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Abstract
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1. Exact relations—a problem from the theory of composite materials

Physical properties of composite materials such as conductivity and elasticity d
not only on the properties of the constituents and the proportion in which they are prese
but also on the microstructure of the composite. For example, consider a materia
out of two components, one of which is rigid and the other compressible. If the com
consists of small hard particles embedded in the softer substance, then it will be com
ible. On the other hand, if the softer material lies within a rigid matrix, then the comp
will be rigid. A natural question thus arises. For fixed materials taken in fixed propor
what is the set of all possible values of a given physical property obtained as one
the microstructure of the composite? This set is called a G-closure; it will be a subse
appropriate tensor space.

The general G-closure problem is difficultand seems intractable with current tec
niques. Indeed, there are only a few examples in which the G-closure has been com
characterized [6,7,16]. A more accessible problem is suggested by the fact that, generica
the G-closure will have nonempty interior in the given tensor space. This, however
not always occur; in exceptional cases, the set degenerates to a surface, which is cal
an exact relation. Finding exact relations is of fundamental importance in both theo
applications because they describe microstructure-independent situations. For example
well-known exact relation in elasticity due to Hill states that a mixture of isotropic ma
als with constant shear modulus is isotropic and has the same shear modulus [13,1

The classical approach to exact relations has suffered from the shortcoming th
methods used have been heavily dependent on the physical context. In the late
Grabovsky recognized that it was possible to construct an abstract theory of exac
tions [9]. This general theory has proved to be enormously powerful. Indeed, it ha
to complete lists of all rotationally invariant exact relations for three-dimensional
mopiezoelectric composites that include all exact relations for elasticity, thermoelas
and piezoelectricity as special cases [11]. This is accomplished by reducing the search
exact relations to purely algebraic questions.

In this abstract formulation, we start with an intensity fieldE(x) and a flux fieldJ (x)

with values in a (real) tensor spaceT. This tensor space is a representation of the rota
group SO(3). The two fields are related by a linear mapL(x) ∈ End(T), the set of lin-
ear operators fromT → T, such thatJ (x) = L(x)E(x); this is the tensor describing th
given physical property. For example, in conductivity, we havej (x) = σ (x)e(x), wherej
ande are the current and electric fields, taking values inT = R3, andσ is the conductiv-
ity tensor. Similarly, the elasticity tensorC(x) ∈ End(Sym(R3)), where Sym(R3) is the
space of symmetric linear operatorsR3 → R3, is determined by the Hooke’s law equ
tion τ (x) = C(x)ε(x) relating the stress fieldτ to the strain fieldε. (In both these case
the linear map is actually symmetric and positive definite, and there are additional
ential constraints on the fields.) At the macroscopic level, a composite will behave
homogeneous medium with tensorL∗ ∈ End(T); this is called the effective tensor of th
composite. This is defined by the equation〈J 〉 = L∗〈E〉 linking the volume averages of th
fields. Accordingly, the G-closure set is just the set of all possible effective tensorsL∗ as
the local data varies. An exact relation is a manifold (with boundary) with empty int
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M ⊂ End(T) such thatL(x) ∈ M for all x implies thatL∗ ∈ M. This means thatM is
stable under homogenization.

The success of the abstract theory of exactrelations has been due to the fact that b
necessary conditions and sufficient conditions for an exact relation to hold have been
which turn the search for them into purely algebraic problems. We briefly sketch the deriv
tion to indicate their general form. For simplicity, we assume that the tensors inM are
symmetric and positive definite. We also restrict attention to rotationally invariant
relations.

Milton has defined an analytic diffeomorphismW which mapsM to a convex subse
containing the origin of Sym(T) ⊂ End(T) [16]. It follows thatW(M) has nonempty inte
rior in the subspaceΠ spanned byW(M). The fact thatM is rotationally invariant implies
thatΠ is a subrepresentation of End(T). The exact relationM may be recovered fromΠ
as the positive definite tensors inW−1(Π).

A composite is called a laminate if it is a stratified material whose properties vary in
one direction. Evidently, stability under lamination is a necessarycondition for stability
under homogenization. It can be shown that the subrepresentationΠ determines an exac
relation stable under lamination if and only ifΠ satisfies the following equation [11]:

(ΠAΠ)sym⊂ Π. (1)

Here,A is a fixed subrepresentation determined by the physical context. Also, ifX and
Y are subspaces of End(T), thenXsym is the image ofX under the projection of End(T)

on Sym(T) (or equivalently,Xsym = (X + Xt) ∩ Sym(T)) while XY = span{xy | x ∈ X,

y ∈ Y }. Note that ifX andY are subrepresentations, then so isXY . Sufficient conditions
for Π to give an exact relation have also been found,and again, they involve multiplicatio
of subrepresentations. Indeed, suppose that in addition to the previous condition, the
exists an SO(3)-submodulêΠ ∈ End(T) such thatΠ̂sym= Π and

Π̂AΠ̂ ⊂ Π̂. (2)

ThenΠ is an exact relation [16]. Thus, the search for exact relations has in large par
reduced to the understanding of the multiplication of subrepresentations of End(T).

WhenT is relatively simple, it is possible to find all solutions to (1) by brute fo
calculations. For example, this approach succeeded in finding all exact relations for thre
dimensional elasticity [10]. However, these naive methods are no longer feasible e
the next simplest case of piezoelectricity. Indeed, hereT = Sym(R3) ⊕ R3, so we are
dealing with a 45-dimensional representation Sym(T) with many degeneracies consisti
of 9 × 9 matrices. Moreover, we would like to develop techniques capable of attacki
much more general problems, such as the coupling ofk electric fields,l elastic fields, and
m temperature fields whereT = (Rk ⊗ R3) ⊕ (Rl ⊗ Sym(R3)) ⊕ (Rm ⊗ R).

These considerations motivate us to introduce subrepresentation semirings. Th
algebraic structures which formalize the multiplication of subrepresentations. Gi
groupG and an algebraA on which G acts by algebra automorphisms, we define
subrepresentation semiringSG(A) to be the set ofG-submodules ofA with operations in-
duced by the operations of the algebra. We will be most interested in the caseA = End(V ),
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whereV is a representation ofG, and we letE(V ) denote the semiringSG(End(V )). In
section two, we give some basic properties and work out some simple examples.

In section three, we study the ideals and subsemirings of subrepresentation sem
These are natural objects to consider from a purely algebraic perspective, but we will s
that they also play a role in applications to composite materials. We show that there is
to-one correspondence between saturated ideals ofSG(A) andG-invariant ideals ofA, i.e.,
an ideal ofA which is also a subrepresentation. There is a similar correspondence be
saturated subsemirings and invariant subalgebras ofA. We then give explicit classification
of the saturated ideals and subsemirings ofE(V ), the former for arbitraryV and the latter
under the assumption thatV is irreducible and that the underlying field is algebraica
closed. Whereas the result for ideals is straightforward, it turns out that the subsem
encode complicated representation-theoretic information aboutV , including howV can be
factored into a tensor product of projective representations and how it can be expre
an induced representation.

We now indicate how these concepts arise in the study of exact relations. It is e
see the relevance of subsemirings. Indeed, the sufficient condition for an exact relat
scribed above implies that̂ΠAΠ̂A ⊂ Π̂A; in other words,̂ΠA is an invariant subalgebra
To understand the connection between exact relations and ideals inE(T), we need to intro-
duce the notion of a uniform field relation. Given constant fieldsJ andE, the setM(J,E)

of positive definite symmetric tensorsL such thatJ = LE is closed under homogeniz
tion [15]. We say that an exact relationM (which we assume to be rotationally invaria
is a uniform field relation if it is the intersection of a collection of surfaces{M(Ji,Ei)}.
Fix an isotropic tensorL0, i.e., a tensor such thatR · L0 = L0 for all R ∈ SO(3). It is a
consequence of Proposition 3.3 together with results of [11] that there is a bijective co
respondence between the set of uniform field relations passing throughL0 and the set o
invariant left ideals of End(T). Explicitly, the invariant idealΛ gives rise to the uniform
field relationMΛ = {L0+K | K ∈ Λ}∩Sym+(T), where Sym+(T) denotes the symmetri
positive definite tensors.

In section four, we return to the original problem of computing the subrepresen
semiringsE(T), whereT is a representation of SO(3) overR. We will actually compute the
semiringsE(V ), whereV is a complex finite-dimensional representation of SU(2). This
will suffice for our applications toexact relations because the semiringsESO(3)(T) and
ESU(2)(T ⊗ C) are canonically isomorphic.

We begin with the case whenV is irreducible. The irreducible representations of SU(2)

are parametrized by elements ofJ = 1
2Z�0; the correspondingVj is also a representatio

of SO(3) if j is an integer. It turns out that we can describeE(Vj ) explicitly in terms of the
vanishing of certain constants called Racah (or 6j ) coefficients. These are coefficients d
pending on six indices which are familiar from the quantum theory ofangular momentum
In fact, we prove a more general result. Consider the multiplication of subrepresen
induced by the composition of linear maps Hom(Vk,Vl) ⊗ Hom(Vj ,Vk) → Hom(Vj ,Vk).
It is a basic fact that Hom(Vj ,Vk) is multiplicity-free. This implies that an irreducible sub
module is uniquely determined by a half-integera ∈ J . We show that ifVa ⊂ Hom(Vj ,Vk)

andVb ⊂ Hom(Vk,Vl), thenVc ⊂ VbVa if and only if the Racah coefficientW(jkcb;al)

is nonzero. Moreover, we prove that Racah coefficients can be defined entirely in terms
the multiplication of subrepresentations.
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It should be noted that this interpretation of the vanishing of Racah coefficients is co
ceptually much simpler than the description provided in angular momentum theory.
illustration, we show how our results explain Racah’s famous example relating the v
ing of W(3,5,3,5;3,3) to the embedding of the exceptional Lie algebraG2 in so(7).

We conclude the paper by computing the semiring End(V ), whereV is any finite-
dimensional representation of SU(2). As an application, we describe how all exact relati
can be found for the coupling of an arbitrary number of conductivity problems.

2. The subrepresentation semiring

Let G be a group andA an associative algebra with identity over a fieldF on whichG

acts by algebra automorphisms. Concretely, this means thatA is a representation with th
additional propertyg · (xy) = (g · x)(g · y) for g ∈ G andx, y ∈ A. The algebraA is called
a G-algebra. We letSG(A) be the set of all subrepresentations ofA. The usual addition
of subspaces makes this set into an idempotent monoid, which becomes an (additive
idempotent semiring with multiplication defined byXY = span{xy | x ∈ X,y ∈ Y }. The
additive and multiplicative identities are{0} andF = F1A respectively (and will often be
denoted simply by 0 and 1). Note that the multiplication in this semiring is specifie
the products of the indecomposable subrepresentations ofA. Thus, the semiringSG(A) is
determined by the structure constantsCW

U,V , where for any three indecomposable subr
resentationsU , V , andW of A, CW

U,V is 1 if W ⊂ UV and 0 otherwise.
The natural partial order onSG(A) given by inclusion can also be expressed in term

addition asX ⊆ Y if and only if X + Y = Y . For this partial order,X + Y is the supremum
of X andY . In fact, SG(A) has arbitrary suprema over which multiplication distribut
if I is an index set, supi∈I Xi = ∑

i∈I Xi . This makesSG(A) into a complete idempoten
semiring.1 The unique infinite element ofSG(A) is A itself, and we will sometimes deno
it by ∞.

Letφ :A → B be a homomorphism ofG-algebras. It is immediate thatSG(φ) :SG(A) →
SG(B) is a morphism of complete idempotent semirings, i.e., a semiring morphism
serving suprema. We conclude thatSG is a functor from the category ofG-algebras to
the category of complete idempotent semirings. We note two other natural construct
morphisms between subrepresentation semirings. Iff :H → G is a group homomorphism
then there is an obvious injective pullback morphismf ∗ :SG(A) → SH (A). Moreover,
if K is an extension field ofF , then extending scalars gives an injective morph
SG,F (A) → SG,K(A ⊗F K) (with self-explanatory notation). Restriction to a subfie
on the other hand, does not give rise to a semiring morphism because restriction does
preserve multiplicative identities.

Remark. In our applications to composite materials, we use the fact thatSSO(3),R(A) is
canonically isomorphic toSSU(2),C(A ⊗ C) for any real SO(3)-algebraA. This is true be-

1 In the literature, complete idempotent semirings are sometimes called complete dioids or quantales [12].
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cause the natural morphismsSSO(3),R(A) → SSO(3),C(A⊗C) andπ∗ :SSO(3),C(A⊗C) →
SSU(2),C(A ⊗ C) coming from the double cover SU(2)

π→ SO(3) are both isomorphisms.

Semiring morphisms do not behave as well as ring homomorphisms. Letγ :R → S be
a morphism of semirings. It is not true in general thatR/ker(γ ) is isomorphic to the rang
of γ ; in particular, a semiring morphism withzero kernel need not be injective. The ran
of γ is isomorphic to the quotient semiringR/ ≡γ , arising from the congruence relatio
r ≡γ r ′ if and only if γ (r) = γ (r ′). The quotient semiringR/ker(γ ), on the other hand, i
defined using the congruence relationr ≡ker(γ ) r ′ if and only if there existsk, k′ ∈ ker(γ )

such thatr + k = r ′ + k′. Thus, the analogue of the first isomorphism theorem for r
holds forγ precisely when these two equivalence relations are the same, andγ is then
called a steady morphism.

Not surprisingly, morphisms arising fromG-algebra homomorphisms via the func
SG are steady. To see this, letφ :A → B be aG-algebra homomorphism, and suppo
thatSG(φ)(X) = SG(φ)(Y ) or φ(X) = φ(Y ). It is obvious thatφ(X + ker(φ)) = φ(Y +
ker(φ)), and a simple verification shows thatX + ker(φ) = Y + ker(φ). Since ker(φ) is a
subrepresentation in the kernel ofSG(φ), SG(φ) is a steady morphism. Summing up, w
have:

Theorem 2.1.The correspondenceSG is a functor from the category ofG-algebras to the
category of complete idempotent semirings. Moreover, the morphisms in the imageSG

are steady.

Before continuing with the general development, we introduce the class ofG-algebras
which will be our primary interest. LetV be a finite-dimensional representation ofG (over
the fieldF ), and consider the central simple algebraA = End(V ). This algebra becomes
G-algebra via(g · f )(v) = g(f (g−1(v))). (The same formula makes End(V ) into aG-al-
gebra ifV is a projective representation.) We letE(V ) denote the semiringSG(End(V )).
In the context of complex representations of compact groups, note thatE(V ) is finite if
and only if End(V ) is multiplicity free, i.e., every irreducible component appears w
multiplicity one. In this case,E(V ) has 2k elements, wherek is the number of irreducibl
components. As an additive monoid,E(V ) is isomorphic to the “additive” monoid of th
semiringP({1, . . . , k}) consisting of the subsets of ak element set under union and inte
section. However, these semirings are never isomorphic fork > 1, since the multiplicative
identity and infinite element do not coincide inE(V ).

We now give three simple concrete examples.

Examples.1. If V is one-dimensional, then End(V ) is just theG-algebraF . Therefore,
E(V ) = SG(F ) is the Boolean semiringB = {0,1} with 1+ 1 = 1.

2. LetC2 be the standard representation of SU(2). (In the notation of section four, thi
is the irreducible representationV 1

2
.) The SU(2)-algebra End(C2) decomposes into a d

rect sumC ⊕ U of irreducible subrepresentations. The semiringE(C2) is a commutative
semiring whose structure is determined byU2 = ∞ = End(C2). In fact, it can be shown
that if E(V ) has size four for any representationV such that End(V ) is completely re-
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ducible, thenE(V ) is isomorphic toESU(2)(C2). (As a point of reference, there are
distinct idempotent semirings of size 4 [20].)

3. Let F be a field whose characteristic is not 2 or 3, and letV be the standard rep
resentation of the symmetric groupS3. As a representation, End(V ) is isomorphic to
F ⊕ sgn⊕V . The semiringE(V ) is again commutative and is determined by the prod
sgn2 = F , sgnV = V , andV 2 = F + sgn. In characteristic three, the standard represe
tion is indecomposable, but not irreducible, and the subrepresentation semiring is in
In characteristic two,V is irreducible, but End(V ) is not completely reducible. Here,E(V )

has six elements.

It should be noted that ifW is a proper subrepresentation ofV , then it is never true tha
E(W) is a subsemiring ofE(V ). However, ifV is a unitary representation, thenE(W) is
a subhemiring ofE(V ), i.e., an additive submonoid closed under multiplication, but
containing 1. This is because in this case,there is a natural intertwining map End(W) ↪→
End(V ) given by extendingf :W → W to V by setting it equal to zero onW⊥.

We will also need to consider a generalization of our setup. Given a representationX

of G, we continue to denote the set of subrepresentations ofX by SG(X); it is an idem-
potent monoid. LetA, B, andC be three representations ofG together with aG-map
A ⊗ B → C. It is now possible to define a multiplication mapSG(A) × SG(B) → SG(C)

just as before. Again, this multiplication is fully determined by the products of indecom
posable representations, and we can define structure constants for the multiplicati
will be interested in the case when the three representations are spaces of homomorphis
Given representationsU andV , we letH(U,V ) denote the monoidSG(Hom(U,V )). This
monoid is in fact an(E(V ),E(U))-bisemimodule. IfW is a third representation, we ha
theG-map Hom(V ,W) ⊗ Hom(U,V ) → Hom(U,W) given by composition, and we ob
tain a productH(V ,W) ⊗ H(U,V ) → H(U,W). We call this matrix multiplication o
subrepresentations.

3. Ideals, subsemirings, and subhemirings ofE(V )

We now return to an arbitraryG-algebraA and examine the ideals and subsemiring
SG(A). To avoid pathologies caused by the lack of additive inverses, we restrict our
to the case when the underlying additive submonoid is subtractive. LetZ be a nonempty
subset of a semiringR. Recall thatZ is called subtractive ifx ∈ Z andx + y ∈ Z imply
y ∈ Z while Z is called strong ifx +y ∈ Z impliesx ∈ Z andy ∈ Z. If R is an idempoten
semiring, we say thatZ is saturated ifx ∈ Z andy � x impliesy ∈ Z. In an idempoten
semiring, these concepts coincide.

Lemma 3.1.LetZ be a nonempty subset of an idempotent semiringR. Then the following
statements are equivalent:

(1) Z is subtractive.
(2) Z is strong.
(3) Z is saturated.
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Proof. SupposeZ is saturated. Ifx +y ∈ Z, thenx, y ∈ Z, sincex � x +y andy � x +y.
ThusZ is strong. IfZ is subtractive,x ∈ Z, andy � x, thenx + y = x ∈ Z. This implies
thaty ∈ Z, soZ is saturated. Finally, it is trivial that strong implies subtractive.�

In particular, since an ideal of a semiring is the kernel of a semiring morphism i
only if it is subtractive, the saturated ideals of an idempotent semiring are precisely t
kernels.

Given aG-invariant left idealI of A, define the saturation ofI by I = {J ∈ SG(A) |
J ⊆ I }. This is a saturated left ideal containing a maximum element. Conversely, giv
any left idealP of SG(A), sup(P ) is a G-invariant left ideal ofA. These mappings giv
a bijective correspondence betweenG-invariant left ideals and saturated left ideals with
maximum element. IfA is finite-dimensional, left Noetherian, or satisfies the ascen
chain condition on invariant left ideals, thenthe maximum element condition is redunda
Similar considerations hold for invariant right ideals, invariant subalgebras, etc. Thu
have

Proposition 3.2. There is a bijective correspondence betweenG-invariant ideals(left,
right, or two-sided) of A and saturated ideals(of the appropriate type) of SG(A) contain-
ing their suprema. There is a similar correspondence betweenG-invariant subalgebras
(respectively unital subalgebras) and saturated subhemirings(respectively subsemirings)
containing their suprema. IfA is finite-dimensional or satisfies a suitable ascending ch
condition, then the supremum condition is redundant.

Remark. The saturation of an invariant unital subalgebraB is the largest subsemirin
whose supremum isB. There is also a minimal such subsemiring, namely{0,1,B}. There
is no analogue of this for nonunital subalgebras or ideals.

3.1. Ideals

We now discuss the saturated ideals and subhemirings ofE(V ). The ideals are easy t
describe. LetW be any subrepresentation ofV . We define invariant left and right idea
of End(V ) called the annihilator and coannihilator ofW via the formulas Ann(W) = {f ∈
End(V ) | f (W) = 0} and Coann(W) = {f ∈ End(V ) | f (V ) ⊆ W }. It turns out that thes
are the only invariant ideals [19].

Proposition 3.3.The saturated left(right) ideals ofE(V ) are Ann(W) (Coann(W)) for
any subrepresentationW of V . There are no nontrivial saturated two-sided ideals.

Remarks.1. Analogous results hold for the saturated leftE(V ) and rightE(U) semimod-
ules of the bisemimoduleH(U,V ).

2. UnlessV is one-dimensional,E(V ) always has nonsaturated one-sided ideals. Ind
suppose every one-sided ideal is saturated. This implies that the infinite element E(V )

is contained in no proper one-sided ideal and must therefore be a unit. If End(V )A = F =
AEnd(V ), thenA is contained in the center of End(V ). (Givena ∈ A andx ∈ End(V ),
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then eithera is a multiple ofx−1 or ax = xa = 0.) But this means that End(V )A either
vanishes or equals End(V ), a contradiction for dimV > 1.

3. This explicit characterization of invariant ideals shows the existence of the bije
between uniform field exact relations passing through the isotropic tensorL0 and satu-
rated ideals ofE(T) described in the introduction. Indeed, Theorem 4.5 of [11] states
every such uniform field relation is of the form(L0 + Ann(N)) ∩ Sym+(T), whereN is a
submodule ofT, and the result follows.

In particular, the semiringE(V ) has no nontrivial saturated one-sided ideals if and o
if V is irreducible, and this fact gives rise to other characterizations of the irreducibil
V in terms of properties ofE(V ). First, we need to recall some definitions.

A semiringR is called left austere if it has no nontrivial subtractive left ideals. R
austere is defined similarly. The semiring is called entire if it has no zero divisors
infinite elementa ∈ R is called strongly infinite ifar = a = ra for all r �= 0. Finally, a
character ofR is a morphismR → B.

Proposition 3.4.The following are equivalent:

(1) V is irreducible.
(2) E(V ) is left austere.
(3) E(V ) is right austere.
(4) The infinite elementEnd(V ) is strongly infinite.
(5) E(V ) is entire.
(6) E(V ) has a nonzero character(which is unique).

In this case, every left and rightE(V )-semimodule is entire. In particular, for any repr
sentationU , the leftE(V )-semimoduleH(U,V ) and the rightE(V )-semimoduleH(V ,U)

are entire.

Proof. The first three conditions are equivalent because of the previous proposition
suppose these conditions hold, but End(V ) is not strongly infinite. Then there existsW �= 0
such that End(V )W is not the wholeG-algebra; call this productQ. Consider the se
{U ∈ E(V ) | End(V )U ⊆ Q}. It is immediate that this set is a nonzero proper satur
left ideal, contradicting the left austerity ofE(V ). On the other hand, ifL �= 0 is a proper
G-invariant left ideal, then End(V )L ⊂ L, so End(V ) is not strongly infinite.

Note that ifγ is a character ofE(V ), then kerγ is a proper saturated ideal, which mu
be zero. Thus, for eachW �= 0, γ (W) = 1. It is now clear thatγ is a morphism if and only
if γ (WU) = γ (W)γ (U) = 1 for all nonzeroU andW , and this is true if and only ifE(V )

is entire.
It is a standard result that if a semiringR is left (right) austere, thenR is entire as

is every left (right)R-semimoduleM [8, Proposition 6.25]. (Simply note that the on
sided annihilator of a nonzero element is a proper saturated one-sided ideal.) It re
to show thatE(V ) is not entire forV reducible. LetW be a proper subrepresentatio
and consider the product Ann(W)Coann(W). Given f ∈ Ann(W) and h ∈ Coann(W),
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f h(V ) ⊆ f (W) = 0. Thus, the generators of Ann(W)Coann(W) are all 0. It follows that
the saturation of any nontrivial invariant left or right ideal is a zero-divisor.�
Remark. If F is algebraically closed, we obtain another equivalent condition, nameV

is irreducible if and only if any nonzero saturated subhemiring is a subsemiring. The
is much more difficult and will use the classification of saturated hemirings ofE(V ) for V

irreducible given in Theorem 3.7 below.

We can now easily prove the previous remark about the structure of semiringsE(V )

of size four. LetV be a representation such that End(V ) is a completely reducible rep
resentation with irreducible decompositionF ⊕ U . The semiringE(V ) is determined by
the productU2, and we show thatU2 = End(V ). First, note thatV is irreducible; if not,
E(V ) must contain at least five elements: 0, 1,∞, and two others corresponding to a no
trivial left and right invariant ideal. The proposition shows that∞ is strongly infinite, so
∞ = ∞U = (1 + U)U = U + U2. This means thatU2 can only be 1 or∞. However,
if U2 = F , then all elements ofU commute with each other by an argument given i
previous remark. This implies the same for End(V ) = U ⊕ F , which is absurd.

3.2. Subhemirings and subsemirings

We now consider the saturated subhemirings ofE(V ). One cannot hope to find a
explicit description in general. Indeed, ifV is a vector space endowed with the triv
G-action, this amounts to classifying all the subalgebras of End(V ). We therefore make
the assumptions thatF is algebraically closed andV is irreducible.

First, we show how to construct the invariant unital subalgebras of End(V ), i.e., the
saturated subsemirings ofE(V ). To do this, we need to define induction ofG-algebras.
Let H be a subgroup ofG of finite index andB anH -algebra. Choose a left transvers
g1 = e, g2, . . . , gn. The inducedG-module IndGH(B) = ⊕n

i=1 giB becomes aG-algebra
via (gib)(gjb

′) = δij gibb′, and it is easy to see that this is independent of the choic
transversal. In other words, IndG

H (B) is isomorphic to
⊕n

i=1 B as anF -algebra with the
G-action permuting the factors. It is clear that the usual properties of induction such a
sitivity on subgroups remain valid. Moreover, ifC is anH -subalgebra ofB, then IndGH (C)

is aG-subalgebra of IndGH(B).
It should be remarked that this is not the same as the induction of interiorG-algebras

(i.e., algebras on which the group acts by inner automorphisms) introduced by Puig
context of modular representation theory [17,21]. Indeed, ifB is an interiorH -algebra,
then Puig’s inducedG-algebra P-IndGH (B) is isomorphic as an algebra toMn(B) instead
of Bn. However, it is not hard to see the connection between the two constructions.
that an interiorH -algebra is an algebraB together with a homomorphismφ :H → B×; the
groupH then acts onB via the inner automorphismsh ·b = φ(h)bφ(h)−1. As aG-module,
P-IndGH (B) = FG ⊗FH B ⊗FH FG = ⊕n

i,j=1 giBgj
−1 with G acting by conjugation in

the obvious way. Ring multiplication is determined by the equation(gibgj
−1)(gkb

′gl
−1) =

δjk(gibb′gl
−1) with the unity element given by

∑n
i=1(gi1Bgi

−1). Note thatB embeds
naturally into P-IndG(B) via the mapb �→ ebe.
H
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Proposition 3.5.There is a naturalG-equivariant embedding ofIndG
H(B) into P-IndG

H(B),
andIndG

H(B) may be identified as the smallestG-subalgebra ofP-IndG
H(B) containingB.

Proof. The embedding IndGH(B) → P-IndGH(B) is given by the block diagonal ma∑
gibi �→ ∑

gibigi
−1. It is easy to see that the image of the embedding is

⊕n
i=1 giBgi

−1,
which is evidently the smallestG-subalgebra containingB. �

In particular, if W is a representation ofH , then End(W) is an interiorH -algebra,
and theG-algebra P-IndGH(End(W)) is canonically isomorphic to End(IndG

H (W)). We thus
have the corollary:

Corollary 3.6. IndG
H (End(W)) is a G-invariant subalgebra ofEnd(IndG

H(W)). More-
over, if Q is anyH -subalgebra ofIndG

H(End(W)), then IndG
H(Q) is a G-subalgebra of

End(IndG
H (W)).

Complementary to this procedure, which except in trivial cases produces invaria
subalgebras which are products of multiplecopies of a simple algebra, we have a
other construction which gives rises to invariant simple subalgebras. Suppose thatV can
be decomposed as the tensor product of (necessarily irreducible) projective representa
tions, i.e.,V ∼= U ⊗ U ′. The endomorphism ring then factors into the tensor pro
End(V ) ∼= End(U) ⊗ End(U ′). It is immediate that End(U) ⊗ F andF ⊗ End(U ′) are
invariant subalgebras; in fact, each is the centralizer of the other, so they form a dual pa
of invariant subalgebras. To give a trivial example, the factorizationV = V ⊗ F gives rise
to the invariant subalgebras End(V ) andF .

Now suppose that we are given data consisting of a quadruple(H,W,U,U ′), whereH

is a finite index subgroup ofG, W is a representation ofH such that IndGH (W) = V , andU

andU ′ are projective representations ofH such thatW ∼= U ⊗U ′. Combining the two con
structions, we obtain a dual pair of semisimple invariant subalgebras IndG

H (End(U) ⊗ F)

and IndGH(F ⊗ End(U ′)). In fact, it turns out that every unital invariant subalgebra is
tained in this way. We will give only a brief indication of the proof of this statem
showing how to associate a quadruple to a unital invariant subalgebra. For further d
see [19].

Let B be a unital invariant subalgebra of End(V ), and letU be a simpleB-submodule
of V . The translatesgU are also simpleB-submodules, and it can be shown us
the irreducibility of V that V is a sum of simpleB-submodules isomorphic to the
translates and thatB is semisimple. LetW be the isotypic component ofU in V , say
W ∼= ⊕l

j=1 U . If g2U, . . . , grU are the other simple submodules appearing inV , then
V = W ⊕ g2W ⊕ · · · ⊕ grW is the decomposition ofV into isotypic components, an
G acts transitively on these components. We letH be the stabilizer ofW under this per-
mutation representation. Moreover, settingB1 = End(U) andk = dimU , the Wedderburn
decomposition ofB is B ∼= B1 × g2B1g

−1
2 × · · · × grB1g

−1
r

∼= ∏r
i=1 Mk(F). Finally, the

centralizerZEnd(V )(B) of B preserves the isotypic components ofV , and we letU ′ be
a simpleZEnd(V )(B)-submodule ofW . It turns out thatZEnd(V )(B) ∼= ∏r

i=1 Ml(F ). It
can now be shown thatB and ZEnd(V )(B) are isomorphic to IndGH (End(U) ⊗ F) and
IndG(F ⊗ End(U ′)) respectively coming from the quadruple(H,W,U,U ′).
H
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A consequence of this result is that unital invariant subalgebras are semisimp
very special type. A (unital) semisimple subalgebraB of End(V ) is called symmetrically
embedded if bothB and its centralizer are products of isomorphic simple algebras, sayB ∼=
Mk(F)×· · ·×Mk(F) andZEnd(V )(B) ∼= Ml(F )×· · ·×Ml(F ), with each product havin
r factors. Equivalently, ther Wedderburn components ofB are isomorphic asF -algebras,
and the simpleB-submodules ofV all appear with the same multiplicityl. Concretely,
this means thatB can be embedded into End(V ) as a block diagonal subalgebra havingrl

blocks of sizek (with dimV = rlk); eachMk(F) embeds diagonally intol blocks.
So far, we have only considered unital invariant subalgebras. However, we will

that with the exception of{0}, there are no nonunital invariant subalgebras. Thus, we
the following description of the invariant subalgebras of End(V ) or equivalently, the sub
hemirings ofE(V ).

Theorem 3.7.Every nonzero invariant subalgebra ofEnd(V ) is of the formIndG
H (End(U)⊗

F) for some quadruple(H,W,U,U ′) as above. Thus, the nonzero saturated hemiring

E(V ) are of the formIndG
H(End(U) ⊗ F).

Remarks. 1. The duality operation on the set of nonzero invariant subalgebras giv
taking centralizers corresponds to interchangingU andU ′ in the quadruple.

2. The map from quadruples to invariant subalgebras is not injective. However, r
dancies only arise from theG-action on the set of quadruples. WhenV is expressed a
IndG

H(W) ∼= W ⊕ g2W ⊕ · · · ⊕ grW , the choice ofW as the starting point for the indu
tion is arbitrary. We can just as well writeV ∼= IndG

Hgi (giW). Thus, ifB comes from the
quadruple(H,W,U,U ′), it will also come from the(Hg,gW,gU,gU ′)’s and from no
other quadruple. It should also be observed that the projective representationsU andU ′,
even when they can be expressed as linear representations, are of course only defin
projective equivalence. For more details, see [19].

The invariant subalgebras of End(V ) thus encapsulate rather delicate representation
theoretic information which is often difficult to calculate. Even whenG is finite andF = C,
the character table ofG does not suffice to determine the invariant subalgebras. In gen
it is necessary to know the character tables of a covering group of each subgrouG

whose index divides the dimension ofV . Before proceeding, we give some illustrations
the theorem.

Examples.1. Let F = C andG be a compact, simply connected Lie group. ThenG ∼=
G1 × · · · × Gs , where eachGi is simple, compact, and simply connected. An irreduc
representationV of G can be expressed as a tensor productV ∼= V1 ⊗ · · · ⊗ Vs where
Vi is an irreducible representation ofGi . The groupG has no finite-index subgroup
Moreover, the only factorizations ofV are the obvious ones: given a subsetI ⊂ [1, s],
V ∼= UI ⊗U ′

I where the representationsUI andU ′
I are defined byUI = ⊗

i∈I Vi ⊗⊗
i /∈I C

andU ′
I = UIc . Thus, we obtain a result of Etingoff that the nonzero invariant subalge

are just End(UI ) ⊗ C for I ⊂ [1, s]. In particular, if each of theVi ’s is nontrivial, there are
2s + 1 invariant subalgebras. IfG is simple, there are no nontrivial invariant subalgeb
Similar results hold for arbitrary compact connected Lie groups; see [19].
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2. We compute the invariant subalgebras of End(V ) for all irreducible representation
of the symmetric groupsS3, S4, andS5 andF = C. We use the usual parametrization
the irreducible representations ofSn in terms of partitions ofn. We omit the trivial case
whenV is one-dimensional. Also, since representations corresponding to conjugate
tions have isomorphic endomorphism algebras (one is obtained from the other by ten
by the alternating representation, so they are projectively equivalent), we only includ
representation from each such pair. Finally, we only list the nontrivial invariant subalge
bras.

S3: V(2,1) V(2,1)
∼= IndS3

A3
χ whereχ is either nontrivial character ofA3, so End(V(2,1)) has

an invariant subalgebra isomorphic toC ⊕ C.
S4: V(2,2) V(2,2)

∼= IndS4
A4

χ whereχ is either nontrivial character ofA4, so End(V(2,2)) has
an invariant subalgebra isomorphic toC ⊕ C.

V(3,1) V(3,1)
∼= IndS4

D4
τ whereD4 is the dihedral group〈(1234), (13)〉 and τ is the

character withτ ((1234)) = −1 andτ ((13)) = 1, so End(V(3,1)) has an invarian
subalgebra isomorphic toC ⊕ C ⊕ C.

S5: V(4,1) No nontrivial invariant subalgebras.
V(2,2,1) No nontrivial invariant subalgebras.

V(3,1,1) V(3,1,1)
∼= IndS5

A5
σ whereσ is either 3-dimensional irreducible representat

of A5, which can of course be decomposed asσ ∼= σ ⊗ 1. It can also be
expressed as IndS5

Q µ whereQ is a subgroup of size 20 andµ is one of the two
complex (i.e. nonreal) characters ofQ. (In terms of generators and relation
Q = 〈s, t | s5 = t4 = e, tst−1 = s2〉; it can be realized as the centralizer of t
subgroup〈(12345)〉 with s = (12345) andt = (1243). For its character table
see [3].) Thus, the nontrivial invariant algebras of End(V(3,1,1)) consist of a
dual pair isomorphic toM3(C) ⊕ M3(C) andC ⊕ C and a self-dualC6.

3. We give one last example which is more complicated. LetG be the Weyl group
of the root systemE6, a group of size 51840. This group has a rank two subgrouH

isomorphic to the finite simple groupU4(2). (This can be realized as the group of 4× 4
matrices with coefficients inF4 which preserve a nondegenerate Hermitian form and h
determinant one.) LetWi denote theith irreducible representation ofH from the list in the
Atlas of Finite Groups[4]. The groupG has an irreducible representationV of dimension
60 which is isomorphic to IndGH(W12) and furthermore,W12 ∼= W3 ⊗ W4 ∼= W12 ⊗ W1,
whereW1 is trivial andW12, W3 andW4 have degrees 30, 5, and 6 respectively. We t
obtain four invariant subalgebras with the same centerC2 ∼= IndG

H(End(W1)) in two dual
pairs isomorphic toM30(C)2 and C2 andM5(C)2 andM6(C)2 respectively; moreove
these are the only invariant subalgebras with this center.

The theorem is also useful in determining when a subrepresentation of End(V ) gener-
ates the algebra. Indeed, we have the corollary:

Corollary 3.8. If V is a primitive representation(i.e., is not induced from a proper su
group) and does not factor into a product of projective representations, then every no
subrepresentation ofEnd(V ) except the unique trivial subrepresentationF generates the
algebra.
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In particular, this is the case for simple compact Lie groups. Another common exa
consists of a representation of prime degreep of a group with no indexp subgroups.

It remains to show that there are no nonzero nonunital invariant subalgebras of En(V ).
The proof uses the classification of unital invariant subalgebras and depends on the
ing lemma.

Lemma 3.9.Let B be a semisimple algebra overF . ThenB has a nonunital subalgebr
of codimension one if and only if one of the simple components isF . Moreover, any such
subalgebra is a two-sided ideal obtained by omitting one such simple component.

Proof. Let B1, . . . ,Br be the simple components ofB. We regardB as an affine spac
with coordinatesXk

ikjk
for 1 � k � r and 1� ik, jk � dk, whereBk is a dk by dk matrix

algebra.
SupposeQ is a codimension one nonunital subalgebra ofB. Every element ofQ is

noninvertible inB. This follows because ifb is invertible, then 1B is a polynomial with
vanishing constant term inb. (To see this, embedB in a suitable matrix algebra, say b
the left regular representation, and apply the Cayley–Hamilton theorem.) This mea
Q is contained in the zero set of the polynomialh(X) = det(X1) · · ·det(Xr ) consisting
of the product of the determinants for eachBk . The algebraQ itself is the zero set of a
linear polynomialf , so we must havef dividing h. Since each determinant factor ofh

is irreducible, this implies thatf = det(Xk) for somek. But thenBk
∼= F , andQ is the

product of the remaining simple factors. The converse is trivial.�
In our situation, the nonunital invariant subalgebraQ is a codimension one subalgeb

of the invariant subalgebraB = Q + F . By the structure theorem for unital invariant su
algebras,B is the product of isomorphic simple components on whichG acts transitively.
The lemma now implies thatB is isomorphic toFr , andQ consists of all vectors with
vanishingkth component for a fixedk. This is impossible by transitivity unlessr = 1, so
the only nonunital invariant subalgebra is{0}.

We can now add another characterization of the irreducibility ofV in terms of the
semiringE(V ) to our list from Proposition 3.4.

Proposition 3.10.If F is algebraically closed, thenV is irreducible if and only if every
saturated nonzero subhemiring ofE(V ) is a subsemiring.

Proof. This follows immediately from the theorem and the observation that ifV is re-
ducible, thenE(V ) has proper nontrivial saturated left ideals.�

4. Subrepresentation semirings for SU(2) and the vanishing of Racah coefficients

In this section, we will explore the semiring structure ofE(V ) more closely, concentra
ing primarily on the cases relevant for applications to material science. In particula
goal of this section is to give a complete description of the structure constants forE(V )

whereV is an arbitrary finite-dimensional complex representation of SU(2).
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For the moment, we allowG to be any compact group. We begin with a criterion
commutativity ofE(V ).

Proposition 4.1.Let V be an irreducible self-dual representation whose endomorph
ring End(V ) is multiplicity free. ThenE(V ) is a finite commutative semiring.

Proof. Self-duality of V implies thatV is endowed with a nondegenerateG-invariant
bilinear form, which will be symmetric or antisymmetric depending on whetherV is
real or quaternionic. In either case, the transpose with respect to this form is aG-anti-
automorphism of End(V ). If W is a subrepresentation, thenWt is an isomorphic subrep
resentation, and the fact that End(V ) is multiplicity free implies thatW = Wt . Commuta-
tivity now follows immediately:WU = (WU)t = UtWt = UW . �

It is easy to see thatE(V ) cannot be commutative unlessV is irreducible. Indeed, i
E(V ) is commutative, then every saturated one-sided ideal is automatically two-side
there are no nontrivial saturated two-sided ideals, so by Proposition 3.4,V is irreducible.

However, it is not true thatE(V ) is necessarily commutative for an arbitrary irreduci
self-dual representation. In fact, we do not know of any commutative semiringE(V ) which
is not finite. We give two simple examples to illustrate this point.

Examples.1. Let V be the standard representation ofA4. The endomorphism algeb
End(V ) decomposes into the sum of each of the three linear characters together with tw
copies ofV . If U is a subrepresentation isomorphic to one of the nontrivial characters
U fails to commute with all but two of the infinite number of subrepresentations isomo
to V .

2. Let V be the representationV(3,1,1) of S5. Choose a basis forV in which the
block-diagonal subalgebraM3(C) ⊕ M3(C) is invariant. The alternating representati
then appears as the line spanned by the block-diagonal matrix(I,−I). Each irreducible
5-dimensional representation appears with multiplicity two: one copy in the inva
subalgebra and one block-antidiagonal copy. These four subrepresentations are t
five-dimensional subrepresentations which commute with the alternating subrepre
tion.

For the rest of this section, we assume thatG = SU(2). Recall that for everyj in the
index setJ = 1

2Z�0, there is a unique irreducible representation of dimension 2j + 1,
which we call Vj . In quantum theory,Vj is the representation corresponding to to
angular momentumj . Concretely,V 1

2
is the standard representation whileV1 is the ad-

joint representation (or equivalently, the representation inC3 obtained via the double cove
SU(2) → SO(3)). EachVj is self-dual, with the integer representations being real and
half-integer representations quaternionic. Moreover, the group SU(2) is multiplicity free,
i.e., the tensor product of any two irreducible representations is multiplicity free. In fac
Clebsch–Gordan formula states thatVj ⊗ Vk

∼= ∑j+k
i=|j−k| Vi . We say that the triple(jki)

is admissible ifi is one of the indices appearing in this sum. Since End(V ) is isomorphic
to V ∗ ⊗ V , it is an immediate corollary of Proposition 4.1 thatE(Vj ) is a commutative
semiring with 22j+1 elements.
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A finite-dimensional representationV of SU(2) is determined up to isomorphism b
the multiplicities of the irreducible components ofV . Consequently, if the highest weig
present inV is n, we can expressV conveniently asV = ⊕

j∈Jn
Crj ⊗Vj whereJn = {j ∈

J | j � n} andrj � 0. By elementary linear algebra, we have

End(V ) ∼=
⊕
j∈Jn

Hom
(
Crj ⊗ Vj ,Crk ⊗ Vk

)
∼=

⊕
j∈Jn

Hom
(
Crj ,Crk

) ⊗ Hom(Vj ,Vk), (3)

with the G-action acting only on the second factor. This equation makes it clear tha
first step to understanding the semiringE(V ) is to understand not only the semiringsE(Vj ),
but also the natural multiplication

H(Vk,Vl) ⊗ H(Vj ,Vk) → H(Vj ,Vl). (4)

Let Va andVb be subrepresentations of Hom(Vj ,Vk) and Hom(Vk,Vl) respectively.
Note thatVbVa is a quotient ofVb ⊗ Va and hence multiplicity free. It is obvious thatVc

cannot be a component ofVbVa unless it is simultaneously a component of Hom(Vj ,Vl) ∼=
Vj ⊗ Vl andVb ⊗ Va , i.e., unless(j lc) and(bac) are admissible. However, it is not tru
that this condition is sufficient. In fact, it turns out that the structure constants of the
tiplication given in Eq. (4) depend on the vanishing of certain coefficients called Rac
coefficients which are familiar from the quantum theory of angular momentum. These
real constantsW(j1j2j3j4; j5j6), parametrized by six irreducible representations, wh
encode the associativity of a tensor product of three irreducible representations [
will describe them in more detail below, but first we state our main theorem on the
ture constants for the matrix multiplication of subrepresentations.

Theorem 4.2.The Racah coefficientW(jkcb;al) is nonzero if and only ifVa , Vb, andVc

are subrepresentations ofHom(Vj ,Vk), Hom(Vk,Vl), andVbVa respectively. In particular
if Va ∈ H(Vj ,Vk) andVb ∈ H(Vk,Vl), then

VbVa =
⊕

{c|W(jkcb;al) �=0}
Vc. (5)

Corollary 4.3. If Va , Vb, andVc are subrepresentations ofEnd(Vj ), then

VbVa =
⊕

{c|W(jjcb;aj �=0}
Vc. (6)

Remark. In terms of 6j -coefficients, the condition of the theorem is that{
j k a

b c l

}
�= 0.
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It is not at all clear a priori that the Racah coefficientW(jkcb;al) have anything to
do with the structure constants for the multiplication of subrepresentations. Indee
coefficient is nonzero if and only if there is a nonzero intertwining map defined b
composition

Vc → Va ⊗ Vb → (Vj ⊗ Vk) ⊗ Vb
∼= Vj ⊗ (Vk ⊗ Vb) → Vj ⊗ Vl → Vc (7)

whereas the theorem states that this is true if and only if there is a nonzero intertwinin
Vc → VbVa [5]. This statement is not true in general for other groups, even for simpl
ducible groups (cf. [22,23]), whose representation theory bears a close formal resem
to that of SU(2).

It is obvious from (7) that the Racah coefficientW(jkcb;al) vanishes if any of the fou
triples(abc), (jka), (kbl) and(j lc) are not admissible. However, there are also nontri
zeros, and these are not well understood. (For a survey, see [2].) The descriptio
nontrivial zero ofW(jkcb;al) using the classical definition is rather cumbersome, nam
that two embeddingsVc → Vj ⊗ Vk ⊗ Vb corresponding to two different iterations of th
Clebsch–Gordan formula are orthogonal. The interpretation provided by the theo
conceptually much simpler.

The smallest example in which the multiplication semiringE(Vj ) is not deter-
mined solely by the admissibility conditions occurs forj = 3

2. Here, the fact tha
W(3

2, 3
2,2,2;2, 3

2) = 0 implies thatV2V2 does not containV2 as a subrepresentation.
A more illuminating example involves End(V3). Racah has shown that the ze

W(3,5,3,5;3,3) is related to the embedding of the exceptional Lie algebraG2 in so(7)

[18]. The theorem provides a particularly simple way to see this connection. Consid
SU(2)-algebra End(V3). SinceV3 is a real representation of dimension 7, the antisymm
ric matricesso(7) form aG-invariant Lie algebra which decomposes asV1 + V3 + V5. We
verify thatV1 + V5 is a Lie subalgebra. First, note that[V1,Vk] ⊆ V1Vk ∩ so(7) = Vk for
k = 1,3,5. Also,[V5,V5] ⊆ V5V5 ∩ so(7) ⊂ V1 + V5 becauseW(3,5,3,5;3,3) = 0. This
14-dimensional Lie subalgebra is justG2.

To prove the theorem, we use the standard orthonormal basis forVj from angular mo-
mentum theory. This basis consists of weight vectors{vj

−j , . . . , v
j
j }. This means that th

vectorvj
m of weightm is an eigenvector with eigenvalue 2m of the elementH = ( 1 0

0 −1

)
of the complexified Lie algebrasu(2) ⊗ C ∼= sl(2,C). Moreover, the basis is uniquely d
termined by the choice ofvj

j ; if F = ( 0 0
1 0

)
, then the phase ofvj

m is determined by the
condition that it is a positive scalar multiple ofFj−mv

j

j . In quantum theory,vj
m is just the

eigenket|jm〉 with total and projection angular momentum quantum numbersj andm

respectively. We call such a basis a Clebsch–Gordan or CG basis forVj .
We will also need an explicitG-isomorphismφj :V ∗

j → Vj . This is given by the for-
mula

v
j∗
m �→ (−1)mv

j
−m,

where{vj∗
m } is the dual basis and(−1)m is interpreted asi2m. To see that this map is a

intertwining map, first observe thatv
j∗
m is a weight vector with weight−m. Thus, there is a

unique intertwining map sendingvj∗ to (−1)−j v
j . It now follows by induction thatvj∗
−j j −j+t
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sis
basis

) coef-
e

s
our
maps to(−1)−j+t v
j
j−t , using the basic formulaF · v

j
m = [(j + m)(j − m + 1)] 1

2 v
j
m−1.

Indeed, if this holds fort , then

(
F · vj∗

−j+t

)(
v

j
m

) = −v
j∗
−j+t

(
F · vj

m

) = −δ−j+t+1,m

[
(t + 1)(2j − t)

] 1
2 .

This shows that

φj

(
F · vj∗

−j+t

) = −[
(t + 1)(2j − t)

] 1
2 φj

(
v

j∗
−j+t+1

)
.

On the other hand,

F · φj

(
v

j∗
−j+t

) = (−1)−j+tF · vj
j−t = (−1)−j+t

[
(2j − t)(t + 1)

] 1
2 v

j

j−t−1,

and equating these two expressions completes the inductive step.
For ease of notation, we letwj

m = (−1)mv
j∗
−m denote the CG basis vectors inV j∗.

Identifying Hom(Vj ,Vk) andV ∗
j ⊗ Vk via the canonical isomorphism, we obtain the ba

{wj
m ⊗ vk

s } for Hom(Vj ,Vk). Moreover, the obvious map sends this basis to the usual
for Vj ⊗ Vk.

Let Va be an irreducible component of Hom(Vj ,Vk) , and let{za
m(j, k)} be the CG basis

for this subrepresentation. In terms of the basis vectors for Hom(Vj ,Vk), we have

za
m(j, k) =

∑
m1m2

C
jka
m1m2mw

j
m1 ⊗ vk

m2
. (8)

Here, we are using the convention that the constantC
jka
m1m2m vanishes unlessm1 +m2 = m.

These coefficients are nothing more than the usual Clebsch–Gordan (or Wigner
ficients. In fact, mapping these vectors toVj ⊗ Vk gives the standard definition of th
Clebsch–Gordan coefficients (see for example [1, Eq. (3.164)]).

Note that if any of the four triples(abc), (jka), (kbl) and (j lc) fails to be admissi-
ble, then the Racah coefficientW(jkcb;al) = 0 while VbVa is either undefined or doe
not contain a copy ofVc for trivial reasons. Accordingly, we now suppose that the f
triples are admissible, so that in particularVa , Vb, andVc are components of Hom(Vj ,Vk),
Hom(Vk,Vl), and Hom(Vj ,Vl) respectively. This means thatVc has a CG basis{zc

m(j, l)}.
However,Vc is also a submodule ofVb ⊗ Va , and the image of the CG basis forVc in
Vb ⊗ Va under the projection toVbVa is given by

ζ c
m =

∑
p1,p2

Cbac
p1p2m

zb
p1

(k, l)za
p2

(j, k). (9)

It follows that these sets of vectors are related by a scalar multipleR
jkl
abc depending on the

six indicesa, b, c, j , k, andl, so that

ζ c
m = R

jkl
zc
m(j, l). (10)
abc



D.S. Sage / Advances in Applied Mathematics 34 (2005) 335–357 353

in

nt
iple,
in [1],

e

sub-
Expanding (9) gives

ζ c
m =

∑
p1,p2

Cbac
p1p2m

(∑
s1s2

Cklb
s1s2p1

wk
s1

⊗ vl
s2

)(∑
t1t2

C
jka
t1t2p2

w
j
t1

⊗ vk
t2

)

=
∑

p1,p2,s1,s2,t1,t2

δs1+t2,0(−1)s1Cbac
p1p2m

Cklb
s1s2p1

C
jka
t1t2p2

w
j
t1

⊗ vl
s2

. (11)

Comparing the coefficient of the basis elementw
j
m1 ⊗ vl

m2
on both sides of (10), we obta

R
jkl

abcC
jlc
m1m2m =

∑
p1,p2,s

(−1)sCbac
p1p2m

Cklb
sm2p1

C
jka

m1(−s)p2
. (12)

This expression is very similar to an analogous formula involving the Racah coefficie
W(jkcb;al). In order to show that the two coefficients differ by a nonzero scalar mult
we apply symmetries of the Clebsch–Gordan coefficients. Indeed, from Eq. (3.180)
we have

Cbac
p1p2m

= (−1)c−a−bCabc
p2p1m

and

Cklb
sm2p1

= (−1)2k+b−l−s
[
(2b + 1)/(2l + 1)

] 1
2 Ckbl

(−s)p1m2
,

giving

(−1)a+l−c−2k
[
(2l + 1)/(2b + 1)

] 1
2 R

jkl
abcC

jlc
m1m2m

=
∑

p1,p2,s

Cabc
p2p1m

Ckbl
(−s)p1m2

C
jka

m1(−s)p2
. (13)

But the sum on the right is also equal to

[
(2a + 1)(2l + 1)

] 1
2 W(jkcb;al)C

jlc
m1m2m (14)

by Eq. (3.267) in [1]. Since(j lc) is admissible, we can choosem1, m2, andm such that
C

jlc
m1m2m �= 0, and so we finally obtain

R
jkl
abc = (−1)2k+c−a−l

[
(2a + 1)(2b + 1)

] 1
2 W(jkcb;al). (15)

Thus,Vc is a component ofVbVa precisely whenW(jkcb;al) �= 0. This completes th
proof of the theorem.

As an immediate consequence of (15), we get

Corollary 4.4. Racah coefficients can be defined entirely in terms of multiplication of
representations.
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d
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orphic
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We are now ready to calculate the structure constants forE(V ) whereV is an arbitrary
finite-dimensional representation of SU(2), following the discussion in [11]. As explaine
above, such a representation can be expressed asV = ⊕

j∈Jn
(Crj ⊗ Vj ). The endomor-

phism algebraE(V ) is no longer multiplicity free. In fact, ifVa appears inE(V ) with
multiplicity m, then the set of distinct subrepresentations ofE(V ) isomorphic toVa is in
one-to-one correspondence with the projective spaceP(Cm). However, it is easy to find
homogeneous coordinates for an arbitrary copy ofVa . Let Xa be such a subrepresentatio
Using the decomposition (3), we have a CG basis forXa :

za
m(X) =

∑
j,k∈Jn

xjk ⊗ za
m(j, k), (16)

where thexjk ∈ Hom(Crj ,Crk ). We can now fully describeE(V ).

Theorem 4.5.LetXa andY b be irreducible subrepresentations ofE(V ), isomorphic toVa

andVb respectively, with homogeneous coordinatesxjk andyjk . ThenY bXa contains a
copy ofVc if and only if the coefficients

zjl =
∑
k∈Jn

yklxjkR
jkl
abc (17)

are not all zero; here,Rjkl
abc is the nonzero multiple ofW(jkcb;al) defined in(15). In this

case, thezjl are the homogeneous coordinates for the unique subrepresentation isom
to Vc.

Proof. As usual,Y bXa contains at most one copy ofVc. To avoid trivialities, we assum
that(bac) is admissible. The image of the CG basis forY b ⊗ Xa in Y bXa is given by

χc
m =

∑
p1,p2

Cbac
p1p2m

(∑
ql

yql ⊗ zb
p1

(q, l)

)(∑
jk

xjk ⊗ za
p2

(j, k)

)
. (18)

The only terms that contribute to the sum haveq = k. Rearranging and substituting (10
we get

χc
m =

(∑
jkl

yklxjk

)
⊗

( ∑
p1,p2

Cbac
p1p2m

zb
p1

(k, l)za
p2

(j, k)

)

=
∑
j l

(∑
k

yklxjkR
jkl
abc

)
⊗ zc

m(j, l) (19)

as desired. �
Remarks.1. The SO(3) version of this result is Theorem 5.6 in [11].
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2. Given three SU(2)-modulesU , V , andW , it is possible to describe the multiplic
tion H(V ,W) ⊗ H(U,V ) → H(U,W) in much the same way; the only difficulties a
notational.

We conclude by returning briefly to the problem of finding the exact relations fo
coupling ofp electric fields,q elastic fields, andr temperature fields. Here, we are co
sidering End(T) for T = (Rp ⊗ R3) ⊕ (Rq ⊗ Sym(R3)) ⊕ (Rr ⊗ R). Complexifying and
decomposingT into irreducible components, we see that our algebraic conditions (1) an
(2) for the existence of an exact relation involve computing the semiringE(V ), where
V = (Cq+r ⊗ V0) ⊕ (Cp ⊗ V1) ⊕ (Cq ⊗ V2). We can now apply the theorem, using tab
lated values ofW(jkcb;al) wherej, k, l ∈ {0,1,2}. (There are no nontrivial zeros of th
relevant Racah coefficients.) For the complete list of exact relations in the case o
mopiezoelectricity for onefield of each type, see [11].

At present, we do not know of a simple way of describing the subrepresent
of End(T) satisfying (1) in the general case. However, it is possible to give an ex
characterization of the exact relations forp coupled electric fields [11]. Here, we ha
T = Rp ⊗ V1, so a subrepresentationΠ of Sym(T) can be writtenΠ = (L0 ⊗ V0) ⊕
(L1 ⊗ V1) ⊕ (L2 ⊗ V2) with L0,L2 ⊂ Sym(Rp) andL1 ⊂ Skew(Rp). The subrepresenta
tion A appearing in (1) isA = Ip ⊗ V2. A computation using the theorem now shows t
the stability ofΠ under lamination is equivalent to

[
(L0 + L1 + L2)

2]
sym⊂ L2,[

(L1 + L2) ∗ (L0 + L1 + L2)
]
skew⊂ L1,[

(L0 ∗ L2) + (L1 + L2)
2]

sym⊂ L0, (20)

whereX ∗ Y = XY + YX. It was shown in Theorem 5.2 of [11] that these equations h
a remarkably simple algebraic interpretation:

Theorem 4.6.The subspacesL0, L1, and L2 are solutions to(20) if and only if L0 =
L2 and B = L1 + L2 is an associative subalgebra ofEnd(Rp) which is closed unde
transposition and with skew-symmetric and symmetric componentsL1 andL2 respectively.

Remark. The corresponding exact relations stable under lamination are in fact stable
homogenization as well.

We give a brief sketch of the proof. DefiningB as in the statement of the theorem, it
immediate thatB andB2 are closed under transposition. It follows from the first two eq
tions of (20) that(B2)sym ⊂ L2 ⊂ B and(B2)skew⊂ L1 ⊂ B. This implies thatB2 ⊂ B,
i.e.,B is a subalgebra of End(Rp). Since this subalgebra is closed under transposition,
semisimple, hence contains a multiplicative identity. We thus obtainB2 = B, and the third
equation shows thatL2 = (B2)sym⊂ L0. Verifying the reverse inclusion is more involve
and we refer the reader to [11] for the details.

When p = 2, there are only six classes of subalgebras of End(R2) closed under
transposition:B0 = {0}, B1 = RI2, B2(v) = {λv ⊗ v | λ ∈ R} for a nonzero vectorv,
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B3(v) = {A ∈ Sym(R2) | v is an eigenvector ofA}, B4 = {λR | λ ∈ R,R ∈ SO(2)}, and
B5 = End(R2) [11]. There are thus four classes of nontrivial exact relations in the co
of two coupled conductivity problems.
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