMI ≥ 25.0). Conclusions: Our results show that obesity is associated with large decreases in life expectancy and total lifetime health care expenditures for both diabetics and non-diabetics. Similarly to OLS, the type of diabetes did not have a significant impact on the total economic burden of diabetes and the associated comorbidities and complications.