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Using high-density oligonucleotide arrays, we measured expression of 412,000 genes in surgical excisions of
invasive human squamous cell carcinomas (SCCs) versus site-matched control skin. This analysis defined
41,900 genes with altered expression in SCCs that were statistically different from controls. As SCCs are
composed of epithelial cells, which are both hyperplastic and invasive, we sought to define gene sets associated
with these biologic processes by comparing gene expression to psoriasis vulgaris, which is a condition of
benign keratinocyte hyperplasia without invasiveness or pre-malignant potential. Through this analysis, we
found genes that were commonly upregulated in both conditions and unique genes with increased expression
in SCCs. Differential gene regulation in these two conditions was confirmed by real-time reverse transcription-
PCR and immunohistochemistry. We found that benign hyperplasia is associated with upregulation of genes
including DEFB4 (defensin B4), SERPINB3 (serine proteinase inhibitor, member 3), STAT1 (signal transducer and
activator of transcription 1), K16 (keratin 16), CEACAMs (carcinoembryonic antigen-related cell adhesion
molecules), and WNT 5A (wingless-type MMTV integration site family, member 5A). WNT receptor frizzled
homolog 6 (FZD6) and prostaglandin-metabolizing enzyme hydroxyprostaglandin dehydrogenase were
increased in SCC alone. Growth factor pleiotrophin (PTN) was expressed at higher levels in non-tumor-
bearing skin adjacent to excised SCC. SCC was further characterized by upregulation of matrix metallo-
proteinases 1, 10, and 13, cathepsin L2, cystatin E/M as well as STAT3 and microseminoprotein, beta (MSMB), and
downregulation of inducible nitric oxide synthase, granzyme B, CD8, and CD83. The current study defines a
unique gene expression signature for cutaneous SCC in humans and suggests potential roles for WNT, FZD, and
PTN in the pathogenesis of SCC.
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INTRODUCTION
Primary cutaneous squamous cell carcinoma (SCC) is the
second most common human cancer and may behave
aggressively (Goldman, 1998). As with other invasive
cancers, cutaneous SCC, if left untreated, will invade locally,
resulting in extensive tissue damage and may eventually
metastasize to lymph nodes and distant organs (Veness et al.,
1999; Nguyen, 2004). The pathogenesis of SCC is multi-
factorial. Exposure to ultraviolet radiation, primarily UVB, is
a major risk factor owing to DNA damage leading to
mutations in tumor suppressor p53 (Brash et al., 1996; Leffell
and Brash, 1996). In addition, other factors, including human
papilloma virus, have also been implicated in SCC develop-
ment, indicating the presence of other pathogenic mechan-
isms and potential regulatory points (Goldman, 1998).
Psoriasis (P) is a benign, inflammatory condition character-
ized by development of cutaneous plaques most commonly
located on extensor surfaces (Lowes et al., 2004). Psoriasis is
characterized by epidermal hyperproliferation, and altered
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expression of B1,300 genes has been described (Zhou et al.,
2003). These include pro-inflammatory cytokines IL-2, IL-6,
IL-8, IL-12, IL-23, and IFN-g (Lew et al., 2004). Psoriasis was
chosen for comparison with SCC based on the fact that like
SCC, it is characterized by hyperproliferation, but unlike
SCC, it is reversible and lacks the capacity for invasion.

Microarray technology allows for global expression
profiling of large numbers of genes. Although it has been
used to study human cancers (Lu et al., 2001; Leversha et al.,
2003), genes contributing to hyperplasia versus malignancy
have remained undefined. By defining the gene expression
profile for SCC and subtracting genes activated in psoriasis,
we were able to define a provisional cancer-specific gene set
distinguishing malignant from benign hyperproliferation in
human epithelial tissue. Immunohistochemistry was also
performed to compare the inflammatory infiltrate of SCC
with that of psoriasis.

We found the following: (1) wingless-type MMTV integra-
tion site family, member 5A (WNT 5A) was upregulated in
SCC and psoriasis, but WNT receptor frizzled homolog 6
(FZD6) was upregulated in SCC alone; (2) expression of
pleiotrophin (PTN) was increased in SCC compared with
psoriasis but expressed at even higher levels in non-tumor-
bearing (N) skin adjacent to excised SCC; (3) SCC was
characterized by enhanced expression of proteinases includ-
ing cathepsin L (CTSL2) and matrix metalloproteinases
(MMPs 1, 10, and 13), but decreased expression of protease
inhibitor, tissue inhibitor of metalloproteinase (TIMP)3; (4)
proliferation-associated genes including cyclin-activating
kinase component, cyclin-dependent kinase (CDK)7, and
cell cycle kinase, cell division cycle 7 (CDC7), oncogene
KRAS, angiogenic factor epiregulin (EREG), and E2F trans-
cription factor 3 were upregulated in SCC, whereas transcrip-
tion regulators NF-kB2 and NF-kB inhibitor, NF-kBIA, and
angiogenic factor vascular endothelial growth factor C were
downregulated; (5) cytokine IL-18 was upregulated in SCC,
whereas expression of activated T-cell marker CD69 and
mature dendritic cell marker CD83 was downregulated and
pro-inflammatory inducible nitric oxide synthase (iNOS) was
virtually undetected.

RESULTS
We began analysis of human SCC by defining expression of
genes in tumor tissue versus adjacent (site-matched) normal
skin from the same patients using Affymetrix U95 arrays.
Statistically significant differences in expression of genes with
elevated or reduced expression in SCC tissue were defined by
a paired Welch test, with a subsequent correction for multiple
gene comparisons by the Benjamini–Hochberg method. This
analysis defined 1,048 genes with increased expression and
870 genes with decreased expression in SCC versus non-
tumor-bearing tissue, as displayed by hierarchical clustering
and heat map values in Figure 1a. All genes displayed in this
figure are listed in Table S1, whereas the individual P-values
for expression differences (all are Po0.05 after multiplicity
correction) are given in Table S6. We noted that many of the
genes that were upregulated in SCC were identical to genes
previously detected as increased in expression in lesional

psoriasis tissue. Hence, it seemed that gene expression
differences detected in SCC might be a mixture of ‘‘back-
ground’’ genes altered because of regenerative hyperplasia of
keratinocytes and genes altered specifically because of
neoplasia. To better characterize and refine gene sets that
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Figure 1. Gene expression profiling of SCC and psoriasis. Gene array

analysis of mRNA from eight squamous cell carcinoma (SCC), eight site-

matched non-tumor-bearing (N), eight psoriasis (P), and five non-lesional (NL)

skin biopsies: mRNA was hybridized to individual oligonucleotide arrays

containing B12,000 human genes (HG-U95A/Av2 chips). Heat maps show

unsupervised hierarchical clustering for gene expression differences that are

statistically significant (Po0.05, after correction for multiplicity). Full tables

of gene expression data are given in Tables S1–S5, whereas P-values for all

expression differences are given in Table S6. (a) ‘‘SCC cluster’’: heat map

of the 1,048 genes upregulated in SCC versus N (red area) and 870 genes

downregulated in SCC versus N (green area). (b) Histological comparison

of benign versus malignant hyperproliferative diseases: representative

immunohistochemical hematoxylin and eosin staining of P, SCC, NL, and N.

(c) ‘‘Common cluster’’: heat map of 398 genes commonly upregulated in SCC

versus N, and P versus NL. (d) ‘‘SCC-specific cluster’’: heat map of 582 genes

upregulated in SCC versus N but not increased in P. (e) Direct comparison of

SCC with P: heat map of 2,520 genes up- or downregulated in SCC versus

P. Expressions in site-matched (N) skin are not considered.
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are specifically associated with human SCCs versus benign
hyperplasia, we performed two types of comparative analyses
to define similarities and differences in pathologic gene
expression in SCC versus psoriasis, as described below.

Before presenting genes that are commonly upregulated in
SCC and lesional psoriasis tissue, we want to note some
overall similarities in epidermal alterations in the two
conditions (Figure 1b). Psoriasis is characterized by an
ancanthotic epidermis, a marked increase in proliferating
keratinocytes, elongated rete, a reduced granular layer, and
maturation of squamous keratinocytes with retained nuclei
(parakeratosis). SCCs of the type analyzed for this study
displayed similar features of keratinocyte growth and
differentiation, but nests of malignant keratinocytes were
detached from the epidermis in SCCs and formed invading
foci in the dermis. A mononuclear inflammatory infiltrate was
evident in the dermis/stroma of both psoriasis and SCC. The
gene comparison shown in Figure 1c shows heat maps of
genes that are upregulated in psoriasis, in comparison to
adjacent biopsies of non-lesional (NL) skin, and genes that
are upregulated in SCC versus site-matched non-tumor-
bearing skin. A short list of genes commonly upregulated in
both conditions, with associated fold changes and P-values, is
given in Table 1, whereas a complete list of shared genes is

given in Table S2. Many of the shared genes encode proteins
involved in epidermal differentiation, for example, desmo-
glein (DSG3), keratins 6/16, S100 proteins, and small proline-
rich proteins (SPRR1) (bottom of Table 1). Other genes that
are commonly upregulated in both conditions include the
following. SERPINB3 (serine proteinase inhibitor, member 3;
SCC antigen), a gene known to be highly expressed in
psoriasis (De Pita et al., 1999), cutaneous SCC (Takeda et al.,
2002), and carcinomas from organs other than skin (Takeda
et al., 2002; Ahmed et al., 2004), was highly expressed in all
SCC specimens as well as psoriasis. Carcinoembryonic
antigen-related cell adhesion molecule 5 (CEACAM5) was
also upregulated in both SCC and psoriasis (Figure 2).

Selected proliferation regulators showed increased expres-
sion in psoriasis and SCC. These included WNT 5A,
transcription mediator signal transducer and activator of
transcription (STAT)1, transforming growth factor-a, and cell
cycle regulatory gene cyclin B1 (CCNB1). Genes encoded by
the epidermal differentiation complex (EDC) including
SPRR1A, 1B, and 2B, S100 A8, A9, and A14, and involucrin
(IVL) were increased both in psoriasis and SCC. Finally,
keratin 16 (KRT16) expression was also increased in both
SCC and psoriasis. Data are summarized in Table 1. Reverse
transcription-PCR (RT-PCR) experiments confirmed the

Table 1. Common upregulated genes in psoriasis and SCC

Fold change: P/NL P-valueo (corrected) Fold change: SCC/N P-valueo (corrected) Symbol Biological process

1.93 0.00001 1.45 0.0001 ABCC1 Transport

2.03 0.00012 1.46 0.0127 ADAM23 Proteolysis and peptidolysis

1.90 0.00461 1.46 0.0002 BLNK Immune response

1.70 0.00149 1.54 0.00001 CASP4 Apoptosis

3.02 0.00001 1.75 0.00001 CCNB1 Cell cycle

3.54 0.00001 2.01 0.00001 CD24 Immune response

2.78 0.00183 1.50 0.00001 CDH3 Cell adhesion

1.78 0.00001 1.49 0.00001 CDKN3 Cell cycle

4.57 0.00010 2.26 0.00001 CRABP2 Retinoic acid binding

5.51 0.00001 1.56 0.00001 ECGF1 Signal transduction

2.42 0.00001 1.75 0.0021 EVA1 Cell adhesion

3.29 0.01584 1.57 0.0001 G1P3 Immune response

2.46 0.00001 1.49 0.0012 GNA15 Signal transduction

1.62 0.00423 1.63 0.00001 GPR1 Signal transduction

2.73 0.00285 1.54 0.0478 HMOX1 Heme oxidation

5.04 0.00001 2.12 0.0001 IFI27 Immune response

1.33 0.02122 1.56 0.00001 IL12RB2 Cell proliferation

2.32 0.03800 1.53 0.014 IL8RB Immune response

1.74 0.00001 1.52 0.0011 KIF11 Cell cycle

6.40 0.00001 1.98 0.00001 KLK10 Proteolysis and peptidolysis

9.99 0.00035 3.23 0.00001 KLK13 Proteolysis and peptidolysis

8.27 0.00754 2.81 0.0001 KLK6 Proteolysis and peptidolysis

2.20 0.00011 1.74 0.0034 KNTC2 Mitosis

Table 1 continued on following page
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Table 1. continued

Fold change: P/NL P-valueo (corrected) Fold change: SCC/N P-valueo (corrected) Symbol Biological process

1.78 0.00001 1.51 0.0001 LY6D Cell adhesion

1.48 0.00868 1.49 0.001 MAD2L1 Cell cycle

2.08 0.00119 1.87 0.00001 MAPK13 Signal transduction

1.57 0.00001 1.55 0.00001 MAPK6 Signal transduction

6.66 0.00381 1.87 0.00001 MX1 Apoptosis

2.20 0.00001 1.53 0.0003 NMI Transcription

2.62 0.01672 1.56 0.0005 OAS1 Immune response

5.24 0.00008 2.21 0.0013 OASL Immune response

1.71 0.00109 1.49 0.00001 PAI-RBP1 Transcription

1.44 0.00198 1.53 0.0007 PKP3 Cell adhesion

1.76 0.00769 1.59 0.00001 PPARD Proliferation

1.85 0.04603 1.72 0.00001 PTGER3 Prostaglandin E receptor

1.82 0.02160 1.47 0.00001 RANBP9 Cell growth

1.70 0.00392 1.30 0.0014 RB1 Cell cycle

2.52 0.02428 2.39 0.00001 RGS20 Signal transduction

1.86 0.00363 1.62 0.0001 RIT1 Signal transduction

24.34 0.00001 3.15 0.00001 SERPINB3 Proteinase inhibitor

77.23 0.00001 3.22 0.0001 SERPINB4 Proteinase inhibitor

1.81 0.01862 1.92 0.00001 SERPINB8 Proteinase inhibitor

5.74 0.00001 1.49 0.00001 STAT1 Signal transduction

1.93 0.03250 1.46 0.00001 TGFA Cell proliferation

1.93 0.00090 1.77 0.0008 TNFSF10 Apoptosis

1.49 0.00026 1.68 0.00001 TPX2 Mitosis

2.78 0.00001 1.52 0.00001 WNT5A Signal transduction

Molecules involved in epidermal differentiation (but may also have inflammatory functions)

3.35 0.00010 1.92 0.00001 ALOX12B Epidermal differentiation

2.35 0.00001 1.89 0.0098 DSG3 Cell adhesion

2.75 0.00541 2.30 0.00001 IVL Human involucrin gene

10.24 0.00001 3.12 0.0014 KRT16 Epidermal differentiation

4.28 0.00017 2.19 0.0018 KRT6E Biogenesis

1.59 0.00133 1.45 0.00001 S100A11P; S100A14 Cell proliferation

7.74 0.00012 1.61 0.0018 S100A12 Immune response

1.82 0.00001 1.61 0.00001 S100A2 Immune response

4.33 0.00084 2.30 0.0001 S100A7 Epidermal differentiation

4.45 0.00321 2.37 0.0013 S100A8 Immune response

13.22 0.00001 3.05 0.0002 S100A9 Immune response

5.02 0.00001 2.33 0.00001 SPRR1A Epidermal differentiation

5.55 0.00001 1.98 0.00001 SPRR1B Epidermal differentiation

2.10 0.00001 2.10 0.0067 SPRR2B Epidermal differentiation

1.59 0.00001 1.59 0.0019 SPRR2C Epidermal differentiation

4.76 0.00001 2.24 0.00001 TGM1 Keratinocyte

transglutaminase

Selected list of genes with commonly upregulated expression in squamous cell carcinoma (SCC) or psoriasis (P) corresponding to heat map in Figure 1c and
the upper region of Figure 1a. Fold changes are ratios of gene expressions in SCC/site-matched normal (N) and psoriasis (P)/non-lesional (NL) skin biopsies.
Gene symbols and relevant biological processes are described in Gene Ontology annotation.
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upregulation of genes for DEFB4 (defensin B4), SERPINB3,
STAT1, K16 (keratin 16), WNT 5A, and CEACAM5 in both
SCC and psoriasis.

We were able to assign a total of 73 genes in the common
clusters to keratinocytes (Table S3) through comparison with
a series of cell-specific gene expression maps that we have
recently created (Haider A.S. et al., manuscript in prepara-
tion). These genes included KRT16, IVL, and other members
of the EDC.

Through this comparative approach, we were also able to
define genes that were uniquely upregulated in SCC. This
group of genes is illustrated in Figure 1d, and a short list of
genes, with fold changes and P-values and biological

processes according to Gene Ontology, is given in Table 2.
Key genes were selected as those regulating biological
processes important to tumor progression, including invasion,
proliferation, differentiation, and immune response, in a
manner consistent with the classification scheme used by
others in the description of SCC of the head and neck
(HNSCC) (Ginos et al., 2004). Some genes with well-
characterized mutations associated with SCC were not
differentially expressed in our studies. Expression of p53
and CDK4 was unchanged between SCC and site-matched
non-tumor-bearing skin, whereas expression of CDKN2A was
increased in four of eight patients but did not approach
statistical significance (data not shown). Expression of p63

DEFB4 SERPINB3 STAT1 K16 WNT5A CEACAM5
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Figure 2. Real time RT-PCR confirmation of selected genes differentially expressed in SCC and psoriasis lesions. Mean values of gene expression for selected

genes are graphically represented after normalization of expressions using gene to HARP mRNA. mRNA was analyzed from SCC specimens (SCC), site-matched

normal (N), psoriasis (P), and non-lesional (NL) skin biopsies (n¼7 for each): error bar shown , *Po0.05; **Po0.01; **Po0.001. (a) Genes upregulated in

both SCC and psoriasis, SCC4N and P4N: DEFB4, SERPINB3, STAT1, K16, WNT 5A, and CEACAM5. (b) SCC-specific genes, SCC4N and SCC4P:

hydroxyprostaglandin dehydrogenase 15-(NAD) (HPGD) and FZD6. (c) MMPs in SCC and psoriasis: MMP1, MMP10, MMP12, and MMP13. (d) Genes

differentially regulated in SCC versus psoriasis, SCC4 or oP: genes with increased expression in SCC: cathepsin L2 (CTSL2), STAT3, cystatin E/M (CST6),

and MSMB; genes with decreased expression in SCC: iNOS, CD83, CD8a, and GZMB. (e) PTN is downregulated in SCC.
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(TP73L), a p53 homolog, was increased in SCC compared
with site-matched non-tumor-bearing skin (Table 2).

Expression of FZD6, a receptor for the WNT family of
genes, was increased in SCC but not psoriasis. This was also
true for prostaglandin pathway mediator hydroxyprostaglan-
din dehydrogenase (HPGD). MMP1 and 13 were detected to
be significantly upregulated in genomic analysis of SCC
(Table 2). MMP12 was more highly expressed in psoriasis and
not expressed differentially between SCC and non-tumor-
bearing skin. RT-PCR analysis showed a trend toward
increased expression of MMP1 and MMP13 and confirmed
significant expression of MMP10 in SCC while confirming
increased expression of MMP12 in psoriasis (Figure 2).

Because we identified genomic alterations in expression of
MMPs in SCCs that were not present in psoriasis, we wanted
to confirm that gene expression differences were reflected in
expression of these proteins in skin lesions. Immunohisto-
chemical detection of MMP1, 10, and 13 showed MMPs 10
and 13 staining at perivascular areas within the stroma and
MMP1 within the dermis (Figure 3).

Increased expression of cyclin-activating kinase compo-
nent CDK7 was unique to SCC. Cell cycle mediator CDC7 (a
cell cycle kinase) was also uniquely increased in SCC, as was
DNA damage repair mediator RAD1 and apoptosis mediator
CASP8. Increased expression of ATR, another gene regulating
apoptosis, was specific to SCC and not observed in psoriasis.
Kirsten ras gene homolog (KRAS) was uniquely increased in
SCC. Other potential regulators of proliferation unique to
SCC included E2F transcription factor 3, transcription
mediator mitogen-activated protein kinase 14 (MAPK14),
epiregulin (EREG), and IL-18.

We recognized that the approach used to define gene
differences between SCC and psoriasis might be limited by
differences in gene expression in the site-matched controls.
For example, one can appreciate that many genes have
higher background expression in skin adjacent to SCCs com-
pared to non-lesional skin of psoriasis patients. Hence, we also
performed a direct or ‘‘head-to-head’’ comparison of gene
expression differences in SCC versus psoriasis lesional tissue,
without consideration of gene expression in background skin.

Table 2. Genes upregulated in SCC only

Fold change:
P/NL

P-valueo
(corrected)

fold change:
SCC/N

P-valueo
(corrected) Symbol Biological process

0.8 0.7720 1.3 0.0159 ATR Apoptosis

1.1 0.1647 1.2 0.0297 CASP8 Apoptosis

1.0 0.2653 1.4 0.00001 CDC7 Cell cycle

1.1 0.1302 1.3 0.00001 CDK7 Cell cycle

0.8 0.9364 1.3 0.0247 COL4A6 Collagen metabolism

1.2 0.9356 1.5 0.0035 DEFB1 Immune response

1.1 0.3593 1.3 0.00001 E2F3 Transcription

1.5 0.8977 1.8 0.00001 EREG Cell cycle

1.1 0.6890 1.6 0.000001 FZD6 Frizzled signaling pathway

1.6 0.1168 2.5 0.00001 HPGD Prostaglandin metabolism

0.9 0.0544 1.9 0.00001 IL18 Immune response, angiogenesis

0.9 0.0645 1.2 0.0002 KRAS2 Cell cycle

1.0 0.4117 5.2 0.0418 KRT9 Epidermal differentiation

1.1 0.9480 1.4 0.0003 MAPK14 Kinase

1.4 0.0580 4.0 0.0236 MMP1 Collagen catabolism

0.9 0.5027 3.0 0.0045 MMP13 Collagen metabolism, proteolysis

and peptidolysis

1.0 0.2792 1.3 0.0313 RAB11A Cell cycle

0.8 0.0008 1.2 0.0357 RAB22A Cell cycle

1.1 0.1155 1.3 0.00001 RAB8A Cell cycle

1.2 0.9053 1.5 0.0018 RAB9A Cell cycle

1.2 0.3067 1.2 0.0255 RAD1 DNA damage response

1.2 0.0709 1.3 0.00001 RARS Cell cycle

1.0 0.002 1.4 0.00008 TP73L Tumor protein p73-like, p63

Selected list of genes with upregulated expression in squamous cell carcinoma (SCC) only corresponding to heat map in Figure 1d. Fold changes are ratios of
gene expressions in SCC/site-matched normal (N) and psoriasis (P)/non-lesional (NL) skin biopsies. Gene symbols and relevant biological processes are
described in Gene Ontology annotation.
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In this comparison, expression of 2,520 genes was different
between SCC and psoriasis (Figure 1e), based on statistical
criteria and correction for multiple gene comparisons. A short
list of these genes is given in Table 3, with associated fold
changes and P-values, whereas a complete list can be found
in Table S5.

Enhanced expression of cathepsin L (CTSL), STAT3,
cystatin E/M (CST6), and microseminoprotein, beta (MSMB)
in SCC was detected by this analysis. These findings were
confirmed by RT-PCR (Figure 2d). MSMB has been reported
in mice model of adenocarcinoma in the prostate (Gabril
et al., 2005). This is the first report to our knowledge that
associates this gene with skin cancer. RT-PCR experiments
showed that PTN was more highly expressed in site-matched
skin adjacent to excised SCC than that in SCC (Figure 2e).
Conversely, iNOS, granzyme B (GZMB), CD8, and CD83
were downregulated in SCC compared with psoriasis.
Immunohistochemistry studies showed higher numbers of
CD83þ cells in psoriasis than in SCC, although there were
similar numbers of CD8þ cells in psoriasis and SCC
(Figure 3). Furthermore, unlike psoriasis lesions, the CD8þ
cells were perivascular and were found in tumor infiltrates.
Of interest, TNFSRF6 (APO-1, FAS) was increased in SCC
compared with psoriasis (Table 3). Although elevated in SCC

versus site-matched skin in genomic analyses, this did not
reach statistical significance.

Finally, genes with decreased expression in SCC com-
pared to site-matched controls were defined through statis-
tical comparisons. Table 4 contains a short list of these
downregulated genes. Of interest, decreased expression of
protease inhibitor TIMP3 was unique to SCC. Some
proliferation mediators were decreased in SCC. Potential cell
cycle mediators cyclin G1 (CCNG1) and ABL1 were
specifically downregulated in SCC. Others included fibro-
blast growth factor 2, oncogenes FOS and JUN, and
transcription regulators NF-kB2 and NF-kBIA. A number of
immune response genes were decreased in SCC. These
included CXC chemokine, cytokine IL-6, activated T-lympho-
cyte marker CD69, and mature dendritic cell marker CD83
(Figure 2d).
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Figure 3. Immunohistochemical analysis of MMPs and CD8þ and CD83þ
cells in SCC and psoriasis. Skin biopsies in non-lesional (NL), psoriasis lesions

(LS) and SCC tumor specimens. Representative MMPs (MMP1, 10, and 13)

stain strongly in SCC. Equivalent numbers of CD8þ cells were seen in SCC

and LS, whereas few CD83þ cells were seen in SCC tumor specimens as

compared to NL and LS. Black arrows point to the tumor infiltrates. Original

magnification: � 10; bar¼100 mm.

Table 3. Genes differentially regulated in SCC versus
psoriasis

Fold
change:
SCC/P

P-valueo
(corrected) Symbol Biological process

1.5 0.04781194 CDK2 Cell cycle

5.6 0.00000015 CST6 Morphogenesis

6.0 0.00000080 CTSL2 Proteolysis and peptidolysis

2.3 0.00000080 FZD6 Frizzled signaling pathway

2.0 0.00010055 GATA3 Defense response

4.5 0.00000086 HIST1H2AC Nucleosome assembly

4.3 0.00003305 HIST1H2BD Nucleosome assembly

5.2 0.00000080 HPGD Prostaglandin metabolism

2.0 0.00000080 IL18 Immune response

3.1 0.00000080 IL6 Humoral immune response

2.7 0.00000080 JUN; AP1 Regulation of transcription

3.0 0.00045130 KLK7 Proteolysis and peptidolysis

4.7 0.01879431 MMP1 Collagen catabolism

1.8 0.00022602 MMP15 Proteolysis and peptidolysis

9.4 0.00119212 MSMB Microseminoprotein, beta-

1.5 0.00000421 PTGER4 Immune response

2.1 0.01334204 PTN Growth factor activity

1.2 0.00110000 TNFRSF6 Fas gene, apoptosis

2.4 0.01180278 WIF1 WNT receptor signaling
pathway

1.9 0.01819798 WNT10B Frizzled-2 signaling pathway

Genes downregulated in SCC versus psoriasis

0.5 0.02136103 NOS2A Inflammatory response

0.6 0.00000004 PTGIS Prostaglandin biosynthesis

Selected list of genes of direct comparison of genes with regulated
expression in squamous cell carcinoma (SCC) with psoriasis (P) corres-
ponding to heat map in Figure 1e. Fold changes are ratios of gene
expressions in SCC/psoriasis (P) skin biopsies. Gene symbols and relevant
biological processes are described in Gene Ontology annotation.
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DISCUSSION
This is the first report contrasting gene expression profiles of
malignant hyperproliferation and benign hyperplasia in a
stratified squamous epithelium that would form a carcinoma
upon malignant transformation. These experiments facilitate
insight into human cancer biology through an attempt to
separate factors that are specific to malignancy from those
that are attributable to hyperplasia.

Defects or mutations in p53, RAS, CDK4, and CDKN2A
have been described for SCC in humans (Kubo et al., 2002;
Green and Khavari, 2004; Tsai and Tsao, 2004), but little is
known about the genetic basis of SCC in human skin. In our
studies, expression of p53 (SCC/N: 0.97) and CDK4 (SCC/N:
1.06) was unchanged between SCC and site-matched non-
tumor-bearing skin, whereas expression of CDKN2A was
increased in four of eight patients. This is consistent with
functional mutations in these genes rather than over- or
underexpression leading to SCC. As many but certainly not
all SCCs harbor mutations in these genes, other factors are
likely to be involved in its pathogenesis. Expression of p63, a
p53 homolog that identifies keratinocyte stem cells (Pellegrini
et al., 2001), was increased in SCC compared to site-matched
non-tumor-bearing skin. Reis-Filho et al. (2002) report
variable presence of p63 (TP73L; Table 2) in grade 1 SCC
but increased immunoreactivity in undifferentiated SCC.
Increased expression of p63 in our studies supports the
potential role of maintenance of keratinocyte stem cells in
early SCC development.

The WNT signaling pathway regulates normal develop-
ment and cancer progression (Logan and Nusse, 2004).
However, little is known about the role of WNT signaling in
human cutaneous SCC. WNT/b-catenin signaling inhibited
death receptor-mediated apoptosis in nude and promoted
invasive growth of HNSCC in nude mice (Yang et al., 2005).
In our studies, WNT 5A was upregulated in both SCC and
psoriasis. WNT 5A has not been previously described in
human cutaneous SCC; however, our results are consistent
with Taki et al. (2003), who showed upregulation of WNT 5A
by epithelial mesenchymal transition by human SCC cells in
culture. That WNT 5A was upregulated in both SCC and
psoriasis raises the possibility that differential receptor
expression may play a role in the ultimate determination of
biological behavior. WNT inhibitory factor (WIF1) is more
highly expressed in SCC than in psoriasis in our studies.
Although not previously described in skin cancer, WIF is
suppressed in lung cancer (Mazieres et al., 2004).

The FZD family of WNT receptors comprises a group of
proteins with a large, cysteine-rich extracellular domain, a
seven-transmembrane spanning domain, and a cytoplasmic
tail (Wodarz and Nusse, 1998). In our studies, FZD6 was
increased in SCC compared to site-matched skin and was not
increased in psoriasis. Golan et al. (2004) showed that FZD6
acts as a negative regulator of canonical WNT signaling in
cell lines. This was supported by Lyons et al. (2004), who
further demonstrated a role of FZD6 in non-canonical
signaling in kidney epithelial cells. Based on unique
expression in SCC compared with site-matched skin and a
lack of expression in benign hyperplasia, it is possible that
FZD6 is involved in WNT-mediated signaling in cutaneous
SCC.

MMPs are involved in extracellular matrix degradation,
which is key to tumor invasion (Kerkela and Saarialho-Kere,
2003). MMP1 degrades collagens I, II, and III (Aznavoorian
et al., 2001), and has been reported to mediate invasiveness
and survival of keratinocytes (Nagavarapu et al., 2002).
MMP13 degrades type II collagen most efficiently and has

Table 4. Genes downregulated in SCC

Fold
change:
SCC/N

P-valueo
(corrected) Symbol Biological process

0.73 0.00001 ABL1 Cell proliferation

0.70 0.00080 ARHGEF6 Apoptosis

0.66 0.00340 BIRC3 Apoptosis

0.80 0.00160 CCL17 Immune response

0.60 0.01010 CCNG1 Cell cycle

0.61 0.00001 CD34 Immune response

0.66 0.02900 CD69 Immune response

0.57 0.00001 CX3CL1 Immune response

0.79 0.00460 FGF2 Cell proliferation

0.76 0.00170 FGF7 Cell proliferation

0.70 0.00660 FGF9 Cell proliferation

0.29 0.00100 FOS Oncogenesis

0.51 0.00070 IGF1 Cell proliferation

0.51 0.02970 IGFBP4 Cell proliferation

0.53 0.04540 IGFBP7 Cell proliferation

0.09 0.01430 IL6 Immune response

0.53 0.01560 JUN; AP1 Oncogenesis, transcription

0.37 0.00740 JUNB Oncogenesis, transcription

0.73 0.01940 JUND Transcription

0.78 0.00001 MRAS Signal transduction, RAS

protein

0.74 0.00030 NFKB2 Transcription

0.67 0.00250 NFKBIA Transcription

0.50 0.00280 PDGFRA Cell proliferation

0.49 0.01160 PDGFRB Cell proliferation

0.69 0.00150 PPP1R15A Apoptosis

0.45 0.00160 PTGDS Prostaglandin pathway

0.58 0.00001 RARRES2 Retinoid metabolism

0.66 0.00020 RRAS Oncogenesis, transcription

0.80 0.02160 VEGFC Angiogenesis

0.59 0.01180 TIMP1 Proteolysis and peptidolysis

0.63 0.00001 TIMP3 Proteolysis and peptidolysis

Selected list of genes with downregulated expression in squamous cell
carcinoma (SCC) corresponding to the lower region of heat map in Figure
1a. Fold changes are ratios of gene expressions in SCC/site-matched
normal (N) skin biopsies. Gene symbols and relevant biological processes
are described in Gene Ontology annotation.
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also been implicated in malignant transformation of
keratinocytes (Ala-aho et al., 2002). MMP10 degrades
fibronectin and proteoglycans and has been implicated
as a tumor promoter in lymphoma (Van Themsche et al.,
2004). Induction of MMPs 1, 10, and 13 and suppression of
protease inhibitors TIMP1 and TIMP3 as seen in our studies
suggest an environment supporting dermal invasion in SCC
(Kerkela and Saarialho-Kere, 2003). Protease inhibitors are
likely to play an important role by inhibiting tumor invasion.
Previously, TIMPs including TIMP3 were observed to be
upregulated in invasion and metastasis from oral SCC but not
in pre-malignant lesions (O’Donnell et al., 2005). This may
indicate that TIMP3 induction, in the skin, might not be
observed until the most biologically aggressive tumors are
analyzed.

Cathepsin L was increased in SCC in our studies.
Macabeo-Ong et al. (2003) demonstrated an association
between expression of cathepsin L and progression from oral
dysplasia to oral cancer. MMP12 was not highly expressed in
SCC versus non-tumor-bearing skin or in SCC versus psoriasis
in our studies. Impola et al. (2004) report that expression of
MMP12 correlates with aggressive behavior in oral carcino-
ma. Kerkela et al. (2002) report that MMP12 expression by
tumor cells correlates with invasiveness in vulvar SCC,
whereas expression of MMP12 by macrophages predicts
better prognosis.

Our findings differ from the findings of others concerning
invasion and differentiation determined by genomic analysis
of HNSCC. Ginos et al. (2004) describe a set of invasion-
related genes specifically increased in HNSCC. These
included ras, type IV collagen, laminin g2, and integrins a3,
a6, b4, and b6. In our study, KRAS was increased as was
collagen IV a6, whereas laminin 2 was downregulated (SCC/
N: 0.4) and laminin 5 remained unchanged. However,
integrins b4 (P/NL: 1.2) and b6 (P/NL: 1.4) were not increased
in invasive SCC but were increased in psoriasis, indicating
that enhanced expression of integrins b4 and b6 may be
required for hyperplasia rather than malignancy. Enhanced
expression of KRAS is consistent with the findings of Vitale-
Cross et al. (2004), who report that expression of KRAS in an
epithelial compartment containing stem cell is sufficient for
squamous cell carcinogenesis in mice.

Poorly differentiated cutaneous SCCs (Rowe et al., 1992)
are more likely to develop distant and nodal metastases. It is
therefore not surprising that the EDC genes, including
involucrin (IVL), small proline-rich proteins (SPRR1A, 1B,
2B, 3), and S100 1 and 6 were reported to be decreased in
HNSCC (Ginos et al., 2004). In contrast, in our studies, EDC-
derived genes for IVL, SPRR, and S100 A8, A9, and A14 were
increased in both SCC and psoriasis. This indicates that de-
differentiation is not an obligate feature of early malignant
transformation of epithelial cells and that differentiating
epithelial cells can invade. In one study, B60% of in-transit
metastases occurred after treatment of well-differentiated al-
though otherwise high-risk, primary cutaneous SCC (Carucci
et al., 2004). Analysis of more deeply invasive or metastatic
skin cancers may likely show de-differentiation and
decreased expression of EDC genes.

Prostaglandin metabolism has been implicated in the
development of SCC, particularly through cyclooxygenase-2
(An et al., 2002; O’Grady et al., 2004). Whereas cycloox-
ygenase (PTGS2, cyclooxygenase-2) was present in higher
levels in SCC versus psoriasis, the levels in site-matched
normal skin were higher as compared to SCC. Inhibition of
UVB-mediated skin tumors by cyclooxygenase-2 inhibition
has been demonstrated (Pentland et al., 1999; Wilgus et al.,
2003). Several genes of the downstream pathway of PTGS2
were modulated in our study. Prostaglandin E receptor 4 and
prostaglandin E2-metabolizing enzyme, HPGD, were up-
regulated in SCC versus non-tumor-bearing tissue. Prostacy-
clin synthase was downregulated in SCC versus site-matched
non-tumor-bearing skin. HPGD has been reported to be
suppressed in colon cancer (Yan et al., 2004), whereas Gee
et al. (2003) report that prostaglandin dehydrogenase was
detected in 64% of transitional cell carcinoma of the bladder
but in only 10% of bladder SCC. In their study, expression
correlated with higher tumor stage. All cutaneous tumors in
our study were stage 1. Inactivation of prostacyclin synthase
has been associated with colorectal carcinogenesis (Frigola
et al., 2005), and chemoprevention of lung carcinogenesis
by expression of prostacyclin synthase has been described
(Keith et al., 2004). It is possible that prostacyclin synthase
expression might be key in maintaining non-aggressive
biological behavior in benign hyperproliferative processes
in the skin.

Analysis of SCC versus psoriasis allowed us to consider
potentially genes that might not be differentially regulated in
SCC versus non-tumor-bearing skin adjacent to excised SCC
but that might nonetheless be important in determining
biological behavior. PTN encodes a 136-amino-acid heparin
binding cytokine that accelerates tumor growth and angio-
genesis (Deuel et al., 2002), and has been implicated in the
pathogenesis of melanoma (Wu et al., 2005); however, its
potential role in the pathogenesis of SCC has been previously
undefined. In our studies, PTN was more highly expressed in
SCC than in psoriasis and even more highly expressed in non-
tumor-bearing skin adjacent to SCC. This might indicate that
perilesional skin acts to induce SCC through PTN.

Interestingly, cystatin M (CST6) was increased in SCC
compared with psoriasis. Cystatin M, an endogenous
protease inhibitor, has been implicated as a potential tumor
suppressor for breast cancer (Zhang et al., 2004), but its role
in human skin cancer has not yet been defined. It is possible
that loss of CST6 may be involved in deeply invasive or
metastatic SCC.

Similarly, CTSL2 expression was increased in SCC versus
psoriasis. CTSL2, along with other cathepsins, is associated
with the plasma membrane of malignant cells and degrade
the extracellular matrix during tumor progression (Nomura
and Katunuma, 2005). It may be that CTSL2 plays a role in
early invasion by SCC in human skin.

STAT3 was increased in SCC versus psoriasis in our
studies. STAT3 activation has been implicated in multistage
skin carcinogenesis in mice (Chan et al., 2004). STAT3
activation has also been described as a key regulator of
keratinocyte proliferation following UV radiation (Sano et al.,
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2005b). Quadros et al. (2004) demonstrated EGFR-mediated
STAT3 activation is restricted to malignant kertinocytes in
culture. Mice deficient in STAT3 have been shown to be
resistant to developing skin cancer (Pedranzini et al., 2004).
The role of STAT3 in benign proliferation is supported by a
STAT3 transgenic mouse that develops psoriasis-like lesions
(Sano et al., 2005a). It may be that STAT3 is required but not
sufficient for development of SCC in human skin.

Conversely, iNOS, GZMB, CD8, and CD83 were down-
regulated in SCC compared with psoriasis. Decreased
expression of CD83 (McLellan et al., 1995) and low numbers
of CD83þ cells indicate a lack of mature dendritic cells
associated with SCC, consistent with a relatively immuno-
suppressed microenvironment. The pro-inflammatory med-
iator iNOS, possibly dendritic cell-derived (unpublished
observation), although highly expressed in psoriasis, was
virtually undetected in SCC. We found high numbers of
CD8þ cells surrounding SCC despite decreased expression
of CD8 in genomic analyses. This is consistent with Terao
et al. (1992), who found that T lymphocytes predominated
and natural killer cells, B cells, and monocytes were rarely
detected surrounding SCC. Lack of correlation might indicate
that the CD8þ cells are homing to tumor sites. Low
expression of the product of cytotoxic T cells, GZMB, key
in tumor immunity (Pardo et al., 2002), and downregulation
of T-cell activation marker, CD69, are also consistent with a
relatively immune-suppressed microenvironment.

The present studies define a genetic signature for primary
cutaneous SCC that accounts for components specific to
malignancy and those related to hyperplasia. Further
characterization of mechanisms governing these and other
regulatory and inflammatory pathways involved with SCCs at
various stages may reveal novel control points leading to
development of rational molecular and/or immune-based
therapies for cutaneous SCC and for SCC originating from
sites other than skin.

MATERIALS AND METHODS
Samples used in study

Institutional review board approval was obtained before inviting

patients to participate in the study. Informed consent was obtained

from patients before their participation, and the study was performed

with strict adherence to the Declaration of Helsinki Principles.

Paired samples of tumor and site-matched normal skin were

obtained from eight patients with SCC. Tumor samples were

obtained at surgery. Site-matched uninvolved skin was similarly

obtained from site-matched uninvolved skin at the time of repair

after clear margins were achieved. Samples were obtained and

processed in identical fashion to psoriasis samples. Mean age of

patients with SCC in this study was 72 years (range 57–83 years).

Mean tumor size was 0.9 cm (range 0.5–2.0 cm); however, final

defect after clearing tumors by Mohs micrographic surgery was

1.8 cm in the largest dimension (range 1.0–2.6 cm). Average duration

before diagnosis was 6 months (range 3–12 months). All tumors were

well-differentiated, locally invasive cancers with excellent prognosis

following excision with clear margins. All tumors were located on

sun-exposed areas. All patients had fair skin with predisposition to

sunburn with Fitzpatrick skin type 2.

Paired samples of lesional psoriasis and non-lesional skin from

eight patients with psoriasis were obtained by skin biopsy. Samples

were processed in identical fashion to SCC samples (Bowcock et al.,

2001).

Lists of genes present exclusively in cultured human keratino-

cytes were kindly provided by Banno et al. (2004). A list of genes of

interest found in keratinocytes and lesional psoriasis or SCC is given

in Table S3.

Target preparation

The microarrays used for this study were U95A-set GeneChip probe

arrays (Affymetrix Inc., Santa Clara, CA) that contain probe sets

representing approximately 12,000 genes.

Fragmentation, array hybridization, scanning, and quality
control

The labeled target was fragmented and hybridized to probe arrays as

described elsewhere (Zhou et al., 2003). The probe arrays were then

washed, stained, and scanned. Briefly, total RNA was extracted from

tissues frozen in liquid nitrogen using the RNeasy Mini Kit (Qiagen,

Valencia, CA). DNA was removed with on-column DNAse digestion

by using Quiagen RNAse-free DNAse Set. Total RNA (B4mg) was

reverse-transcribed, amplified, and labeled as described previously

(Zhou et al., 2003). Briefly, mRNA was isolated and converted to

double-strand cDNA and then to biotinylated cRNA (BioArray High

Yield RNA Transcription Labeling Kit, Enzo Biochem Inc., Farming-

dale, NY). After fragmentation and quality confirmation with the

Affymetrix Test-3 Array, 15mg of the biotinylated cRNA was

hybridized to Affymetrix Human Genome U95A GeneChips

(12,000 probe sets) (Affymetrix Inc., Santa Clara, CA). The chips

were washed, stained with streptavidin–phycoerythrin, and scanned

with a probe array scanner (HP GeneArray Scanner, Hewlett-

Packard Company, Palo Alto, CA). On each chip, the human

housekeeping genes b-actin and GAPDH (glyceraldehyde-3-phos-

phate dehydrogenase) served as controls. When comparing the data,

the Suite 5.0 software normalized the values of expression level

using all these controls. Chips with 30-to-50 ratios for GAPDH less

than 3 and scaling factor within three-fold of each other were

compared in the study.

GeneChip data analysis

Data were analyzed with Affymetrix Microarray Suite 5.0 software

(Affymetrix Inc., GeneSpring 7.0 software, Silicon Genetics,

Redwood City, CA).

Gene expression values. The Suite 5.0 software uses the one-

sided Wilcoxon’s signed-rank test to generate a detection P-value

and a detection call to decide statistically whether a transcript is

expressed on a chip. The software generates the detection call based

on the detection P-value for each transcript: present (Po0.04),

marginal (0.04oPo0.06), or absent (P40.06).

Gene expression analysis. Using GeneSpring 7.0, RMA (Robust

Multi-Chip Average) algorithm was applied for normalizing and

summarizing probe-level intensity measurements. Briefly, starting

with the probe-level data from a set of GeneChips, the perfect-

match values are background-corrected, normalized, and finally
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summarized resulting in a set of expression measures. Each gene was

divided by the median of its measurements in all samples. If the

median of the raw values was below 10, then each measurement for

that gene was divided by 10 if the numerator was above 10,

otherwise the measurement was thrown out. Fold changes were

calculated using the formula 2signal log ratio.

Principle component analysis. Principle component analysis as

quality control was performed with the normalized raw data using

GeneSpring 7.0 software.

Hierarchical clustering and heat maps. In order to organize

gene expression, genes with a similar pattern of expression are

grouped together as hierarchical clusters and presented as heat

maps. Unsupervised hierarchical clustering builds the hierarchy by

establishing which two genes are the closest together and then

combining these into a single node and repeating until the tree is

complete. The gene trees were computed based on significantly

regulated genes and distances between samples are computed using

Pearson correlation as similarity measures, that is, a distance close to

0 indicates very similar data, a distance close to 1 indicates that

there is no linear correlation between the samples, and a distance

close to 2 indicates a strong negative correlation between the

samples.

For individual transcripts, their fold change in expression was the

ratio of the mean expression level of tumor-bearing versus site-

matched non-tumor-bearing skin and lesional (P) versus non-lesional

skin biopsies. The heat map of the computed tree was presented as

red and green lines. Each line presents genes with relative

upregulated (red) or downregulated (green) expression values in

fold changes.

Statistical comparisons. To obtain a list of biologically most

interesting genes used in this study, multiple statistical analyses were

performed (Table S6).

Statistical comparisons of expression levels pairwise between

each condition (SCC, N, P, and NL) and unpaired between SCC and

P were performed by using the Data pre-processing available in the

statistical package R at http://www.r-project.org/4http://www.r-

project.org. Based on the full data set, paired Welch tests (t-test for

unequal variance) were performed to assess the interesting genes for

the distinction. Owing to the multiple testing problem encountered

in the analysis of microarray data, we chose to declare those genes

with a false discovery rate of at most 5% as having a significant

effect. Different methods may be applied to determine the false

discovery rate (Benjamini–Hochberg, Benjamini–Yekutieli) and

family-wise error rate (maxT) and SAM (significance analysis of

microarray data). In this study, we considered genes that passed the

Benjamini–Hochberg criterion as biologically most interesting. A

complete list of significantly regulated genes (Benjamini–Hochberg

false discovery rate p5%) is presented as up- or downregulated by

1.2-fold based on the average of eight patients (P vs NL, SCC vs N,

and P vs SCC) in Tables S1–S5.

Description of relevant functions of genes. Gene Ontology

annotations of differentially expressed genes were collected from

LocusLink (http://www.ncbi.nlm.nih.gov/LocusLink).

Validation of expression changes with real-time RT-PCR
analysis of tissue mRNA gene expression

The primers and probes for the TaqMan RT-PCR assays were

generated with the Primer Express algorithm, version 1.0, using

published genetic sequences (NCBI-PubMed) for each gene. Primer

sequences were as follows: CD83-forward GAGCTATTTAATGGC

CGGCTG, CD83-reverse CAAGTGGGCGAGCACCC, CD83 probe

6FAM-AAATGCTGGGCTGACGGTGCAGTC-TAMRA (GenBank

accession number NM_004233); DEFB4-forward CCAGTC

TTTTGCCCTAGAAGGTATAA, DEFB4-reverse GGCTTTTTGCA

GCATTTTGTT, DEFB4 probe 6FAM-CAAATTGGCACCTGT

GGTCTCCCTGK (GenBank accession number NM_00492);

GZMB-forward GAGGCCCTCTTGTGTGTAACAAG, GZMB-reverse

CAGGCTCGTGGAGGCATG, GZMB-probe 6FAM-CCAGGGCATT

GTCTCCTATGGACGAA-TAMRA (GenBank accession number

NM_004131); iNOS-forward CCTCAAGTCTTATTTCCTCAACGTT,

iNOS-reverse CCGATCAATCCAGGGTGCTA, iNOS probe 6FAM-

CCCCATCAAGCCCTTTACTTGACCTCC-TAMRA (GenBank acces-

sion number AF068236), K16-forward GCGAGGATGCCCACCTTT,

K16-reverse GAAGACCTCGCGGGAAGAAT, K16 probe 6FAM-

CCCAGCAAGCATCTGGCCAATCC-TAMRA (GenBank accession

number AF061809); MMP12-forward AGCACTTCTTGGGTCT

GAAAGTG, MMP12-reverse CGAGGTGCGTGCATCATCT, MMP12

probe 6FAM-CCGGGCAACTGGACACATCTACCC-TAMRA (Gen-

Bank accession number NM_002426); STAT1-forward AAGA

GAGGGCCCACCAGA, STAT1-reverse ACTGGACCCCTGTCTTCAA

GAC, STAT1 probe 6FAM-AACGCACCCTCAGAGGC CGCT-TA-

MARA (GenBank accession number M97935), and STAT3-forward

AGGAGGAGGCATTCGGAAA, STAT3-reverse AGCGCCTGGGT

CAGCTT, STAT3 probe 6FAM-CGGCCAGAGAGCCAGGAGCA-

TAMRA (GenBank accession number BC000627). The primers and

probes for CD8A (assay ID Hs00233520), CEACAM5 (assay ID

Hs00237075), CST6 (assay ID Hs00154599), CTSL2 (assay

ID Hs00426731), FZD6 (assay ID Hs00171574), HPGD (assay ID

Hs00168359), MMP1 (assay ID Hs00233958), MMP10 (assay ID

Hs00233987), MMP13 (assay ID Hs00233992), MSMB (assay

ID Hs00159303), PTN (assay ID Hs00383235), SERPINB3 (assay ID

hCG34089), and WNT 5A (assay ID Hs00180103) were designed by

Applied Biosystems (Foster City, CA). All primers and probes were

purchased from Applied Biosystems. The RT-PCR reaction was

performed using EZ PCR Core Reagents (Applied Biosystems)

according to the manufacturer’s directions. The samples were

amplified and quantified on an Applied Biosystems PRISM 7700

using the following thermal cycler conditions: 2 minutes at 501C;

30 minutes at 601C; 5 minutes at 951C; and 40 cycles of 15 seconds at

951C followed by 60 seconds at 601C. The human acidic ribosomal

protein (HARP) gene, a housekeeping gene, was used to normalize

each sample and each gene. Primer sequences HARP-forward

CGCTGCTGAACATGCTCAA, HARP-reverse TGTCGAACACCTGC

TGGATG, HARP-probe 6FAM-TCCCCCTTCTCCTTTGGGCTGG-

TAMRA (GenBank accession number NM-001002) were used. The

data were analyzed and samples quantified by the software provided

with the Applied Biosystems PRISM 7700 (Sequence Detection

Systems, ver. 1.7).

Statistics. Statistical comparisons of expression level, pairwise (SCC

vs N and P vs NL) or unpaired (SCC vs P), between each condition

were performed using a two-tailed, Student’s t-test.
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Immunohistochemistry
Tissue sections of all patients with SCC and psoriasis were stained

with hematoxylin (Fisher, Fair Lawn, NJ) and eosin (Shandon,

Pittsburgh, PA) and with purified mouse anti-human monoclonal

antibodies to CD83 (Becton Dickinson, San Jose, CA), CD8 (BD

Pharmingen, San Diego, CA), and MMP1, MMP10 and MMP13

(Abcam Inc., Cambridge, MA). Biotin-labeled horse anti-mouse

antibody (Vector Laboratories, Burlingame, CA) was amplified with

avidin–biotin complex (Vector Laboratories) and developed with

chromogen 3-amino-9-ethylcarbazole (Sigma Aldrich, St Louis,

MO).
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SUPPLEMENTARY MATERIAL

Table S1. Genes upregulated (1,048 genes) and downregulated (870 genes) in
SCC (SCC vs N: 1.2-fold, Po0.05, BH corrected).

Table S2. Genes upregulated (398 genes) in SCC and psoriasis (P4NL,
SCC4N: 1.2-fold, Po0.05, BH corrected).

Table S3. Genes upregulated (73) in SCC and psoriasis and found in
keratinocytes (SCC4N, LS4NL: 1.2-fold Po0.05, BH corrected).

Table S4. Genes upregulated (582 genes) in SCC (SCC vs N: 1.2-fold, Po0.05,
BH corrected) but not significantly changed in psoriasis.

Table S5. Genes regulated (2,520 genes) in SCC vs psoriasis (P) (1.2-fold,
Po0.05, BH corrected).

Table S6. Statistical analysis of complete data set with different methods to
determine the false discovery rate, UNI-Gene ID and P-values. The significant
differences are color-coded: tumor versus normal (orange), psoriasis versus
NL (green), and tumor versus psoriasis (yellow).
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