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Let H be a group of permutations of x , ,..., x, and let Q”]x,, x1 ,.... x,] denote the 
ring of H-invariant Polynomials in x,, x2...., X, with rational coefftcients. 
Combinatorial methods for the explicit construction of free bases for 

Q”[.q, x2...., x”] as a module over the symmetric polynomials are developed. The 
methods are developed by studying the action of the symmetric group on the 
Stanley-Reisner ring of the subset lattice. Some general results are also obtained by 
studying the action of a Coxeter group on the Stanley-Reisner ring of the 
corresponding Coxeter complex. In the case of a Weyl group. a purely 
combinatorial construction of certain invariants first considered by R. Steinberg 
(Topology 14 (1975). 173-177) is obtained. Some applications to representation 
theory are also included. 

Contents. Introduction. 0. Preliminaries. 1. The action of G in H,(R,). 2. The 
action of G in R,/(O, ,..., 0,). 3. The Hilbert series of RF. 4. Cohen-Macaulayness 
of the modules ReR,. 5. Criteria for the direct construction of basic sets. 6. The 
quotient Boolean Complex. 7. The action of the symmetric group. 8. The action of 
a Weyl group. 9. Invariants in the standard polynomial ring. 10. Applications to 
representation theory. 

Let Q[x, ,..., xn] denote the ring of polynomials in x, ,..., x, with rational 
coeffkients. For a permutation 

1 2*.*n 
CT= 

a, (T2 ... un 

and a polynomial P E Q[x, ,..., x,,] we set 

UP(X) = P(x,, , x, ,,.... X,“). 
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Given a subgroup H of the symmetric group S, we say that 
P E Q Ix, ,..., x,,] is H-invariant if and only if 

aP=P (for all cs E H). 

The S,-invariant polynomials are of course usually referred to as 
symmetric. It is a well-known classical result that every symmetric 
polynomial P can be expressed in the form 

where 

Uk = UJX) = c xi,xi, . *. Xik’ 
I<i,<...<i,<n 

is the kth elementary symmetric function and p(y, ,..., y,) is a polynomial 
which is uniquely determined by P. 

In the same vein, it is not difficult to show that every polynomial P which 
is invariant under every even permutation of its arguments can be expressed 
in the form 

where d(x) denotes the Vandermonde determinant 

,A(x) = fl (Xi - Xj) 
i<j 

and p, ,pz are again polynomials uniquely determined by P. This 
corresponds to taking H to be the alternating group. 

An entirely analogous result holds for any other subgroup of the 
symmetric group. More precisely, given any H G S, we can find N = n!/#H 
polynomials 

d,(x), A,(x),..., AN(X) 

such that every PE QH[xl,..., x,] has an expansion of the form 

p = $j Ai(x)P,(u, 3***3 u”), 
i=l 

where p1 ,..., p, are uniquely determined by P. We shall refer to (d, ,..., dN} as 
a basic set for Q*[xi,..., x,]. The main purpose of this paper is to introduce 
some combinatorial methods for the construction of basic sets. We shall see 
that in a wide variety of situations we can construct the polynomials 
A , ,..., A, in a very natural manner. 



INVARIANTS AND GROUP ACTIONS 109 

Our work was stimulated and guided by three independent developments. 
First, the two very inspiring papers of Sloane [ 181 and Stanley [25] which 
have brought back the attention to the classical problem of constructing the 
invariants of finite groups of linear substitutions. Second, a remarkable work 
of Bjorner [4] in which the foundations are set for a combinatorial study of 
Stanley-Reisner rings of Coxeter complexes. The paper by Stanley [26 ] 
should also be mentioned in this context. Last but not least, we mention a 
letter by Steinberg to one of the authors in which he points out a connection 
between a previous work of his and a paper by Garsia. More precisely, 
Steinberg noted that a certain basic set for Q[x, ,..., xn] given in [ 141 could 
be viewed as the instance H = {identify} of a family of basic sets of 
invariants constructed in [ 291. 

Our desire to find a common setting for all of the basic sets given in ] 14) 
and [29] led us to a substantial portion of our results here. Our point of 
departure is the fundamental fact noted in [ 141 that it is possible to transfer 
algebraic questions from rather general graded rings to Stanley-Reisner 
rings. More precisely, in [ 141 Garsia gives an algorithm for transferring 
identities from the Stanley-Reisner ring of a distributive lattice to a 
corresponding partition ring. It develops that if a certain ring R ’ is, in a 
sense which may be made precise, dominated by a Stanley-Reisner ring R 
then we can transfer algebraic questions from R’ to R. Since a Stanley- 
Reisner ring R has a multiplication table that is closely related to 
combinatorial constructs, this transfer ultimately translates algebraic 
problems into purely combinatorial questions. This idea is further developed 
by Baclawski-Garsia in [2] and by Baclawski in [ 11. A closely related 
theory has also been independently developed by DeConcini-Procesi in [ 111. 

The present paper provides yet further remarkable uses of Stanley-Reisner 
rings. Indeed it develops that a slight extension of the constructions given in 
[ 141 combined with the shellability results of Bjorner [4] yields a very 
natural common setting for the basic sets of [ 14, 29 ]. 

It is interesting to point out that our methods here do not readily Iit into 
either of the general frameworks given in [ 1, 111. Initially our ingredients are 
a ranked poset P, its chain complex C(P), the corresponding Stanley-Reisner 
ring R,, and a group G of rank and order preserving automorphisms of P. 
Our first goal is to study, for each subgroup HZ G, the subring R’,’ 
consisting of all H-invariant elements of R,. 

If P has d ranks, for each subset S c [d] we consider the rank selected 
subcomplex C=,(P) consisting of all chains of P which hit everyone of the 
ranks i E S. If G acts transitively on C=,(P) for every S s [d] then R,” has a 
very simple structure. Indeed, denoting by Oi the sum of the elements of the 
ith rank row of P, we can show that each element of R,” is a polynomial in 
0,) 0, . ...) 0,. It will be seen in the sequel that 0, , O2 ,..., 0, play the same 
role as the elementary symmetric functions. More precisely, if P is Cohen- 
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Macaulay, we can show that for any H c G we can construct polynomials 
Al,4,..., A, such that every element P E RF can be uniquely expressed in 
the form 

P = $ Aipi(O, ,..., 0,). 
i=l 

We refer to {A, ,..., AN} as a basic set for RF. 
This given, the case when P is the n-subset lattice B, and G is the 

symmetric group S, is of special interest to us. Indeed, our program for 
constructing a basic set for a ring Q”[x, ,..., x,,] is to construct one for Rrn 
and then transfer it from R,” to Q[xi,..., x”]. To increase the scope of the 
theory, in the latter part of our presentation we drop the requirement of an 
underlying poset, and work with a balanced complex C. Doing so presents 
only minor changes since the Stanley-Reisner ring R, of such a complex 
behaves very much like a poset ring R,. In this setting the most remarkable 
structures are the Coxeter complexes. Crudely speaking, we can work with 
any finite Coxeter group W and its corresponding Coxeter complex C(W) 
just as well as with the pair consisting of S, and the chain complex C(B,). 

It develops that this is precisely the unifying setting we are looking for. 
This comes about as follows. By extending Bjorner’s shellability results, we 
obtain first a general construction which yields basic sets for the rings RF(,) 
when H is a parabolic subgroup. Then, when W is a Weyl group, and 
4 7 h,“., A,, is a fundamental system of dominant weights, by formally 
setting eAi = zi, we can define an action of Won the ring 

R’ = Q[z, ,..., zn; l/z ,,..., l/z,]. 

On the other hand the system A,,..., 1, and its images under W may be used 
to give a concrete representation of the Coxeter complex C( IV). From this 
circumstance we derive that the ring R,(,, dominates R ‘. This given, we can 
transfer a basic set for the ring RF(,) into a basic set for RIH. It turns out 
that applying this transfer to the basic sets obtained by shellability methods 
yields precisely the basic sets of Steinberg. 

Our presentation is divided into 11 sections. After a few preliminary 
considerations (Section 0) we study the action of G on R, (Sections l-3). 
Proceeding a bit more generally than needed for the study of invariants, in 
Sections 4, 5 we develop some algebraic criteria for the construction of basic 
sets for modules obtained as ranges of a Reynolds operator. As an 
illustration of the power of the present approach we obtain an elementary 
proof that these modules are Cohen-Macaulay (Theorem 4.2). Our results 
are then specialized to the study of the subring RF (Section 5). We show 
(Theorem 5.2) that the construction of a basic set for RF can be reduced to 
some combinatorial questions concerning the poset C(P)/H (quotient of the 
chain complex C(P) of P by H). These quotient complexes have certain 
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features worth separate study. Thus in Section 6 we introduce the notion of 
Boolean complex and extend to the latter results concerning ER decom- 
positions and shellability. We thus obtain some criteria that should turn out 
useful in a variety of other situations (see Theorems 6.3 and 6.4). 

The most remarkable fact stemming from our study of invariants is 
summarized by Theorem 6.2 in which we show how to construct a basic set 
for R: from a shelling of C(P)/H. In Section 7 we specialize P to be the 
lattice of subsets of the n-set and G to be the symmetric group S,. The 
results of this section are fundamental for our construction of basic sets for 
QH [x, ,..., x,]. In Section 8 we study the action of a Weyl group W on the 
corresponding Coxeter complex C(W) and the associated Stanley-Reisner 
ring R,(,,. We show there that every single result obtained in the special 
case W = S, has a counterpart not only in the case of a group associated to 
a root system but in the general case of any finite Coxeter group. When H is 
a parabolic subgroup (a subgroup obtained by removing nodes from the 
Coxeter diagram of I+‘) our results take a particular combinatorial flavor. It 
develops that in this case our construction of a basic set for Rp(,., 
(Theorem 8.7) is a natural consequence of the shellability of the poset of 
double cosets H\W/K (H fixed and K a variable parabolic subgroup) (see 
Theorem 8.1). 

In Section 9 we combine the methods and results of the previous sections 
with those of [ 141 and transfer basic sets from the rings R,.(,,,, to the 
polynomial ring Q[z, ,..., z,; l/z, ,..., l/z,]. Finally, in Section 10 we use our 
results to derive some applications to representation theory; in particular, we 
give a solution to a problem formulated by Stanley. 

0. PRELIMINARIES 

In this paper our notation, with minor exceptions, will be the same as that 
adopted in [ 141. Here and in the following P will be a ranked Cohen- 
Macaulay poset with -0 and -1. The rank of an element x of P will be 
denoted by T(X). We also set 

r(^l)=d+ 1. 

As was done in [ 141 we assume that the elements of P are given a total order 

-0, x,, x* )...) x,, -1 

that is compatible with the partial order of P. All the elements of P except -0 
and -1 will be handled as commuting variables. We recall that the Stanley- 
Reisner ring of P is the ring 

R, = Q[x,, x2,..., x,]/Ipr 
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where ZP is the ideal generated by all the products xixj corresponding to 
pairs of non-comparable elements of P. If c is the chain 

C: -O<Xil<Xi2<“‘<Xik<^l’ 

then the monomial corresponding to c is the product 

(O-1) 

x(c) = xi,xi, * * * xi,. 

Similarly, if *c is the multichain 

(here ps denotes the multiplicity of the element xi,), then the monomial 
corresponding to *c is the product 

x(^c) = xp;x;; * * ’ x;;. (0.3) 

It is easy to see from the definition that a monomial in x, , x2 ,..., x, is not 
equal to zero in R, if and only if it corresponds to a multichain of P. Thus 
R,, as a vector space, is the linear span of the multichain monomials. 

If T(XJ =j, (s = l,..., k) we shall set 

,<,p;,;; . . . x;;> = tj”,‘q . . . q 

and refer to it as the weight of the monomial xp;xy; ... xj’;. 
If 

-s= 1P,,P2,“‘,Pd} (pi > 0 integers) 

is a multisubset of [d] we shall set 

f-, = t+; . . . pd 
d’ 

Similarly if S is a subset of [d] we set 

c, = n ti. 
iE.S 

This given, we denote by H-JR,) the linear span of the multichain 
monomials of weight t-,. In particular, if S is a subset of [d], HJR,) 
denotes the linear span of the monomials corresponding to chains of rank set 
S. 

We denote by C, M, respectively, the collections of chains and maximal 
chains of P. As in [ 141, if B is any collection of chains of P we set 

B,,=(bEB:r(b)=S}, B,,={bEB:r(b)cS}. 
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In words, Bzs denotes the subcollection consisting of those elements of B 
whose rank set is contained in S. In particular we have 

H,(R,) = L{x(c): c E C,,). (0.4) 

The elements of R, that are in H-,(R,) will be calledPnely homogeneous of 
weight t-, . This yields a multigraded structure on R, and the fine Hilbert 
series corresponding to this multigrading is then 

F& ,..., td) = L t-, dim H-,(R,). (0.5) 
S 

We recall (see [ 141) that if we set 

“s=IC,l (0.6) 

and 

p, = x (-1)‘S-” (XT’ (0.7) 
TCS 

then an easy calculation yields that 

F,& ,..., tJ = Csz[d,Psfs 
(l-t,)(1-t&.(1-tt,)’ 

We also recall that in [ 141 we have set 

@i = x Xx(r(X) = i). 

We refer to these as the rank-row polynomials. 
If B is a collection of chains of P we shall say that the set of chain 

monomials 

{x(b): b E B} 

is basic for R, if and only if every element Q E R, has a unique expansion of 
the form 

Q = x x(b) Q,,(O, ,..., O,), 
bcB 

(0.9) 

where Qb(O, ,..., 0,) is a polynomial in O1,..., 0, with coefficients in Q. We 
know that P is Cohen-Macaulay if and only if R, admits a basic set of 
chain monomials. Indeed, this property may be adopted as the definition of a 
Cohen-Macaulay poset. 
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1. THE ACTION OF G ON H,(R,) 

A one-to-one map of P onto itself which is order preserving and rank 
preserving will be referred to as an automorphism of P. Here and in the 
following G will be a given fixed group of automorphisms of P. For S E [d] 
let P”(g) denote the permutation representation corresponding to the action 
of G on the chains of rank set S. More precisely, we have for each g E G 

Since we can write 

gx(c,) = c x(c)x(c =gcA 
CEC=, 

we see that the c, c,-entry of the matrix P”(g) is equal to one or zero 
according as c = gc, is true or not. 

Let then as(g) denote the character of this representation. By the above 
remark we have then 

as(g) = trace P’(g) = C x(gc = c). (1.1) 
EC,, 

Now let {x(b): b E B} be a basic set for R,. We know from [ 141 that the 
set of polynomials 

! 
L,(b)= c x(c)X(czb):bEB., 

I 
(1.2) 

EEC,S 

is also a basis for H,(R,). We can thus express the action of G on H,(R,) in 
terms of this new basis. Thus if we set 

&h) = c b(b) ai,b,W for all b, E B,, (1.3) 
b-,s 

then the matrix 

AS(g) = ~~ah&?)~~b,bI~BES 

gives a representation of G similar to P”(g). This gives 

(1.4) 

as(g) = trace AS(g) = c a:,,(g). b=B,s 
Let us now set for each S s [d] and g E G 

P&) = 2 (-lYT’ aT(g), 
TES 

(1.5) 

U-6) 
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The main object of the next section is to show that this expression gives also 
a character of a representation of G. 

To this end we need to establish a basic property of the matrices AS, 
namely, 

THEOREM 1.1. Let r(b,) = TS S then 

4blW = 4,,,(g) if r(b) c T, 

=o otherwise. 

ProoJ By the definition of A ‘(g) we have 

iv(h) = x L.(b) a;.&>. 
On the other hand, recall from [ 141 that if r(b) = T 5 S we have 

L,(b) =x(b) O(S - T), 

where for any T G [d] we set 

O(T) = 11 oi. 
;cT 

Thus, if T E S, using (1.8) we get 

gL,(b,)=gO(S-T)x(b,)==O(S-T)gx(b,) 

= @(s - r> 1 L,(b) a;,b,(g)* 
beB,, 

Note that, for r(b) s T we have 

O(S - T) L,(b) = L,(b). 

thus we see that 

gLs(h) = 1 L,(b) a;,b,(d* 
bcB,, 

On the other hand, by definition we have as well 

d&d = 1 LS(b) d,b,(d. 
bcB,.s 

(1.7) 

(1.8) 

However, since expansions in terms of the chain monomials {x(b): b E B} 
are supposed to be unique, comparing these two expressions, we deduce that 
(1.7) must hold true as asserted. 
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2. THE ACTION OF G ON RJ(O, ,..., 0,) 

Let us now consider the action of G on the finite dimensional vector space 
&I(@, ,..., 0,). Note that this is well defined since the relation 

P=Q+ 5 O,h, 
i=l 

implies 
gP=gQ + 5 Gighi. 

i=l 

Thus, to define the image by g of an element of R,,/(O,,..., 0,) we can use 
any one of its representatives in R,. Note also that g preserves our fine 
grading as well. In particular each of the spaces 

is G-invariant. 
We know that the set of monomials 

(x(b):bEB=,] 

is a basis for H,(R,/(O,,..., 0,)). Indeed, every Q E H,(R,) can be written 
in the form 

Q = c c,x(b) O(S - r(b)) 
bEB,s 

thus, mod(O ,,..., O,), we have 

Q= r C,X(b). 
be;=, 

We can thus define a new representation by setting 

dX@‘)ha,s = (X(b)hte=, BS(d (mod(O, ,..., 0,)). 

We have, of course (for r(b) = S) 

&W = c x(b) @(s - r(b)) a:.b,k) 
b@,s 

= ,;- 0) a;,b,k) (mod@% 9--7 @,)I. 

-s 

This gives that 

Bs(d = IILl~,b,(g)(lb,b,EB_,. 
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Combining this result with Theorem 1.1, we deduce that 

as(g) = r K‘ 
T’;S be;=, 

a:,,(g) = C trace BT(g) 
l-E.7 

and Moebius inversion gives then that 

trace P(g) = x (-l)lSmT1 ar(g> = P,(g). 
i-E.7 

We have thus established the following fundamental fact 

THEOREM 2.1. The virtual character 

117 

(2.1) 

(2.2) 

is the character of the representation resulting from the action of G on 
H,(R,/(@, ,..., @,)I. 

It is worth observing that formula (2.1) may be thus written also in the 
form 

a&> = X P,(g). 
TSS 

(2.3) 

3. THE HILBERT SERIES OF RF 

Given a subgroup H L G we shall denote by RF the subring consisting of 
all polynomials in R, that are invariant under H. More precisely 

RF = (Q E R,: hQ = Q for all h E H}. 

Clearly, for any Q E Rp” each of the homogeneous components of Q is in Rr 
as well. Thus RF has the same fine grading as R, itself. This given we shall 
set 

Fr& 1 ,..., f(j) = x ty . . . t? dim H ,,,....,p3* (3.1) 
PI.....Pd 

Our goal in this section is to give a recipe for the calculation of this 
rational function. To this end note that if we set for each Q E R, 

(3.2) 

then we may consider RF simply as the “range” of the operator R, 



118 GARSIA AND STANTON 

Indeed, since 

R=RR 

we see that an element Q of R, is invariant under H if and only if it can be 
written in the form 

Q=RQ’ (for some Q’ E Rp). 

We can proceed a bit more generally and set for any idempotent element 
0 of the group algebra A(G). 

Re = c O(g)g. 
t?eG 

(3.3) 

It is easy to see that this operator has the following basic properties 

(1) ReRe = Re, 

(2) for any Q E R, and i = l,..., d we have ReOiQ = OiR@Q, 

(3) R’ is weight preserving, thus leaves invariant each HJR,,), 
(3.4) 

(4) Re acts on RJ(O, ,..., 0,). 

Clearly property (1) follows from the idempotency of 0, (2) and (3) are 
immediate and (4) is a consequence of (2). We also note that the operator 
defined in (3.2) corresponds to the special case 

=o otherwise. 

Let us then denote by R*R, the range of Re in R,. This given, we see 
that R’R, is a fine graded Q[O, ,..., @,I-module with line Hilbert series 

FReR,(tl ,..., td) = c t:’ .a. @dim R”Hp ,,..., Pd(RP). (3.5) 
PI*....Pd 

It develops that we can calculate this series with not much more effort 
than the series in (3.1). To this end, note that if 

t-, = t?yPz . . . f?k ‘I ‘2 ‘k 
(with each pi > 1) 

then the space H-JR,) is the linear span of the polynomials 

{a:;-’ ..e Oy;-‘x(c): r(c) = S} (S = {i, , i, ,..., ik}). 

Since for any chain c 

Re@Pl-’ 
‘I . . . @;;- ‘x(c) = @j’;-’ . . . of;- ‘Rex(c) 
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(and 0, ,..., 0, are not zero divisors of RP) we see that 

dim R’H-,(R,) = dim R@H,(R,). 

We then deduce that the contribution to (3.5) coming from all the 
multisubsets ^S = {iy’,..., iz”) with fixed i, ,..., i, is equal to 

\’ 
P,....>Pk>l 

ty’ *a. ii&dim R’H,(R,) = dim R@H,Y(R,) ,!? $$-. 
I 

Combining all these contributions we get then 

F~n~,(t~ ,..., td) = \‘ 
Szdl 

dim R@H,(R,) ,!I &, 
I 

(3.6) 

Now it develops that this identity leads us to the following remarkable 
formula 

THEOREM 3.1. 

FRf$,(t, ,***, td) = CTZldl nieT- ti(^@l BT) 

(1 -t*)(l -r,)..v (1 -la)’ (3.7) 

where 
-@= \‘ gag-’ PT = PTk) 

REG 

and the scalar product (e, .) is over the group G. 

Proof Note that R@ as a linear operator on H,(R,) has the matrix 

R’.‘= y O(g)P’(g) 
REG 

when expressed in terms of the basis 

(wLc-.5. 

Since R’ is idempotent, the matrix R’*’ is idempotent as well. Thus 

dim R”H,(R,) = rank RB*S = trace R’*‘. 

Combining this with (1.1) we deduce that 

dim R’H,(R,) = x O(g) a,(g) = IGI (0, a,) = (-0, as). (3-g) 
REG 

The last equality here follows from the fact that 01,~ is a class function. 
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Substituting (3.8) in (3.6) and reducing to the same denominator we get 

= CSGldl CsET(-l)‘T~S’(ni~~‘i)(^O’ aS> 

(l-t,)(l-t,).*.(1-t,) 

= CSE[d]CIicTfi> CSET(-1)‘T-S’(CI@3 as> 

(1 -t,)(l - tz) *a’ (1 - fd) * 

Using (2.2 ) we obtain formula (3.7) as asserted. 

4. COHEN-MACAULAYNESS OF THE MODULES R’R, 

Our main goal here is to show that each of the modules R@R, is Cohen- 
Macaulay. In the present context this simply means that we can find a set 

{a,, a,,..., aN} (4.1) 

of finely homogeneous elements of R@R, such that every element Q E R”R, 
has a unique expansion of the form 

Q = E “i Qi(o, )...) 0,). 
i=l 

To be consistent with our previous terminology we shall say that such a set 
is “basic” for ReR,. 

We aim to give an algorithm for constructing a basic set for R@R, from 
any given basic set for R,. In doing so we shall make repetitive use of the 
following elementary but powerful criterion for the Cohen-Macaulayness of 
R P’ 

THEOREM 4.1. R, admits a basic set {v, ,..., r,+.} of finely homogeneous 
elements if and only if 

F 
FRp(t 

Rpl(@,....,O,j) 
““” L+) = (1 - fl)(l - t*) . . . (1 - ld) (4.2) 

and when this happens, every finely homogeneous basis for RJ(O, ,..., 0,) is 
basic for R,. 

Proof: Note that if 
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are finely 
expansion 

homogeneous and basic for R,, then every Q E R, has a unique 
of the form 

Qr c civi (mod(O, ,..., 0,)). 
i=l 

(4.3) 

This implies that 
Iv 

F Rpl(O,.....B,) = ” w(rli)* 
,Tl 

(4.4) 

(Here, of course the weight of a finely homogeneous element is simply taken 
to be the weight of any one of the monomials appearing in it.) Moreover, the 
fact that ( )I, ,..., vN} is basic may also be expressed by saying that the set of 
polynomials 

{ri@y . . . @pf: W(Vi @;I . . . (92) = t-, } (4.5) 

forms a vector space basis for H-,(R,). Thus in particular the cardinality of 
this set must be equal to the dimension of H-,(R,). This gives 

&,,(t, >..., fd) = C’F= I w(rli) 

(1 - t,)(l - t2) ... (1 - fd) . (4.6) 

Comparing (4.4) and (4.6) gives (4.2) as asserted. 
To prove the converse note that if (?/, ,..., v,~) is a finely homogeneous 

basis for R,/(O, ,..., O,), then 

(4.7) 

and moreover we shall have (4.3) as well for every Q E R,. 
Repetitive uses of (4.3) yield then that the polynomials 

span R, as a vector space over Q. In particular the polynomials in (4.5) 
span H-,R,. Let us keep this observation in mind. 

Now, if 4.2 holds, combining it with (4.7) we get (4.6) back again. The 
latter equality, as we have seen, is equivalent to the statement that the 
number of polynomials in (4.5) is equal to the dimension of H-,R,. 
Combining this fact with the above observation we deduce that these 
polynomials form a basis for this space. Since this is to hold for every -S we 
must conclude that ( rl ,..., vN } is basic for R,. This completes the proof. 

We are now in a position to construct our basic sets for ReR,. For 
convenience, let R denote anyone of our Reynolds operators. This given, let 
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(77 1 ,-*-, q,,,) be a basis for RJ(O,,..., 0,). Note then that the set of 
polynomials 

W,, Rrlz,..., Rrl,v, (4.9a) 

(1 - R) ~1, (1 - R) q2,..., (1 -R) YIN (4.9b) 

altogether do span RJ(O,,..., 0,). Let {ai ,..., a,,} denote the polynomials 
obtained by applying Gauss elimination to Rqi , Rq2 ,..., RqN as elements of 
&I(@, ,..., 0,). Similarly let {/3, ,..., pk} denote the polynomials obtained in 
the same manner from those in (4.9b). We have the following remarkable 
fact 

THEOREM 4.2. The polynomials (a, ,..., a,,} thus constructed form a 
fine& homogeneous basic set for RR,. 

Proof: By construction {ai,..., a,,} and {/3i,..., Bk} are both independent 
sets in RJ(O,,..., 0,). However, there cannot be a nontrivial set of constants 
aI, a, ,..., ah; b,, b, ,..., b, such that 

aiai + t bjpj = 0 (mod 0, ,..., 0,). 
i=l j=l 

Indeed if we have 

then applying R to both sides gives 

(mod 0, ,..., 0,). 

Similarly, applying 1 - R yields 

i b,& = 5 Oi( 1 - R) Qi = 0 
j= I i=l 

(mod 0, ,,.., 0,) 

However, in view of the way al ,..., a,, ; /?, ,..., Pk were defined, these relations 
yield that 

a, = . . . =ah=b,= . . . =b,=O. 

This implies that 
{a 1 ,‘.., ah; 8, ~--.~ bk) 

is a basis for R,/(O, ,.,., 0,) and thus it must be that h + k = N. 
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From Theorem 4.1 we then deduce that this set is basic for R,. In 
particular, for every Q E R, we have a unique expansion of the form 

h k 

Q = \’ a,P,(O, ,..., 0,) + \‘ ,LljQj(O, ,..., 0,) 
LT, ,r, 

(4.10) 

applying R to both sides gives 

RQ = 5 (Rai) Pi(O , ,..a, 0,) + t (IV,) Q,i(@l r..., 0,). 
i=l .j- I 

Since Ra, = ai, RPj = 0 we deduce that when Q E RR, the expansion in 
(4.10) must actually reduce to 

Q = x a,P,(O, )..., 0,). 
i=I 

(4.11) 

This gives that every Q E RR, has a unique expansion of the form (4.11) 
and thus {al ,..., ah} must be basic for RR,. This proves the theorem. 

We can sharpen our result a bit further. For convenience, let us set 

R” = R and R’=l-R. 

It develops that the sets {a ,,..., a,,}, (/3, ,..., Pk} may be chosen in a more 
special manner. Namely, we can show that 

THEOREM 4.3. If (q, ,..., q,} is u finely homogeneous basic set for R,, 
then it is possible to choose e, , cl,..., e,, (ei = 1 or 0) so that the set 

R&IV,, R”?qz ,..., R”q,v 

is basic for R p. 

Proof: Let a, ,..., ah ; P1,...,Pk be chosen as previously indicated, and let 
us express our change of basis in RJ(O,,..., 0,) in the form 

where A = (laijll and B = (1 bijll denote matrices of sizes h X N and k x N. 
respectively. Now, since the matrix 

A II II B 

is supposed to be non-singular we can certainly find an h x h minor A, in A 
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and a complementary minor B, in B, both non-singular. Without loss we can 
assume that A, and B, are, respectively, contained in the first h and last k 
columns of // i 1). Note then that for j = 1, 2,..., h, we have 

Rqj = i aiaij 
i=l 

and for j = h + 1, h + 2,..., N 

(1 -R)uj= 5 /.I$,. 
i=l 

These two relations imply that 

(Rq, ,..., Ry,;(l -R)v,,+,,...,(l -R)%) 

= (a 1 ,..., a,;P ,,..., PJ 

By construction, the determinant of the matrix 

A0 0 

i 
--- ---- 

0 Bo 

does not vanish. Thus we must conclude that 

PI , ,..., Rrlh; (1 - R) vh+, ,...v (1 - R) r,l 

is a basis for Rp/(O1,..., 0,) but then Theorem 4.1 yields that this set is basic 
for R,. 

5. CRITERIA FOR THE DIRECT CONSTRUCTION OF BASIC SETS 

Given an operator R0 let us simply say that the collection of chains B is 
basic if the polynomials 

{Rex(b): b E B} (5.1) 

forms a basic set for R’R,. 
Our main interest is of course the construction of basic sets of invariants. 

However, as we shall see, those having the special form in (5.1) are most 
naturally accessible by combinatorial methods. 

First, we should observe that the results of Section 4 immediately yield us 
an algorithm. Indeed, we may simply construct basic sets by applying Gauss 
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elimination in RJ(O, ,..., 0,) to the collection of polynomials that are 
images of chain monomials, namely the polynomials 

(R’x(c): c E C} 

As should be expected, even in some simple examples this algorithm can get 
specially by hand, quite tedious. In this section we shall present some simple 
criteria which do produce significant shortening in the calculations. 
Moreover, in some circumstances, these criteria yield some very natural 
basic sets directly from the combinatorics of the situation. 

Our first result is somewhat analogous to Theorem 3.2 of 1141. It may be 
stated as 

THEOREM 5.1. The collection (Rex(b): b E B \ is basic for R”R, if and 
only if 

the polynomials (O( [ d] - r(b) R’x(b): b E B } are linearly 
independent, (5.2a) 

the cardinality of B =s is equal to (^O, p,). (5.2b) 

ProojI Clearly, (5.2a) is necessary since any vanishing of a non-trivial 
linear combination of the polynomials in (5.2a) would contradict the 
assumption that (R’x(b): b E B) is basic. Furthermore, if this set is basic, 
then the rational function 

c be8 w(R@x(b)) 

(1 - t,)(l -t*) *** (1 - td) (5.3) 

must be equal to the Hilbert series of R@R,. However, since R’ is weight 
preserving we get 

Comparing with (3.7) we deduce that also (5.2b) is necessary. 
Let us now prove the converse. To this end note that if (5.2b) holds true, 

then the number of elements of B is equal to 

The latter equality follows from formula (2.3) in the special case S = [d]. 
Formula (3.8) then gives that the cardinality of B is equal to the dimension 
of the space 

RQf&d&J 
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However, it is easy to see that all the polynomials in (5.2a) belong to this 
space, by hypothesis they are independent, and we have just seen that their 
number is equal to the dimension. Thus we must conclude that they are a 
basis. 

This implies that for any maximal chain m we have an expansion of the 
form 

Rex(m) = F‘ 
bz 

a,R’O([d] - r(b)) x(b). (5.4) 

To complete our argument we need to prove that the same holds true for 
the image of any chain monomial. To this end note that for any b E B,, we 
have 

O([d] - S) R’O(S - r(b)) x(b) = R@O((d] - r(b)) x(b). 

This yields that the polynomials 

(5.5) 

(R%(S - r(b))x(b): b E B,,) 

are a basis for R@‘H,(R,). Indeed, their images upon multiplication by 
O([d] - S) are independent in virtue of (5.5) and (5.2a), and so they them- 
selves must be independent. Moreover, from (5.2b) and (3.8) we get that 
their number is equal to 

1 (-0, /3,) = (A@, as) = dim R@H,(R,). 
TES 

Since they are all contained in this latter space we must again conclude that 
they are a basis. This gives that for any c E C=, we have a unique expansion 
of the form 

Rex(c) = x a,R@O(S - r(b)) x(b), (5.6) 

but this is precisely what we needed to prove. Thus our argument is com- 
plete. 

When our Reynolds operator R’ has the special form 

R”=h zH g (Hs G a subgroup) 

Theorem 5.1 may be given a combinatorial reformulation. To do this we 
need some notation. 

Note first that the polynomials 

RHx(c) =+ c gx(c) = -!- -s x(gc) 
geH IHI ii 8EH 
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may be identified with the orbits of H in C. This given, for each S c [d] let 
a: denote the number of orbits in the action of H on the chains of rank set 
S. In symbols 

Clearly, the polynomials corresponding to a set of distinct orbits are linearly 
independent. Thus we must necessarily have that 

dim RHHs(Rp) = a:. 

This may also be verified from our formulas. Indeed, Burnside’s lemma gives 

(5.7) 

and this is precisely what the right-hand side of (3.8) reduces to in this case. 
Let then 

M/H= {m,.m,,...,m,) 

be a set of representatives for the orbits of H on M. From our previous 
observations we deduce that for each chain b we have an expansion of the 
form 

RHO( [ d] - r(b)) x(b) = 2 cb, i R”x(mi). (5.8) 
.j= I 

Now, it develops that the coefficients c,,~ have a rather simple and interesting 
combinatorial interpretation. 

If b and c are two chains of P, let us agree to use the symbol 

to express that one of the chains in the H-orbit of b is contained in c. This 
given, we have the following remarkable formula: 

PROPOSITION 5.1. Let H, and H,i (for j = I,..., k) denote, respectively 
the stabilizers of b and mj in H. Then 

c IHbl .=-X(b <,,mJ. 
b,’ IHnlI 

ProojI Our point of departure is the identity 

O( [ d] - r(b)) x(b) = y x(m) x(m 2 b). 
Ill 
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Note that, since RHx(m) remains constant as m varies in a given orbit, we 
can write 

RHO( [d] - r(b)) x(b) = i RHx(mj) y x(m 2 b). 
j=l mcOf;;mj) 

Where for brevity, O,(mj) denotes the H-orbit of mj. This gives 

\’ 
‘b,j= L x(m 2 b). 

moOM(mj) 

Clearly we have then 

x(mj =I hb). (5.10) 

Now, if none of the images of b is contained in mi (i.e., if b <” mj is false) 
then cb,j is equal to zero. Thus (5.9) is true in this case. 

Let now b <” mj and fix b, = h,b to be anyone of the chains in the 
H-orbit of b that is contained in mj. Clearly, since each of our group 
elements acts in a rank preserving manner, b, must necessarily consist of the 
elements of mj whose ranks are in r(b). Thus we may have hb G mj if and 
only if hb = b, = h,b. Using this observation, (5.10) may (in the present 
case) be rewritten in the form 

It is easy to see that the sum on the right-hand side of this expression is 
precisely equal to the cardinality of the stabilizer of b in H. Thus we get 

This establishes (5.9) in all cases. 

For convenience, given two collections B,, B, G C we set 

we might call this the orbit incidence matrix of the pair B, , B,. This given, 
we are in a position to state a result that is completely analogous to 
Theorem 3.2 of [ 141. Namely, 
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THEOREM 5.2. Let H G G be a subgroup and set for each S c [d], 

a: = I C=,/HI, p’,‘= 1 (-l)tS-T’ a:. 
T  E S 

(5.11) 

Then (RHx(b); b E B} is basic for RHR, if and only if 

the matrix I(B, M/H) is square and non-singular, (5.12a) 

for all S s [d] we have lB_,l =pt. (5.12b) 

Proof From formulas (2.2) and (5.7) we get that in this case 

(-@,/&) = \’ (-1)‘s~T’ (-0, aT) = \‘ (-l)lS-Tl a; = &!. 
TES lf.7 

Thus conditions (5.2b) and (5.12b) are the same. On the other hand, in view 
of (5.8) we see that the polynomials 

jR”O([d] - r(b))x(b): b E B} (5.13) 

are independent if and only if the matrix 

c = II Cb.JllbEH 
.I- I . . . . . k 

(5.14) 

has full rank. Note also that in the presence of (5.12b) we have 

Thus C is a square matrix as well. Finally, we see from formula (5.9) that 
the determinant of C differs at most by a constant factor, from the deter- 
minant of the matrix 

We must therefore conclude that in the presence of (5.12b), conditions (5.2a) 
and (5.12a) are equivalent. Thus we see that our result here is simply a 
special case of Theorem 5.1. 

6. THE QUOTIENT BOOLEAN COMPLEX 

The results of the previous section, more particularly Proposition 5.1 and 
Theorem 5.2, lead us to a natural extension of the notion of simplicial 
complex. To be precise, let C/H denote as before the collection of orbits of 
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chains of P under the action of H. Given two orbits B and C let us agree to 
set 

B<,C (6.1) 

if a chain b E B is contained in a chain c E C. 
We shall refer to the poset 

{C/HI = (C/H, G) 

as the quotient complex corresponding to H. 
Quotients of posets under group actions have been considered before, 

however these quotient complexes lead to so many interesting questions that 
they should be brought to special attention. The most significant features of 
these posets are the following two properties: 

they are ranked, (6.2a) 

the intervals below their maximal elements are Boolean 
algebras. (6.2b) 

Posets with these two properties will here and after be referred to as Boolean 
complexes. 

It is not difficult to show that a Boolean complex is simplicial if and only 
it is a lattice. Boolean complexes that arise as quotient complexes have an 
additional feature that is worth considering. They are balanced. To introduce 
this further notion it is good to extend to Boolean complexes the terminology 
which has now become standard for simplicial complexes. Let C’ be a 
Boolean complex. First of all, the maximal elements of C’ will be referred to 
as chambers. To be consistent with our previous notation, the common rank 
of the chambers will be denoted by d. The elements of rank d - 1 will be 
referred to as walls. The atoms will be referred to as vertices and all the 
other elements as facets. 

This given, we say that C’ is balanced if and only if the vertices of C’ can 
be colored in d colors in such a manner that each chamber contains one and 
only one vertex of each color. We know that the chain complex of ranked 
poset is balanced. Indeed, the vertices in this case are the elements of the 
underlying poset and the color of a vertex is simply taken to be its rank in 
the poset. Precisely the same holds for a quotient complex. 

To be specific let C’ = C/H with C the chain complex of a poset P. Then, 
since our group elements are rank preserving, each orbit of H in P consists 
of elements of the same rank. We can thus let the rank of an orbit be 
precisely the common rank of its elements. This gives the desired coloring of 
the vertices of C/H. 

Note now that if C’ is a balanced Boolean complex, then each facet F of 
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C’ (being contained in some chamber) will necessarily have no two elements 
of the same color. Thus, if we let [d] be the set of colors, we can define the 
color set or better the rank set of F by setting 

r(F) = (i E [d] : F has an element of color i). 

With these conventions several of the notions and results obtained for 
simplicial complexes may be transferred verbatim to Boolean complexes. 

For convenience let 

M’= {M,,M, ,..., Mk} 

denote the collection of all chambers of C’. We shall say that C’ is E -R if 
we have a map 

R :M’+C’ 

such that the intervals [R(M), M] are disjoint and cover C’. In symbols 

~ (R(Mi), Mil = C’. 
i= I 

We shall refer to R(M) as the restriction of M. To be consistent, the rank set 
of R(M) will be referred to as the descent set of M, and will be denoted by 
D(M). In symbols 

D(M) = r(R (M)). 

Let now F E C’ be a facet, by (6.3) there is a unique interval, say 
[R(Mj), Mj], h h w ic contains F. This given, let us set E(F) = Mj and call Mj 
the extension of F. We see that the map 

F + (E(F), r(F)) (6.4) 

gives a bijection of C’ onto the set of pairs 

u u CM, 9 MEM’ .S?D(M) 

Indeed, F E [R(M), MJ implies that r(F) 2 D(M). Moreover, knowing that 
E(F) = M and that r(F) = S, enables us to recover F immediately by 
selecting the elements of M whose colors are in S. 

Following previous notation, let Cl, denote the collection of facets of C’ 
whose rank set is S. This given, note that (6.4) gives a bijection between CL, 
and the set of all pairs 

{(M, S) : D(M) G S). 
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Thus 

1 Cl,1 = #(M E M’ : D(M) s S). (b-5) 

Let us suppose now that C’ is the quotient complex C/H. Set again 

M’ = {M,, Mzr..., Mk} 

and let R be the restriction map of an E-R decomposition of C/H. Select in 
each orbit R(M,) a representative chain bi. Set 

B = {b,, b, ,..., bk}. (6.6) 

Note that in this case 

(CL,1 = 1 CzsfHI = at. 

Combining this with (6.5) we can easily deduce that 

,$=#{MEM’:D(M)=S}. 

In view of the manner in which the bts in (6.6) have been selected, we must 
conclude that 

This circumstance enables us to forgo having to verify the second condition 
in Theorem 5.2. 

More precisely we have the following result: 

THEOREM 6.1. Let R be the restriction map of an E-R decomposition of 
the quotient complex CfH. Let B be a collection of representatives for the 
images under R of the chambers of C/H. Then the orbit polynomials 

{RHx(b) : b E B} 

form a basic set for RHR, if and only if the incidence matrix 

is non-singular. 

I(& NH) (6.7) 

For the applications we need to be able to construct E-R decompositions 
of Boolean complexes. Now it develops that there is a very simple algorithm 
which, when applicable, will produce E-R decompositions for which the 
matrix (6.7) is trivially non-singular. To present it we need some preliminary 
observations. 
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For any facet F let us denote by 1F the collection of elements of C’ that 
are contained in F. Now let 

M, , M, ,..., M, 

be a fixed, given total order of the chambers of C’ and set for each i 

Bi=~Mi-~M,u~M,u.+. ujM;p, (6.8) 

In other words Si is the collection of facets of Mi which are not in any of the 
preceding chambers 

Ml > Mz,..., Mi- 1. 

Clearly, we do have 

C’= 2 Ei. (6.9) 
ikl 

Comparing this with (6.3) we see that we would have here an E-R decom- 
position of C’, if each Ei turned out to be an interval. 

We aim to find out when this is the case. To this end, note that if C’ is 
given the E-R decomposition in (6.3), then each wall belongs to one and 
only one of the intervals [R(M,), Mi]. For convenience, denote by W”’ the 
collection of walls that are in [R(M,), Mi]. It is easy to see that 

R(M,)= n W. 
WE u’(i) 

Thus the collections 
w(l) w’2’ 

1 ‘..., 
),f,w’ 

completely determine the restriction map Mi + R Mi). 
On the other hand, if we are to have 

zi = [R(M,), Mu], 

(6.10) 

(6.11) 

then the collections W”’ must necessarily consist of the walls in Ei. 
Putting all this together we are led to the following algorithm for 

constructing our E-R decompositions: 

(1) Choose a total order M, ,..., M, of the chambers of C’. 

(2) Define W”’ be the collection of walls of Mi that are not in any of 
the preceding chambers. 

(3) Define the restriction map by means of (6.10). 

We shall refer to this as the greedy algorthm, (since at each step W”’ is 
assigned the largest number of walls). 
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Clearly, if 6.11 holds for each i, the algorithm will produce an E-R 
decomposition. Remarkably, we have the following simple criterion: 

LEMMA 6.1. The identity in (6.11) holds if and only if 

R(M,) z Zi. (6.12) 

Proof: Let A,, AZ,..., A,, be the walls of Mi that are in one of the 
previous chambers 

and let B, , B, ,..., B, be the remaining walls of Mi. Clearly, 

W”’ = {B,, B, ,..,, Bk}. 

Thus according to (6.10) we have 

R(Mi)=B,nB,n--. nB,. (6.13) 

Since each of the walls of M, is obtained by subtracting a singleton from 
Mi we can write 

A, = Mi - (X,)3 Bs=Mi- IYsI* 

We see that 

Mi = {Xl 3 X2 3.a.) xh; Y I 3 Y2 Y***Y Yk}* 

Thus, {x, ,..., xh} and { y, ,..., yk} are complementary sets in Mi. This gives 
that 

R(Mi) = {Xl 3 X2 T***y xh }* (6.14) 

Indeed, taking complements in (6.13) we get 

CR(Mi)=CB1UCB2U..- UCB,= (y,,y,,...,y,}. 

Note now that if a facet F of Mi omits x, then it is contained in A, and 
thus it is necessarily contained in 1M, U lM2 U --- U lMi-, . This means 
that each facet of Ei must necessarily contain the set 

1x1 9 x2,*.., x,,}. 

In view of (6.14) this implies that 

Ei G [R(M,), Mi]. 
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Assume now that (6.12) holds true and let 

R(M,) c: F G Mi. (6.15) 

We claim that F E Ei. In fact, if not then F is contained in some Mj (j < i), 
by (6.15) so will R(M,) itself, contradicting the assumption that 

This gives 

R(M,) E 3;. 

[R(M,), Mi] c pi 

and equality in (6.11) must hold as asserted. 

Suppose now that the condition in (6.12) is satisfied for all i. In this case, 
as we have observed, the greedy algorithm does produce an E-R decom- 
position of C’. Let R be the corresponding restriction map. Note then that by 
construction, we can’t have 

R(Mi)GM/ 

for any j < i. This implies that the incidence matrix 

IIX(R(Mi) s MillI 

is necessarily upper triangular. Since the diagonal elements are all equal to 
one, the determinant must be equal to one as well. 

The reader familar with the theory of shellable complexes (see [ 3 ] or [ 14 1) 
will recognize that we have a completely analogous theory here for Boolean 
complexes. 

We shall agree then to say that a Boolean complex C’ is shellable if its 
chambers may be given a total order for which the greedy algorithm 
produces an E-R decomposition. The total order itself will be referred to as 
the shelling order of C’. 

Combining all these observations with Theorem 6.1, we can easily derive 
the following recipe for constructing basic sets of invariants. 

THEOREM 6.2. Let C/H be shellable, and let 

M, , M, ,..., M,v 

be a shelling order of the chambers of C/H. Let R(M,) be the restriction map 
obtained by the greedy algorithm. For each i let bi be a representative of the 
orbit R(M,). This given, the orbit polynomials 

R”x(b,), R”x(b,),..., R”x(b,) (6.16) 

form a bsic set for RHR,. 
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We terminate this section with two further results concerning Boolean 
complexes. 

Let C’ be a balanced Boolean complex. Suppose that [d] is the set of 
colors. For each S G [d] let as(C’) denote the number of facets of C’ whose 
rank set is equal to S. In symbols 

as(C’) = #Cl,. 

Set also 

&(C’) = c (-1)#‘S-T’ ar(C’). 
TES 

(6.17) 

The following is a useful criterion for shellability: 

THEOREM 6.3. Let C’ be a balanced Boolean complex. Let 

M, , M, ,..., M, (6.18) 

be a total order of the chambers of C’. Let 

B,, Bz,..., B, 

be elements of C’ having the following properties: 

(1) BizMiforeachi=1,2 ,..., iV, 

(2) the matrix I(B, 44) = ]]x(Bi C_ Mj)]] is upper triangular, 

(3) the number of Bi of rank set S is equal to /I,(C’). 

Then C’ is shellable, (6.18) is a shelling order and the restriction map R 
produced by the greedy algorithm is simply given by 

R(M,) = Bi. 

ProoJ Let Ei be defined by (6.8) as before. To prove the theorem we 
need only show that 

Zi = [Bi, Mi] ( for i = 1, 2 ,..., N). (6.19) 

Note that the upper triangularity of the matrix I(B, M) implies that Bi is not 
contained in any of the chambers 

Ml 9 Mz,..., Mi- I* 

Thus B, E Bi, and this gives (since Ei is an upper ideal of sets) 

[Bi, Mi] G Ei. (6.20) 
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This in particular implies that the intervals [Bi, Mi] are disjoint. Using this 
fact, we can complete our proof by showing that the sum 

M 
“ [Bi, Mi] 
,T, 

(6.21) 

has as many elements as C’ itself. 
Now an easy argument shows that the number of elements in the set 

(6.2 1) can be written in the form 

(6.22) 

Using the identity 

The expression in (6.22) becomes 

\’ 
S qdl 

a,s(C’ 13 

which is plainly equal to the cardinality of C’. Thus our proof is complete. 

The next result is useful in establishing that a given Boolean complex is 
E-R when shellability is not available. To see how this can be achieved 
suppose that we are given a total order 

M, , M, ,..., M,v , 

of the chambers of C’ and we aim to construct a set of intervals 

[B,, M,l, IB,, %I,-, IL ‘%I (6.23) 

which are simply disjoint. 
Note that two non-empty intervals [Bi, Mi], IBi, Mi] have an element in 

common if and only if the inequalities 

are simultaneously satisfied. 

Bi ~ Miy (6.24a) 

Bj C_ Mi, (6.24b) 

Suppose then that the first i - 1 intervals in (6.23) have been constructed. 
By the above observation we see that if we pick Bj in the set 

2; zz 
LMi- U LMi, (6.25) 

Bj'M, 
j<r-I 
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then at least one of the inequalities in (6.24) will fail for each j < i - 1, and 
thereby the interval [Bi, Mi] will have no element in common with 

Supposed we do this for each i. Then to check whether or not we have 
produced an E-R decomposition of C’ we can again resort to the counting 
argument. 

These observations, may be combined to yield the following useful 
criterion. 

THEOREM 6.4. Let C’ be a balanced Boolean complex. Let 

M,, Mz,..., M, 

be a total order of the chambers of C’. Let Bi (for each i = 1,2,..., N) be one 
of the elements of the set 

S; = lMi- u ]Mj. 
Bj'Mi 
jSr-1 

Then the map R(M,) = Bi defines an E-R decomposition of C’ if and only if 

#{Bi : r(Bi) = S) = ps(C’). (6.26) 

7. THE ACTION OF THE SYMMETRIC GROUP 

In this section we shall study the case in which our poset P is the Boolean 
algebra B, of subsets of (1, 2 ,..., n} and G is the symmetric group S,. The 
action of S, on B, is defined in the obvious way. Namely, for a given per- 
mutation 

i 

1 2 ... It 
U= 

a, u2 -*a an 1 
and subset 

A = {il, i, ,..., ik} E (1, 2 ,..., n) 

we let 

This given, for a chain 

UA = (Ui*, ui* )...) Uik}. 

c :A, cA,c ..a cA, 
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we set 

UC :uA,,uA, ,..., UA,. 

The maximal elements of B, can be identified with permutations. In fact, if 

m:AO=#+AIpA2+a.a +A,-,+A,= 1~1 (7.1) 

and 

A,-Ai-, = {xi} (7.2) 

we shall refer to 

1 2 ... 

r(m) 

n 

= c 5, r2 ... 5, 1 

as the permutation associated to m. Conversely, by reversing the process, 
given r E S, we let m(r) denote the maximal chain corresponding to r by 
means of (7.1) and (7.2). 

We see that for any CJ E S,, the action 

m+um 

reduces simply to permutation multiplication. In symbols 

r(um) = or(m). 

To each chain 

we shall associate an ordered partition of [n] 

by setting 

Bj : Ai - Ai_, (for i = 1, 2 ,..., k + 1). 

Now let c’ be another chain and let 

ZZ(c’) : B; + B; + ... + B;,,, = In\. 

We see that we have 

c’ = UC, 
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for some u in S, if and only if k = k’ and 

#Bi = #B/ (for i = 1, 2 ,..., k). 

In other words S, acts transitively on the chains of any fixed rank set. Thus 
we may identify the action on each C=, with coset action. For 
computational purposes it is convenient to make this identification precise. 
To this end, for each 

S={l<i,<...<i,<n} 

set 

cs : { 1, 2 ,..., i, }, { 1, 2 ,..., i, } ,..., { 1, 2 ,..., ik }. 

Let G, denote the stabilizer of cs. Clearly, G, is the Young subgroup 
consisting of the permutations which leave invariant the partititon 

IZ(c,) : { l,..., ii}, (ii + l,..., i2} ,..., {i, + l,..., n}. 

This given, we shall identify C=, with the coset decomposition 

S,=r,G,+r,G,+...+r,,,G, (5, = e). 

More precisely, for each maximal chain m let 

denote the chain obtained by selecting the elements of m whose ranks are in 
S. Our identification is simply given by the map 

vls : S,/G, -+ C:, 

defined by setting 

(o,(rG,) = m(r>ls. 

Now, suppose that we are given a subgroup H c S,. Note that for two 
chains 

c I= Vs(ri Gs), cz = v&G,), 

we shall have 

c2 = hc,, 

for some h E H if and only if 

rjG, = hr,G,. 
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But this happens if and only if the double cosets 

are identical. This in turn shows that we can identify the elements of 

with the double cosets 

HrG,. 

We may thus conclude that 

a’,’ = #C,,/H = #H\S,,IG,s. (7.3) 

Remark 7.1. It should be noted that this is in complete agreement with 
(5.7). In fact, an easy calculation yields that the formula 

(7.4) 

holds in full generality for any two subgroups H, K of a given group G. 
Now, when our group G acts transitively on C-,s then the character a,< 
introduced in (1.1) is precisely of the form 

where K is the stabilizer of any one of the chains of rank set S. Thus (7.3) 
follows from (5.7) as asserted. 

It develops that formula (7.3) takes a particularly combinatorial flavor 
when H itself is also taken to be one of the Young subgroups. To state the 
corresponding result we need some notation. 

We recall that if 

U= c 1 2 ... II 
. 

u, 01 ... an 1 

an element i such that oi > ui+, is said to be a descent of u. We also let 

D(o) = {i : ui > ui+ ,} 

and refer to it as the descent set of a. 
This given, we have the following remarkable fact: 
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THEOREM 7.1. For any T, S G [n] 

as CT= #{T : D(T-‘) c T, D(r) G S). (7.5) 

ProoJ Let 

II,= {A,,Az,...,A/‘}, ZZT = (B,, Bl,..., B,J 

denote the partitions corresponding to cs and c,, respectively. By our 
conventions G,, G, are the stabilizers of l7, and ZIT. We see that two 
elements r,, r2 are in the same coset tG, if and only if 

7’Ai = 7*Ai (for i = 1, 2 ,..., n). 

Thus a coset rG, is determined by chasing the images A;, A;,..., AA of 
A A 1 ,***, 2,..., A, by any one of the elements of rG,. The simplest such 
element is the permutation 

T= TA; TA; . . . TAI, (Pi’1 = IAil)* (7.6) 

where this symbol is to represent the arrangement of 1,2,..., n obtained by 
putting first the elements of Ai in increasing order, then the elements of A; in 
increasing order, etc.... 

Similarly, two permutations t,, r2 are in the same coset G,r if and only if 
r2 7; ’ E G,. That is, if and only if 

t;‘Bi = r;‘Bi (for i = 1, 2 ,..., k). 

Thus again, we see that the simplest element of a coset G,r is a permutation 
7 obtained by setting 

t --I = TB; TB; . . . TB; (lBII = IBil)* (7.7) 

It develops that within a double coset G,rG, there is a unique element r 
for which both (7.6) and (7.7) are simultaneously satisfied. In other words, 
we claim that within such a double coset there is a unique element 

‘= 
A, A, .a. A,, 
A; A; . . . Al, 

with the following properties: 

the elements below a given Ai are in increasing order, 

in the word IA; TA; ..- fAl, 

the elements of each Bj appear in increasing order. 

(7.8) 

(7.9) 



INVARIANTS ANDGROUPACTIONS 143 

To show this, set for each u E S, 

d,(a)=#aAinBj=#Aino-‘Bj. 

Note that if o = /?7a with a E G, and /I E G, then 

dij(a) = #/37Ai (3 Bj = #7Ai 0 p-‘Bj = #7Ai (3 Bj = d,,(r). 

(7.10) 

Thus the numbers dij(a) depend only on the double coset ~7 is in. But now 
observe that given that d,(t) = d,, conditions (7.8) and (7.9) completely 
determine 7. Indeed, those conditions immediately imply that TA; consists of 
the first d,, smallest elements of B, followed by the first d,, smallest 
elements of Bz,..., etc. Similarly, TA; consists of the second d,, smallest 
elements of B, followed by the second d,, smallest elements of Bz,..., etc. 
This shows the existence and uniqueness of the desired element r. But now 
note that (7.8) and (7.9) simply say that 

o(t-')s T, D(7)G s. (7.11) 

We have thus established a one-to-one correspondence between these 
permutations and our double cosets GpG,. Thus our equality (7.5) must 
hold as asserted. 

An immediate consequence of Theorem 7.5 is the following result: 

THEOREM 7.2. 

(7.12) 

Proof: From formula (7.5) we get 

a;~= x #{7:D(t-‘)5T,D(7)=R} 
RES 

and (7.12) follows by Moebius inversion on the subset lattice. 
Observe now that since the action of S, on the maximal chains of B, 

reduces to left multiplication, the chambers of the Boolean complex C/H 
may be identified with the cosets of the decomposition 

From the considerations at the beginning of the proof of Theorem 7.1 we 
see that in the particular case that H = G, the representatives si may be 
taken to be the permutations 7 such that 

D(r-‘) s T. (7.13) 
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If we let as before 

17, = {B,, B2v.v Bk} 

we see that these are permutations 

5= 

where in the word x,x2 . .- xk the elements of each Bi appear in increasing 
order. 

It is well known (see [3, 141) that the lexicographic order of permutations 
induces a shelling of the chain complex of B,. Moreover, it can be shown 
that the restriction map R corresponding to this shelling is obtained by rank 
selecting the maximal chain corresponding to the permutation u precisely at 
the descent set of u. Using the present notation this may be written in the 
form 

R(m(a)) = m(4w. (7.14) 

We know from Theorem 6.2 that if C/G, is shellable; and 

induces a shelling order, then if R denotes the corresponding restriction map, 
we must have 

#{TV : R(m(r,)) = S) =@. 

If this is true in the present case, then it must be that 

#{r:D(r-‘)cT,R(m(z))=S}=#{r:D(r-’)~T,D(z)=S}. (7.15) 

This circumstance should strongly suggest that there is a shelling order for 
which R is precisely given by (7.14). 

It develops that this is indeed true. Our result may be stated as 

THEOREM 7.3. The lexicographic order of the set of representatives 

{CD@-‘)e T} (7.16) 

induces a shelling of C/G, and the restriction map R obtained from the 
greedy algorithm is precisely given by the formula 

R(W) = WIDc,, . (7.17) 
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ProoJ: Let 

be the lexicographic order of the elements of the set in (7.16). Set 

Mi= m(ri), Bi = m(riL,). 

Note that conditions (1) and (3) of Theorem 6.3 are thus automatically 
satisfied ((1) is trivial and (3) follows from (7.12)). Thus the present result 
may be derived from Theorem 6.3 by showing that the matrix 

W4 Ml = MB; s MJll 

is upper triangular. 
To show this observe first that in a double coset 

the unique r with the properties 

(7.18a) 

(7.18b) 

is also the lexicographically smallest element of this double coset. This fact 
is an immediate consequence of the construction given in the proof of 
Theorem 7.1. Indeed, let us use the same notation as before and set again 

If a class uGs corresponds to the permutations for which the image of Ai is 
Ai then clearly the lexicographically least element of this class is the per- 
mutation 

r= TA; TA; . . . TA;. 

Note then that left multiplication of r by an element of G, only changes the 
order of the elements of each Bi separately. Thus to get the lexicographically 
least element of the class G,r we need only place the t,j(r) smallest elements 
of Bj in A;; place the second tzj(t) smallest elements of Bj in A;;..., etc. But 
this is precisely the unique element 7 in G,aG, which satisfies (7.18a) and 
(7.18b). Thus r lexicographically precedes each of the elements of any of the 
cosets UC, that make up G,aG,, and must therefore be the least element of 
this double coset as asserted. 
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This given, note that if 

then by definition we must have an element h E G, such that 

hB, E M;. (7.19) 

Note further that if we set 

S = r(Bi) = D(q) (7.20) 

then Bi corresponds to the coset riG,. Now, from (7.19) we get that hBi 
corresponds to the coset rjGs. Thus we must have 

h7iGs = ~jGs 

and this in turn implies that 

But by construction 

5i E G,rjG,. 

D(z;‘) G T 

and (7.20) gives 

So ri must lexicographically precede rj. This i < j must necessarily hold as 
asserted. This completes our proof. 

Combining Theorems 6.2 and 7.3 we obtain the following remarkable 
result. 

THEOREM 7.4. For each o E S, set 

r(u)= n x,p2...oi* (7.21) 
ui>"i+l 

Then for any subset T s [n - 11, the set of orbit polynomials 

{RG’q(a) : D(a-‘) E T} (7.22) 

is basic for R,“;. 

We have so far developed three different approaches to the construction of 
basic sets of invariants. The first, which is expressed by Theorem 4.2, we 
might refer to as the Gauss elimination method. The second, which is 



INVARIANTS AND GROUP ACTIONS 147 

expressed by Theorem 6.2, we might refer to as the shelling method. Finally, 
the third, expressed by Theorem 6.4, we will have to refer to as the ER-ring 
method. It is worth while to illustrate our results by working out a few 
examples. We shall go over the cases H = C, in S,, H = S, x S, in S, and 
H = C, in S,. We make these particular choices since they illustrate well 
each of our three different approaches. 

EXAMPLE 1. C, in S, . 

To apply the Gauss elimination method, we need to start with a basic set 
for the full Stanley-Reisner ring of the given poset P. When P = B,, such a 
basic set is obtained by taking the descent monomials 

v(a) = 1-1 XO,cr~. .UI (0 E Sill (7.23) 
O,>Oi+1 

This follows from Proposition 6.1 of [ 141 or the special case T= 4 of 
Theorem 7.4. For the case of B, we get 

123 I 
132 XI1 
213 X2 
231 x22 
312 x 
321 x3-yz3 

(7.24) 

Now, for H = C, 

R” = f(e + (123) + (132)). 

Moreover since here 

0, =x, +X?+Xj, 0, =x,2 + x23 + x*3, 

we can easily see that 

R”1 = 1, 

R”x,, = RHx,, = f 0, = 0 (mod(O,, 0,)) 

R”x, = RHx, = j 0, = 0 (mod(O,, O,)), 

RHx,xz3 = +(x,x*, + ~1x1~ +x,x,,). 

(7.25) 
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Now we can easily compute (or we may use the expansions in 6.31 of 
[ 141) and obtain 

x1x13 = @1x,3 - 0,x, + x3xz3 = x3x13 (mod(O,, O,)), 

x2x12 = 0,x, - 0,x,, + x3x23 = x3x23 (mod(O,, 0,)). 

This implies that 

RH1=l and R”x,x2) = xJxz3 

are independent in RB,/(O,, 0,). Thus we may conclude from Theorem 4.2 
that the polynomials 

1 and (x3x23 +x1x13 +x2x12) (7.26) 

form a basis for R,“;. 
Perhaps we should point out that the same conclusion may be drawn by 

means of Theorem 5.1. Indeed, (5.2a) reduces here to the fact that 

@,@2R”l =x1x12 f x,x,3 +x2x12 +x2x23 +x3x13 +x3x23 

and 

RHX3X23 = f(X3X23 +x,x,3 +x2x,2> 

are independent in Rs, itself (which is trivial). Moreover, note that for 
H=C,, 

This gives 

a: = a:,, = ar2, = 1 and H 
all,, - - 2. 

P:=P;2, = 1 and P;“l,=#2,=0. 

Thus condition (5.2b) is satisfied as well and Theorem 5.1 does indeed 
apply. 

EXAMPLE 2. The case of S, x S, in S,. 

Using the present notation this corresponds to taking P = B,. G = S,, and 
H = G,2,. Here 

and thus 

G,,, = {e, (L2), (3,4), (L2) (3,4)}. 
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The lexicographically minimal representatives for the cosets G,,,r are the 
six permutations of S, having 1, 2 and 3,4 in the right order. We then get 

Label r v(r) 

1 1234 1 
2 1324 .y, 1 
3 1342 .YIIJ 
4 3124 xi 
5 3 142 .Yl.Y, 1, 
6 3412 -y,, 

(7.27) 

Thus Theorem 7.4 yields that the following is a basic set for RE;Lt: 

1 

(7.28) 

Much can be learned by deriving the same monomials as in (7.27) directly 
from the greedy algorithm. To do this let us represent the chambers of 
C/G,,, by means of the chambers of C corresponding to the permutations 
listed in (7.27). Now, the chambers of the chain complex of B, may be iden- 
tified with the triangles of the barycentric subdivision of the tetrahedron. We 
may thus depict our quotient complex C/G,2, as in Fig. 1. Here the labelled 

FIGURE 1 
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triangles represent the elements of C/G,,,. The labels are those of the 
corresponding permutation. For instance, the fourth permutation in (7.27) is 

3124. 

The corresponding maximal chain is 

~-{3}-,{1,3}~{1,2,3}-,(1,2,3,4) 

and this is represented by the triangle with vertices 

m, (131, (1231. 

We now discover a rather remarkable fact: 

No two edges or vertices of the region formed by the labeiled 
triangles are equivalent under G, *, . 

This circumstance entrains that C/G,,, may be identified with the 
subcomplex of C whose maximal elements are the chambers corresponding 
to the minimal representatives of the cosets rG,,, . As we shall see in the next 
example, this is not necessarily so for general quotient complexes C/H. 
However, it develops that it does hold true when H is one of the Young 
subgroups G,. We refer the reader to [30] for a proof of this result. 

This given, let us apply the greedy algorithm to the labelled triangles in 
Fig. 1 in order of increasing labels. Following the recipe outlined in steps (1). 
(2), and (3) of Section 6, we get 

Label pf,4l 
n w 

WERW 

1 I 12; 1 123; 12 123 4 
2 1 13; 13 123 13 
3 1 134; 13 134 134 
4 3 13; 3 123 3 
5 3 134 3 134 
6 34134;334 34 

and as we see, in accordance with Theorem 7.3, we are led to the same 
monomials obtained by rank selecting according to descents. 

EXAMPLE 3. C,in S,. 

Let us represent the chambers of C/C, again by triangles of the 
barycentric subdivision of the tetrahedron. Note that since by a circular 
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4 3 

FIGURE 2 

permutation we can always bring 1 to the first position, we may select the 
following representatives: 

Label r Triangle 

1 1234 1 12 123 
2 1243 I 12 124 
3 1324 1 13 123 
4 1342 I 13 134 
5 1423 1 14 124 
6 1432 1 14 134 

This leads to the subset of the tetrahedron depicted in Fig. 2. 
Now note that, contrary to what happened in the previous example, some 

pairs of border edges as well as some pairs of border vertices turn out to be 
equivalent. For instance, the orbit of the edge 12 123 under C, is 

12 123 + 23 234 + 34 341+ 41412. 

Thus to get C/C, the edges 12 123 and 14 124 must be identified. Similarly 
we can see that the vertices 12 and 14 must be identified. 

Carrying this out for all border vertices and edges leads to the represen- 
tation of C/C, in Fig. 3. Here pairs of edges or pairs of vertices carrying the 
same label are to be identified. We can easily see that the resulting Boolean 
complex is not simplicial. A little work shows that it is not shellable either. 
Nevertheless it affords an E-R decomposition. To see this let us process the 
triangles of Fig. 3 one by one in order of increasing labels, using the 
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B 

C C 

a 

B 

FIGURE 3 

procedure outlined at the end of Section 6. With the notation introduced in 
(6.25), we may describe the resulting steps as 

Take B, = 4; this gives 

E;=lM,-IM,: 

Take B, = b; this gives 
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Take B, = D; this gives 

153 

Take B, = g; this gives 

Since this is our last chance to capture e, we take B, = e and obtain 

0. 

iM6 
f d g 

Z;=lM,-lM,--M,-LM,: 

Take B, = f. 
Clearly our desire to make our intervals [Bi. Mi] as large as possible 

suggests that each time we should take Bi equal to one of the minimal 
elements of the set 2;. This idea determined what we did at the lst, 3rd, 4th 
and 6th steps. At the 5th step B, = e was our only choice, since otherwise e 
would have been left out of 

c [B,, Mi]. 
i=l 

Thus according to this scheme our only ambiguity was at the second step. 
However, it develops that the other choice also leads to a solution. 
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Note now that we have 

GARSIA AND STANTON 

4 1 I 4 
A 1 0 - 

(21 B, D 2 1 D 
(3) c 1 0 - 

(1,2/ 4 h,f 3 1 f 
11,31 e, k, g 3 2 e,g 
12~31 a, b, c 3 1 b 

11,2> 31 I,29394 5.6 6 0 - 

We see that condition (6.26) is satisfied. Thus the restriction map Mi-+ Bi 
we have just constructed gives an E-R decomposition of the Boolean 
complex C/C,. Of course our final goal is to obtain a basic set for Rz. To 
check whether or not this is given by the system (R”x(B,)}, according to 
Theorem 5.2, we need only verify that the incidence matrix 

Z(B, W = IIX(Bi z Mj)II 
is non-singular. 

In this case the matrix is 

n B, M, M, M, M, M, M, 

1 B, 1 1 I I I 1 
2 b 0 1 0 0 0 1 
3 D 0 0 1 1 0 0 
4 g 0 0 0 1 0 1 
5 

; 
0 1 0 0 1 0 

6 0 0 0 0 1 1 

We see that this matrix has non vanishing determinant and thus polynomials 

1 

R‘hxm 

R% 

R“xP,,, 

R”-W,4 

R”x,x,, 

(7.29) 
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form our desired basic set. We should point out that the above E-R decom- 
position of the Boolean complex C/C, was first obtained by I. Gessel in a 
different context (personal communication). The significance of the non- 
singularity of the corresponding incidence matrix is, of course, our result. 

8. THE ACTION OF A WEYL GROUP 

The results of the previous section have a natural extension to the case 
where the symmetric group is replaced by any finite Coxeter group. For 
instance, if G is the group of a Coxeter polyhedron n, then a completely 
analogous theory may be developed. In this case the roles played in the 
previous section by the n-simplex, the Boolean algebra B,, and the chain 
complex of B, are respectively played by II, the poset of faces of Ii’ and the 
chain complex of this poset. The latter is usually referred to as the Coxeter 
complex (see (4, 7,9]). 

However, for some Coxeter groups there may not be any underlying 
Coxeter polyhedron. Worse yet, (see 1301) the Coxeter complex itself may 
not be the chain complex of any poset whatsoever. In general, the only 
surviving ingredients are the Coxeter group and the Coxeter complex. 
Nevertheless it develops that, with appropriate modifications a parallel 
theory may be constructed. We shall present in detail here this construction 
in the case of a Weyl group W corresponding to an irreducible root system. 
This case has all the essential features of the general case but the various 
ingredients have a more concrete definition. At the appropriate times we 
shall give some indication of the modifications necessary to extend our 
results to the remaining finite Coxeter groups. 

In our presentation we shall follow very closely the notation of [ 16 I. For 
further background on root systems or Coxeter groups we refer the reader to 
1739, 161. 

Let @ be an irreducible root system of n-dimensional Euclidean space E, 
and W be the corresponding Weyl group. An customary we let @’ and @.- 
denote, respectively, the collections of positive and negative roots. Let CL,. 
a2 ,..., a, be a basic set of roots and let A,, A, ,..., /1, be the associated set of 
fundamental dominant weights. We denote by un the reflection corresponding 
to a root a and by s,,..., s, the reflections corresponding to a, ,..., a,. 

Now let V(W) denote the subset of E, consisting of the orbits of the 
fundamental weights under the action of W. In symbols 

V(W)=(wAi:wE W,i=1,2 ,..., n). 03.1) 

This given, we define the Coxeter complex of W to be the the simplical 
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complex C(w> whose vertex set is V(W) and whose chambers are the 
subsets 

M, = {WA,, IV& ,..., WA,,}. VW 

Accordingly the facets of C(w> are the subsets of V(W) which may be 
written in the form 

(8.3) 

with 1 < i, < i, < --. < i, < n. 
It is well known and easy to show that the orbits of different Izi are 

disjoint. Thus each element < of V(w> may be assigned a well-defined rank 
by setting 

r(r)= it+ <= IV,+. (8.4) 

We can easily see from (8.2) that this makes C(w> into a balanced complex. 
Accordingly we shall define the rank set of a facet to be the set r(F) 
consisting of the ranks of its elements. In particular for the facet F given in 
(8.3), 

r(F) = {il, i, ,..., ik}. 

To be consistent with standard terminology we shall call 

the fundamental chamber of C(W). For a given facet F we shall denote by 
W(F) the set of elements of W whose inverses send F into the fundamental 
chamber. In symbols 

For a given 

W(F) = {w : w-‘Fs {A, &,...,&,J}. (8.5) 

J= {j,,j2, . . . . j,} c 11, L..., nl 

we shall set 

In words W, is the Weyl subgroup of W by the simple reflections Sj,, 
sj,,..., Sjk. 

Now, it is easy to see that if 

(8.6) 
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then w-IF G M, holds if and only if 

w-‘WOAir = Air for r = 1, 2 ,..., k. 

This implies that wP ‘PV,, must belong to the Weyl subgroup corresponding to 
the complement of r(F). We thus deduce that 

Moreover, we see that we have 

F, cF, 

if and only if 

WV’,) 2 WV,) 

with equality holding only when F, = F,. 
Thus, as a poset, C( IV) may be identified with the dual of the poset of all 

right cosets of Weyl subgroups of W ordered by inclusion. Indeed, in the 
absence of a root system, the Coxeter complex of a general Coxeter group W 
may be defined entirely in terms of right cosets. We refer the reader to [4 1 
for a precise description of this construction. 

This circumstance allows us to speak of a facet F or the coset W(F) 
interchangeably. Moreover, we shall be able to obtain formulas for C(W) 
that are entirely analogous to those expressed by Theorems 7.1 and 7.2. To 
do this we need further notation. For an element w E W it is common to call 
the length of w and denote it by 1(w), the smallest integer k such that 

w=si,s;, ... si,. 

We recall that the Bruhat order <” on W is the transitive closure of the 
relation 

where 

W,y+W2~Wz=f.JaW, for some a E @, 

t(wz) = l(w,) + 1. 

Finally, for a given w E W let us set 

DR(W) = {i : wsi <R w), DL(W) = (i : siw <H w); (8.7) 

we shah refer to these two subsets as the right and left descent sets of w. 
It should be noted that when W = S,, , and a, ,..., a, are ordered so that si 

is the transposition (i, i + l), then DR(w) and D,(w) coincide respectively 
with D(w) and D(w-i) as defined in Section 7. 

This given we have the following basic result: 
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PROPOSITION 8.1. Each coset wW, contains a unique element wO such 
that 

D,(w,) c ‘J. 

Moreover for each w’ E wW, we have the factorization 

w’ = w,u’ U’E w, 

with 

Z(w’) = Z(w,) + l(u’). 

In particular w,, precedes in the Bruhat order all the other elements of the 
coset. 

This result is well known to the specialists and we refer the reader to [ 71 
for a proof. 

Here and after we shall refer to the element w,, whose existence and 
uniqueness is guaranteed by Proposition 8.1 as the minimal element of the 
coset wW, and we shall denote it by the symbol 

inf wW,. 

We are now in a position to emulate a number of operations we carried 
out in Section 7. 

For a given chamber M, and S G { 1,2,..., n } let us denote by 

the facet obtained by selecting the elements of M, whose ranks are in S. We 
can easily see that we have 

W(M,,Is) = wW,,. w3) 

This fact enables us to obtain an E-R decomposition of C(IV). Indeed for 
each FE C(W) set 

E(F) = Ko, (8.9) 

where 

and for each w  E W let 

w0 = inf W(F) 

(8.10) 
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We can show that 

C(W = x [R(M..), &.I. (8.11) 

In fact, more than this is true. 
It was previously known (81 that C( IV) . is a shellable complex. However, 

quite recently Bjorner [4] discovered that any linear extension of the Bruhat 
order of W yields a shelling of C(w>. The proof of this result in the present 
context is almost immediate and we might as well include it. 

First of all let us again denote by C=,(W) the collection of all facets 
whose rank set is S and let 

a, = #C=,(W), ps= y (-l)‘SPT’ aT. (8.12) 
TES 

From Proposition 8.1 we then get the following result: 

PROPOSITION 8.2. 

a,==#(wE W:D,(w)cSj, (8.13a) 

p, = #(w E w : D/((W) = S}. (8.13b) 

Proof: We see from 8.8 that the elements of C=,(IV) may be placed in 
one-to-one correspondence with the cosets 

On the other hand from Proposition 8.1 we see that if 

w0 = inf w WC7 

then 

D,(w,) G s. (8.14) 

Thus the elements of C,,(W) are in one-to-one correspondence with the 
elements of W satisfying (8.14). This gives (8.13a). Formula,(8.13b) then 
follows by inclusion-exclusion. 

We can use Theorem 6.3 to obtain Bjorner’s result. 

THEOREM 8.1. Let w,, w, ,..., w, be a total order of W that is compatible 
with the Bruhat order and let 
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Then M, , M, ,..., M, is a shelling order for C(w) and the restriction map R 
produced by this shelling is precisely given by 

R(M,) = Bi. (8.16) 

Proof: Clearly conditions (1) and (3) of Theorem 6.3 are satisfied, ((1) 
is trivial and (3) follows from (8.13b)). Thus we need only show that the 
incidence matrix I@, M) is upper triangular. To this end note that 

BisMj 

simply means that 

Wj E W(Bi). 

On the other hand (8.8) and (8.15) give 

W(B,) = Wi wcD,(,i) * 

From Proposition 8.1 we then get that 

wi = inf W(B,). 

(8.17) 

Comparing this with (8.17) we deduce that wi precedes wj in Bruhat order. 
Thus we must necessarily have i < j as desired. 

Remark 8.1. We see then that we must have (8.11) as asserted and 
indeed the restriction map defined in (8.10) does correspond to a shelling of 
C( IV). In particular, we can easily derive that the map 

F + @V’)~ r(F)) (8.18) 

gives a bijection of C(w> onto the set of pairs 

(8.19) 

Let us now recall that if C is a simplicial complex with vertex set V then the 
Stanley-Reisner [ 17, 211 ring of C is defined as the ring 

Qlx u : v E VI/J, (8.20) 

where J is the ideal generated by the monomials 

-%,-%I2 ... XLQ 

such that v,, v2 ,..., vk are not contained in the same chamber of C. 
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If C is balanced and { 1, 2,..., n} is the set of ranks we set 

(8.21) 

Note that since no two elements of the same rank can lie in the same 
chamber. for each element u of rank i we will have 

xP=@?-’ 
I’ I Xl. (P> 1). 

This condition allows us to write the non zero monomials of R, in the form 

In particular we see that 

&I(@, ,..., 0,) 

is the linear span of the facet monomials. The latter are monomials of the 
form 

x(F) = 1 1 -Y,., 
I‘EF 

where F is a facet of C(W). 
It is not difficult to see that all the basic results we obtained in [ 141 

concerning Stanley-Reisner rings of a poset carry out verbatim for Stanley- 
Reisner rings of balanced complexes. Indeed, the basic identity which makes 
this possible is precisely (8.22). To obtain the corresponding result in the 
present context we need only replace the poset P by the vertex set V, chains 
by facets and maximal chains by chambers. 

In particular we may state the following version of Theorem 3.2 of [ 14 1. 

THEOREM 8.2. Let C be a balanced complex and let [n] be its set of 
ranks. Let 

M, , M, ,..., M, 

be its chambers. Set 

as(C) = #C=,, P,(C) = x (-l)‘S-T’ c+(C) 
TES 

then the ring R, is Cohen-Macaulay if and only if we can find a collection of 
facets 

B = P,, B, ,..., BN} 
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such that 

#{Bi : r(Bi) = S} =ps(C), 

the incidence matrix II,y(B, c Mj)lj is non-singular 

and when this happens the set of face monomials 

(8.23a) 

(8.23b) 

{x(Bi) : i = 1, 2,..., N} 

is basic for R, relative to O,, 0, ,..., 0,. 

This result has a proof which is entirely analogous to that given Theorem 
3.2 of [4] and we shall not repeat ourselves here. Nevertheless, it is 
worthwhile to point out a few basic facts. For each multisubset ^S of [n] set, 
as we did in Section 0, 

t-, = t;’ . . . t;“. 

For each nonzero monomial m = xu,xL12 ... x,& E R, let 

weight m = n trCvij. 
i=l 

Let H-,(R,) denote as before the linear span of monomials of weight t-,. 
Defining the fine Hilbert series FR, again by means of (0.5) we see that we 
must have just like before 

cs MC) ts 
FRc= (l-t,)(l-t,)..*(l-t,)’ 

(8.24) 

In analogy with what we did in Section 1 we define an automorphism of C 
to be a one-to-one map of the vertex set V onto itself which preserves rank 
and sends facets into facets. In this vein all of the results of Sections O-6 can 
be extended to the case of a balanced complex C with a group G of 
automorphisms. There is no need to redo this in detail here since the 
statements and arguments are almost verbatim repetitions of those already 
given. 

Let us now go back to our Coxeter complex C(w). We see that 

R ccwj = Q[x,+ : w  E W, i = 1, 2 ,..., n]/J, (8.25) 

where J is the ideal generated by the monomials which may not be written in 
the form 

m = fi (x,Ji. (8.26) 
i=l 
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Combining Theorem 8.1 and 8.2 we deduce the following basic fact (see 
also 141): 

THEOREM 8.3. For each Weyl group W the ring R,,,., is Cohen- 
Macaulay and the set of monomials 

(8.27) 

is basx for R,(,, relative to the set of generators 

@i = 1 X,>A, (i = 1, 2 ,..., n). (8.28) 
nTw/rt’,.,i, 

Remark 8.2. It is to be noted that if we specialize formula (8.24) to 
C(W) we obtain the identity 

(8.29) 

Clearly we can let each w E W act on C(W) by left multiplication. More 
precisely, for each 

we simply set 

wF = { ww,~,,, wwO~il ,..., WW,,~~,}. 

Thus we may consider W as a group of automorphisms of C(W). We are 
thus led to study for each subgroup H G W the ring 

consisting of the polynomials in R,(,, that are left invariant by elements of 
H. Of course, it is understood that the action of an element w on R,.,,,., is 
defined by setting 

WX@, = X,.,@;. 

Note now that since facets of C(w) may be identified with the right cosets 
w W, and, moreover we have 

W(wF) = w  W(F). 

We see that, as was the case for the symmetric group, the action of W on 
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C(w) is again a coset action. In particular, W acts transitively on each 
collection C=,(w). Thus from Remark 7.1 we deduce the following result: 

THEOREM 8.4. If H is a subgroup of W then for the quotient complex 
C’ = C( W)/H we have 

af(C’)=#C_,(W)/H=#H\W/W,,. (8.30) 

Of course, as was the case for the symmetric group, the combinatorially 
interesting case is when H itself is one of the Weyl subgroups. Indeed, we 
have a complete analogue of Theorem 7.2. To state our result we need an 
auxiliary fact which in a sense generalizes Proposition 8.1. Namely, 

PROPOSITION 8.3. In each double coset W, wW, there is a unique 
element w,, such that 

D,(w,) c ‘J, (8.3 la) 

D,(w,) G ‘I. (8.3 lb) 

Moreover, for each w’ E W, w W, we have a factorization 

w’ = u’wo 2)’ 24’ E w,, v’ E w, 

such that 

I(w’) = l(u’) + Z(w,) + (v’). 

In particular w0 precedes, in Bruhat order, all the other elements of this 
double coset. 

Proo$ Since this result appears not as well known as Proposition 8.1 we 
shall include a proof. We shall start by establishing existence. To this end set 

and 

w, = inf wW, 

w,=inf W,w,. 

From Proposition 8.1 we deduce that 

w=w,v, 

l(w) = 4w,) + l(v), 

&(wI) G ‘J. 

(8.32a) 

(8.32b) 

(8.32~) 
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W,=UWo, 

Z(w,) = l(u) + f(w,), 

D,.( wo) c cz. 

It develops that w, is our desired element. That is, we claim that 

D,(w,) c 3 

holds as well. 

Indeed, suppose if possible that for some j E J 

wt, = wosi <R WD. 

We then have /(WA) < I(w,) and 

w, si = uwosi = uw:, <H UN’” = w, 

165 

(8.33a) 

(8.33b) 

(8.33~) 

(8.34) 

(the latter inequality being due to the fact that (8.32b) yields [(uwg) < I(U) + 
I(w;) = Z(w,) - 1). However, this contradicts (8.32~). Thus (8.34) must hold 
as asserted. 

To prove uniqueness we shall resort to the subword property of Bruhat 
order. This is a very useful result which may go back to (281. It can be 
stated as follows. First, let us recall that an expression 

is said to be reduced if 

h = l(Si,Si* *a. Sib). 

Moreover, an expression sj, sjl . . . sj, is said to be a subword of si,siz ... si, 
and we write 

sj,sj, ..+ sjk = sub(si,sil a.. si,} 

if and only if sj,sj, a.. sjr is obtained from si,siz ... si,, by deleting some of the 
factors. This given, we have the following basic fact. 

Let w have the reduced expression 

w = si,si* ... si, 

then w’ <B w holds if and only if w’ has a reduced expression 

w’ =sj,sjL *.. s. 1 Jk 
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which is a subword of si,si, . . . sib. Suppose then, if possible, that we have 
another element WA in W,wW, satisfying (8.31a) and (8.31b), namely, 

DR(w;) c ‘J, (8.35a) 

DL(WA) c ‘I, (8.35b) 

Note that this all means that we simultaneously have 

w,=infw,W,=inf W,wo, (8.36a) 

wA=infwAW,=inf W,w;. (8.36b) 

Moreover, we must also have 

w;=uw,v UE w,, VE w,. 

Now, from Proposition 8.1 and formula (8.36b) we deduce that 

w(, <B w;v-’ =.uwo. 

Thus if 

u = si, *** Sik, wg = s,, . * * s,, 

are reduced expressions, by the subword property we must have a reduced 
expression for WA which is of the form 

w; = sub{si, ..a si,} sub& es- s,,}. 

However, we claim that the left subword here must be empty. For, if WA had 
a reduced expression with a factor si, i E I appearing on the left, we would 
necessarily have 

which contradicts (8.35b). Thus it must be that 

w;, = sub{s,, .-- s,,}. 

The subword property then gives 

Carrying out the completely symmetrical argument we obtain as well that 

Therefore, wO = WA must hold as desired. 
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We are now in a position to study the quotient complexes 

It is convenient here (and necessary when dealing with a Coxeter group) to 
work directly with the cosets W(F) rather than with the facets. In view of the 
formula 

W(wF) = w W(F) 

the orbits of W, in C(w) fill double cosets of the form 

w,ww,, WE w, Js [n]. 

Thus we may use these double cosets to represent the facets of our quotient 
complexes. This given, Proposition 8.3 yields us the analogue of Theorem 
7.2. Namely, 

THEOREM 8.5. For any quotient complex C’ = C(W)/ W, we have 

as(C’) = #(w E w : D,(w) G ‘I, DR(W) G S}, (8.37a) 

&(C’) = #(w E w : D,(w) c ‘I, DR(W) = S}. (8.37b) 

ProoJ In view of the above remarks the elements of C. s(W)/ W, may be 
identified with the double cosets 

Thus 

w,ww,.,. 

as(C’) = #W,\W/Wc,. 

(This of course also follows from Theorem 8.4.) On the other hand, 
Proposition 8.3, with J= ‘S, implies that these double cosets are in bijection 
with the elements counted in (8.37a). This gives (8.37a). Formula (8.37b) is 
then obtained by inclusion-exclusion. 

Going back to the notation introduced in Section 5, we see that for two 
facets w, W,,, w2 WJ, we have 

WI WJ, <w, w2 w.i, 
if and only if for some h E W, 

hw, 5, =, ~2 4, 

and this, of course, happens if and only if 

w,w, WJ, 2 WfW2 w.!,. 
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Thus, as a pose& C( II/)/ W, may be identified with the poset of double cosets 
W, w  W, ordered by reverse inclusion. Now set for each Z c [n] 

‘w = (w : &(w) s cz). (8.38) 

Since for each left coset W, w  

inf W,w E ,W 

we see that we may represent the chambers of C(w>/ W, by the cosets 

(W,w:wE’W}. 

Taking all this into account we obtain the following extension of Theorem 
7.3, namely, 

THEOREM 8.6. Each quotient complex C(W)/ W, is shellable. In fact, if 

w,, W2Y.9 w, 

is a total order of the elements of, W that is compatible with the Bruhat 
order on , W then 

w,w,, WI%, . . . . w,whl 
is a shelling order of the chambers of C(W)/ W,. Moreover, the restriction 
map R corresponding to this shelling is simply given by the formula 

R(W,Wi)= W,WiWc~,(~~i)* (8.39) 

Proof. We may again use Theorem 6.3. Recall that the rank set of an 
orbit of a quotient of a balanced complex under a rank preserving action was 
detined to be the rank set of any of its elements. Thus, the number of i such 
that the rank set of R( W, wi) is S is given by the number of wi such that 

D,(w,) = s 

and this is precisely p,(C’). Thus condition (1) and (3) of Theorem 6.3 
clearly hold true. It remains to verify (2). To this end, note that by our 
previous observations, we shall have 

R(W,Wi) <w, KWj (8.40) 

if and only if 
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In particular, (8.40) implies that 

Since by construction 

Wi = inf W, Wi WCD,CH.,, , 

Proposition 8.3 yields that wi precedes wi in the Bruhat order. Thus 

as desired. 
Theorems 6.2 and 8.6 can now be combined to yield a remarkable 

collection of of basic sets of invariants. More precisely we have 

THEOREM 8.7. For each w E W set 

(8.4 1) 

Then for an-v subset 1 G In 1, the collection of orbit polynomials 

(R’“fv(w) : D,(w) G “I} (8.42) 

is basic for R,W;,, relative to the set of generators 

Oi = \‘ X,,.,,; (8.43) 
WE I&‘/M ~IIJ 

Proof Combining formula (8.39) with Theorem 6.2 we obtain that our 
desired basic set is given by the polynomials 

{Rw’x(b,.) : w E ‘W), (8.44) 

where b,. is a representative of the orbit 

~~WW~l),(iC,. 

Of course, we may take b,, so that 

W(h) = wW’.,,,(,,.,. 

Now if 

DR(w) = {i,, i, ,..., ikl 

60715 1/2-S 
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and 

b, = {IV&,, wAi2 ,..., w&J 

xh,J = n x,+. 
ieDR(w) 

Thus (8.42) and (8.44) are the same sets of polynomials. This establishes our 
assertion. 

It is good to illustrate our results here by some examples. 

EXAMPLE 1. Type G,. 

In this case we have a Coxeter polyhedron: the regular hexagon. The Weyl 
group acts on the poset P of faces of the hexagon ordered by inclusion. The 

FIGURE 4 
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FIGURE 5 

Coxeter complex is the chain complex of P. Indeed, it is none other than the 
barycentric subdivision of the hexagon. We should point out that this setup 
occurs whenever the Coxeter diagram has no bifurcations. In fact, the result 
of Wachs [30] is that this condition is not only sufficient but necessary for 
the Coxeter complex to be a chain complex. 

We have depicted the root system and the geometric realization of the 
Coxeter complex in Figs. 4 and 5. For convenience we have labelled the 
vertices in the orbit of A,, counterclockwise 

and likewise the vertices in the orbit of 1, 
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Our Coxeter complex here consists of the 12 vertices (walls) and 12 edges 
(chambers) of the six-pointed star. In Fig. 4 we have also depicted the Bruhat 
order of W. By reading the rows of this poset from bottom to top and from 
left to right we obtain a compatible total order of W. The resulting total 
order of the chambers of C( IV) is given by the circled labels appearing in 
Fig. 4. 

Applying the greedy algorithm we obtain the wall assignment and 
restriction map 

Chamber Walls Wk) 

6 

8 
9 

10 
11 
12 

YIZI 
Y2 
Z6 
Z2 
Y6 
Y3 
Z5 
23 
YS 
Y4 
Z4 
4 

4 
Y2 
Z6 
Z2 
Y6 
Y3 
15 
Z3 
YS 
Y4 
Z4 
Z4Y4 

(8.45) 

In Fig. 4 we have indicated the wall assignment by drawing an arrow going 
from a vertex to the corresponding edge. Note that in accordance with 
Theorem 8.1 the restriction map we obtain is precisely rank selection 
according to descents. Indeed we see, for instance, that 

D&l SZSl s2) = 121 
and thus we should have 

R(M s,s2s,sJ= w311v, =z3. 

and this is what we find in (8.45). 
This given, from Theorem 8.2 we derive that the monomials 

l,&,z6, z2’y6YY3~ z5Y ‘3TY57Y49 ‘47Y4’4 (8.46) 

form a basic set for R,(,, relative to the generators 

0, =y, +y, + *** +y,5, 02=z, +z,+ a-0 +zs. (8.47) 

Let us now apply Theorem 8.7 with Z = { 1). Note that here 

*w= {w : q(w) G (2)) = ( e,s,,s s s s s s s s s s s s s s ). 2 19 2 129 2 12 17 2 12 12 
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Thus according to (8.42) we get that the polynomials 

R”,l = 1, 

R”;z, = $ (zg + zz), 

R?vG = i(y, +yJ, 

R%, = $(z, + z3). 

Rwry5 = $<y, +y.,), 

R R’~~q = zj 

(8.48) 

form a basic set for the ring of polynomials in R,(,,,, that are invariant under 
the reflection s, . 

We can now discover a rather remarkable fact. We know from Theorem 
4.3 that it is possible to chose a basic set 

for RC(Fv, in such a manner that if we apply R”.I to some of them and 
1 - RW[ to the remaining ones, we again obtain basic set. In view of the 
above considerations, we should be tempted to apply 1 - R”‘J to the 
monomials in (8.46) that are not in (8.48) and see if the resulting 
polynomials combined with those in (8.48) give a basic set for our ring 
R c,wj. Proceeding in this manner we obtain the polynomials 

(1 - Rw’).vz = +(Y, -Y,), 
(1 - R”‘~) z? = f(z, - zg), 

(1 - R”“)YJ = $(Y, -.vd, 

(1 - RFV’) z3 = $(z, - z5), 

(1 - RU”)yJ = +(y, -y5), 

(1 - R”t)y,z, = f(y,z, -y5zJ. 

(8.49) 

Now it develops that the sets in (8.48) and (8.49) combined do in fact form 
a basic set for R,(,,, . To show this we need only verify that the monomials 
in (8.46) can be recovered from those in (8.49) and (8.50). First of all note 
that by adding and subtracting suitable pairs we can readily obtain the 
monomials 

This leaves us with y, and y,z, still unaccounted for. Note, however, that (by 
Theorem 8.7) RW!y2 may be expressed in terms of’the polynomials in (8.48). 
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Thus from this fact and y2 - RW’y, we can obtain yz. Finally, it is not 
difftcult to see that 

y5*4 = -Y,Z, mod(O,, 0,); (8.50) 

this gives 

(1 -RW~)y4z4=y4z4. 

Thus all the monomials in (8.47) are in the linear span of those in (8.48) and 
(8.49) so the latter must for a basic set as asserted. 

We shall see in the next section that this circumstance holds in much 
greater generality. 

EXAMPLE 2. Type B,. 

In this case W is the group of symmetries of the cube. The Coxeter 
complex may be identified with the complex whose chambers are the 48 
triangles giving the barycentric subdivision of the cube. More precisely, if e, , 
e,, e3 denote the x, y, z coordinate axes vectors, then we may take (see [ 16]), 

a, = e, -e,, a,=e,-ee,, a3 = q, 

1, =e,, I, = e, + e,, A, = + (e, + e, + e3). 

We may represent A, by the midpoint of a face, I, by the midpoint of an 
edge, and 2;1, by one of the vertices, (see Fig. 6). 

If we take I = { 2, 3 ) we get that 

1 WI1 = 8. 

Thus the number of chambers in C(w>/ W, is 

/ WI/l W,l = 48/8 = 6. (8.5 1) 

Let wO, WA denote the maximal elements of W and W,, respectively. Note 
that if WC is the minimal element of the coset W, wO then we may write 

with 

f(w,) = /(WA) + Z(wi). 

Since wO and WA have lengths 9 and 4, respectively (the number of positive 
roots for B, and B2) we see that 

Z(w{) = 5. 
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Comparing with (8.51), we may conclude that the Bruhat order on W,\W is 
a total order. 

Let 17, denote the plane orthogonal to a positive root a, and let us refer as 
the positive side of Z7, that which contains the fundamental chamber (the 
triangle A,, I,, 2A,). 

This given, an observation we owe to L. Harper (personal communication) 
is that for a positive root a and a pair of elements IV,, wz with W, = ua W, we 
have 

w2 >EWl, 

if and only if the chamber m,, is on the positive side of ZZ,. 
From our results we deduce that the chambers of C(W)/W, may be iden- 

tified with the chambers of C( IV) corresponding to the elements w  such that 
DL(w) c ‘I = {l}. These are the elements w  for which we have both ine- 
qualities 

s,w>,w and sj w  >B w. 

From Harper’s observation we deduce that these chambers are the six 
triangles which lie on the positive side of the planes ZZaz and ZZa, (see Fig. 6). 
From the figure we also derive that these are the chambers 

me3 m,,+ ms,s2y ms,s2s,y ms,s2s,s2~ ms,s2s,s2s,. (8.52) 

=2+ =3 

+ e3 = 2x3 e,+e2 = ii2 

FIGURE 6 
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Combining Harper’s observation with the fact that Bruhat order is total on 
W,\W, we see from the figure that the chambers listed in (8.52) are in 
Bruhat order. Applying the greedy algorithm we can easily derive (again 
geometrically) the restriction map 

me --) 45, 

rn,l +s,A, =e,, 

m SIS2 +sls2A2=e2+e3, 

m 
SISZS3 

+ s, s2s3il, = f (-e, + e2 + e3), 

m sIszs,s2 - w2s,s2J2 = e2 - ely 

m s,szs3s*s, + ~lS2S3~2S,~l = --el. 

Thus a basic set for R$+,, is given by the polynomials 

1, 

R w’xe2, 

RW’xeZ+e3, 

(8.53) 

(8.54) 

Perhaps we may point out in closing that the parameters 0,) O,, 0, here 
are obtained by summing the centers of the faces, the centers of the edges 
and the vertices, respectivefy. Thus, for instance, 

0, =xel + x-,, + xc2 + x-,* +x,; + Le3. 

9. INVARIANTS IN THE STANDARD POLYNOMIAL RING 

Note that if we carry out the replacement 

XA =X(A)= IT Xi, (9.1) 
ieA 

on the the monomials q(a) given in (7.2), we obtain the monomials 

d,(x) = n x,,x,* --* -q. (9.2) 
cfi>-itl 
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The same replacements send the rank-row polynomials 

0, = y x, 
IAI-k 

into the elementary symmetric functions 

ah = \’ xi,xi, *. . xi,. 
I(i,<iz<...<ik<n 

These facts were used in [ 141 to show that the polynomials in (9.2) form a 
basic set for Q[x, ,..., xn]. We shall show here that an entirely analogous 
result holds for the rings QH[x,,..., X, J. For instance, the images under (9.1) 
of the polynomials given in (7.27), namely, 

1, 

XIX3 +x*x3 +x,x, + X2X4’ 

X3 + X4, 

x,x:x, +x2x:x4 + x,x,x: +x,x,x,2, 

X3X41 

(9.3) 

will be show to form a basic set for QG~21[x, ,..., x4]. Proceeding in the same 
manner with the polynomials given in (7.29) we derive that the polynomials 

1, 
x:x3x: +x:x:x, +x,x:x; +x,x:x;, 
XIX3 t X2X4, 

X:X3X4 +X,X:X4 + X,X,X: t X,X3X:, 

x:x,x, t x,x:x, +x,x:x, t x,x,x:, 

x:x, t x,x: t x2x: +x,x:, 

(9.4) 

form a basic set for Qcq[x, ,..., x,]. 
All these results are but very special cases of a general theorem 

concerning Coxeter complexes of Weyl groups. However, it may be good to 
give special treatment to the case of the symmetric group, since the 
arguments here are only a slight modification of those given in [ 141. 

We need some notation and preliminary observations. For a multichain 
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let TX(C) denote the image of x(c) under the replacement (9.1). More 
precisely 

TX(C) = x(A ,) x(A 2) * * * x(A/J. 

We note that T extends linearly to a vector space isomorphism of R,,, into 
Qlx, ,..., xnl. 

To see this observe that each monomial 

may be written in the form 

m=x(A,)x(A,) -.. x(Ak) 

with 
[n] ?A, ?A,? *-. ?A, 

in one and only one way. Indeed, (9.5) and (9.6) imply that 

A,= {i:pi>s), k= maxpi. 

(9.5) 

(9.6) 

We recall that in [ 141 a factorization of the form (9.5) is called admissible if 

IAll > IA,1 > ... > lA,c 

and standard if the more stringent condition (9.6) is satisfied as well. We 
shall also recall that the vector 

is referred to as the shape of the factorization. Moreover, given a monomial 
m we let n(m) denote the shape of the standard factorization of m. We shall 
briefly refer to n(m) as the shape of m. We recall that for two partitions 
i, = (A, ) A, )...) &I, P = 011, rllzY-9 ,uk) we say that A dominates p and write 
I aD,u if and only if 

/I, + **a +Ai>/-l1+*“+Pi (for i = 1, 2 ,..., n), P-7) 

where we have set Ai = pj = 0 for i > h and j > k. This given, we have 

LEMMA 9.1. Let m,, m, ,..., mk be monomials and 

m = m,mz f-. mk. (9.8 1 

Let 

m = x(B,) x(B,) e-v x(BN) (9.9) 
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be the admissible factorization obtained by collating the standard 
factorizations of m, , m, ,..., mk. Then we necessarily have 

(I~,I~l~,I~~~~~l~,I)~“~(m) (9.10) 

with equality holding if and on[v if (9.9) is standard, that is, 

(9.11) 

ProoJ For convenience set 

mi = xpti’, m=xP. 

Denoting the operation of monotone decreasing rearrangement by *, we see 
that (9.8) yields the inequality 

(9.12) 

with equality holding if and only if p and all the p”’ are monotonically 
rearranged by the same permutation. 

Using - to denote partition conjugation we see that (9.12) may be 
rewritten in the form 

1’ & c A’(m,). (9.13) 
i-l 

However, we can easily see that the partition 

(lB,l? IBzI- IBJ) 

is none other than the conjugate of 

i- I 

Thus (9.10) and the lemma follow by conjugating (9.13). 

For convenience let 

R’ = Q[x ,,..., x”]. 

Note that we have the decomposition 

R’ = + H,(R’), 

where H,(R’) denotes the linear span of the monomials of shape A. 
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Moreover, using the notation introduced in Section 0, we see that if 

t Iz tdyd2 . . . *s 12 t;y-, 

then the image by T of the finely homogeneous component H-,(RBfl) is 
simply H,(R ‘) with 

I = ((n - l)dn-1, (n - 2)dn-2 )...) PI). (9.14) 

The following is a crucial tool in our program: 

THEOREM 9.1. If (q,(x) : a E S,} is a finely homogeneous basic set for 
RBn then the image set 

4(x) = W,(x) UES, (9.15) 

is basic for R ‘. 

ProoJ: With appropriate changes, the proof of Theorem 6.1 of [ 141, 
yields this result as well. However, for the sake of completeness, we shall 
give .a brief sketch of the arguments. Let R,!,, denote the mth homogeneous 
component of R’. Our goal is to prove that the polynomials 

aylay2 . . . 4W,(x) (9.16) 

which .are of degree m form a basis for Rh. The first step is to show that 
their number is equal to the dimension of R;. Now this follows immediately 
from the identity 

Cot 
degree A,(x) 1 

(1 - t)(l - t2) ... (1 -t”) = (1 -t)” * 
(9.17) 

Note that since 

tdegreeActx) = weight rOllizli, 

formula (9.17) is equivalent to 

c weight r,lt,=li = 
(l--)(I-P)...(l-tfn) 

CT (1 -t)” * 

NOW, the expression on the left-hand side is the same for any basic set of 
R B,. Indeed, it is equal to 

(1 -t,)U -f*)--- (1 -fn-,)~B,(t,,t*,...,fn-l)lli=,‘. 
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The latter, in view of (0.8) and (7.12), is none other than 

maj(u) xt . 
UES, 

where 

maj(a) = ;T ’ 
,c, 

Cdai > ui+ I)’ 

Thus (9.17) reduces to 

mai(o)-(l -t)(l-P).” (l-t”) 
yt - 

OCS, (1 -t)” ’ 

which is a well-known fact. 
We complete the proof of the theorem by showing that each monomial 

xp = x;1x;z . . . pn n (9.18) 

may be expressed as a linear combination of the polynomials in (9.16). 
For convenience, let us call such a monomial expandable. 
Note that upon dividing by a suitable power of a, we can reduce ourselves 

to the case where at least one of the pi in (9.18) is equal to zero. In this case 
we can write 

xp = Tx(^c) 

with *c a suitable multichain of B,. By our assumptions we have the 
expansion 

(9.19) 

This given, let us examine the difference 

(9.20) 

Clearly, if x(-c) is of weight t-,, all the terms occurring on the right-hand 
side of (9.19) must be finely homogeneous of weight t-, as well. Moreover, 
xp must lie in H,(R’) with A given by (9.14). 

Taking all this into account note that, if we carry out all the implied 
multiplications in the expression 

a:‘... a:--;A,(x) = (TO,)41 ... (TO,_ ,)qn-’ TV,, 



182 GARSIA AND STANTON 

we see that the monomials which are produced are all of the form 

m=Tm;Tm;--.Trn; 

with ml, m;,..., rn; suitable chain monomials. Note that if the product 

rn;rn;+.- rn; (9.21) 

is not zero then 

Such a term will thus cancel with the corresponding term in 

T(@;I . . . qyql,(x>). 

We must then conclude that the only terms that contribute to the right-hand 
side of (9.20) are those for which the product in (9.21) is zero in R,,. 
However, by this very reason the factorization obtained by collating the 
standard factorizations of 

Tm; , Tm;,..., Tm; 

cannot be standard. Thus, by Lemma 9.1 we deduce that the shape of m 
strictly dominates 1. 

We can see now how the argument can be completed. We assume first that 
all monomials of degree smaller than m have been expanded. This given, let 
1, be the largest partition of m in dominance order and let xp be a monomial 
of shape 1,. It is easy to see that xp must be of the form 

xp = a”, n xi = a4,x(A). 
icA 

Note that if A = 4 then there is nothing to prove and if q > 1 then the 
induction hypothesis yields that xp is expandable. The only remaining 
possibility is that q = 0. However then the difference in (9.20) must be equal 
to zero since, by our argument, monomials occurring in it should be of 
higher shape that A,, which is impossible. 

We finish our argument by induction on dominance. Assume that all the 
monomials of shape higher than Ai are expandable. Let x” be an monomial 
of shape I,. By our argument, the difference in (9.20) is a linear 
combination of monomials of shape strictly higher than Ai, by induction 
each of them is expandable. But then xp itself must be expandable. Thus our 
proof is complete. 

We are now in a position to prove our assertion cncerning the rings 
Q”[x, ,..., xn]. The general result may be stated as 
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THEOREM 9.2. Let 0 be an idempotent of the group algebra of S, and 
let 

?,I 1 ~2Y3 ?,N 

be a finely homogeneous basic set for R@RBn, then the image set 

is basic for ROQ [x, ,..., xn]. 

Prod Let {rl, y2,..., yn! } be a finely homogeneous basic set for R,,. For 
instance, we could take {y,, yz ,..., r,,!} to be the lexicographic ordering of the 
descent monomials in (7.23). Using Gauss elimination in RB,/(O,,..., Cl,_,) 
on the redundant spanning set 

VI > 772 Y.., ?lN; ?I ) 72 9*“3 Yn!  

we obtain a basis for RB,/(O ,,..., O,-,) of the form 

By our hypotheses the polynomials 

may be expanded as linear combinations of q,, v2 ,..., ~1~. Thus if we set 

(1 = (1 - R*) Y(, y*-*y tM = (1 - R”) Yi,, 

the new system 

VI 5 v2,..., VN; 4 9 r2,..., Ll (9.23) 

will also be a basis for RB,/(O ,,..., O,-,). 
Note that since Reynolds operators preserve our fine grading, the 

polynomials in (9.23) will be finely homogeneous as well. From Theorem 4.1 
we then deduce that the system in (9.23) is basic for R,,. Combining these 
two observations with Theorem 9.1 we deduce that the polynomials 

TV, 3 732 ,..., TvN; Tt, , R2,..., TL, 

form a basic set for Q[xl ,..., x,,]. 
This means that every polynomial PE Q[x, ,..., x,,] has a unique 

expansion of the form 

P(x 1 f-.-y x”) = 2 pi TV/ + 5 qjTrj (9.24) 
i=l j=l 

with pi, q,. symmetric poIynomials. 



184 GARSIA AND STANTON 

Let now P E ReQ[x, ,..., x”]. Using (9.24) we get 

p= Rep= 2 PiR’Tvi + ,f 9jReTrj 
i=l j=l 

= fJ PiTR’r]i+ + 9jTRerj 

i=l ,e, 

= $J piTqi* 
i=l 

These steps are justified since Re commutes both with T and with 
multiplication by a symmetric polynomial. The last equality holds since 

ReVi = Vi, Rerj = (Re - ReRB)yij = 0. 

Comparing (9.24) and (9.25) we see that uniqueness of expansion yields 
that for such P the coefficients qj in (9.24) must necessarily vanish. In other 
words for every P E ReQ[x, ,..., x,] we have a unique expansion of the form 

P= 2 piTvi. 
i=l 

This is precisely what we wanted to prove. 

Remark 9.1. Our argument proves that the complementary system is 
basic for (1 - Re) Q[x, ,..., xn]. It develops that when Re is the Reynolds 
operator corresponding to a parabolic subgroup W, such a system may be 
produced without further computation. 

More precisely we have 

THEOREM 9.3. Set as in (8.41) 

q(w) = n XWAi~ WE w. 
iED, 

Let 

(9.26) 

denote the polynomials obtained by applying RWj to (9.26) when DL(w) G ‘I 
and let 

c-, 7 & ,--*, CM 
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be those obtained by applying 1 - R wf to the remaining monomials. Then the 
system 

VI 1***1 V.&l; r, 3...’ r,,, (9.27) 

is basic for R,(,,,, . 

Proof: We proceed as we did in Example 1 of Section 8. Namely, we 
show that the monomials in (9.26) may be recovered from the polynomials 
in (9.27). Note that if DL(w) ?Z ‘I then the monomial q(w) has the form 

for a suitablej. Now, Theorem 8.7 guarantees that R”‘[v(w) can be expressed 
in terms of 

Thus such monomials can be recovered immediately. 
To take care of the remaining monomials we need some preliminary obser- 

vations. 
Let w, , We,..., n~,~, a total order of W that is compatible with Bruhat 

order. For a given S G [n 1 the facets of rank set S of C(W) may be 
represented by the cosets 

where wi , uai ,,..., wix (i, < i, < 
the condi;ionU 

.. . < iA) are the elements of W which satisfy 

DR(W) E s. 

For convenience let 

F,, Fz,..., F, 

denote the corresponding facets. Let also denote by 

B,, B?,..., B, 

the facets corresponding to the cosets 

Clearly, we have 

4B,) = rt(wi,). 

607!5 112~6 
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Note that we may have 

B, E F, 

only if s < r. Indeed, this relation may be expressed in the form 

In particular 

and since wi, is the least element of this coset, wi, must follow wi, in Bruhat 
order. Thus i, < i, holds as asserted. This given we must have 

W - r(B,)) MC) = 5 x(F,) xP,~ W 
r=l 

= c x(F,) x(F, E? B,). 
i-=S 

Thus these relations may be inverted in the form 

x(F,) = 2 O(S - r(B,)) x(B,) u~,~. 
r=s 

In particular (mod(O, ,..., 0,)) we have that 

x(F,) = 2 x(B,) b,,,, 
r=s 

where for convenience we have set 

(9.29) 

b,,, = ~,.AOb) = 0 

Suppose now that x(B,) is one of the monomials we have not recovered 
yet. Note that for this we must have 

D,,(wi,) YE ‘I* (9.30) 

Suppose further that 

DR(WiI) = s. (9.3 1) 

We may write for some integer c > 0 

cx(B,) = 1 WI] R W’x(B,) - s x(wB,). (9.32) 
wew, 

wB,# B, 
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Note that each term x(wB,) appearing in the right-hand side of (9.32) 
corresponds to a facet F, with s > t. Indeed, if wB, = F,Y then 

In particular 

wi, WCS = wwi, WCS c w, wi, WCS. 

Wi, E W, Wj, W,., 

and (9.30), (9.31) assure that wi, is the least element of this double coset. 
Combining this observation with formula (9.29) we deduce that the sum 
appearing in (9.32) is (mod(O,,..., 0,)) a linear combination of monomials 
x(B,) with r > t. This gives us a recursive algorithm for recovering the 
remaining monomials. Clearly, if t is the largest for which (9.30) and (9.31) 
hold, then the expression on the right-hand side of (9.32) may be expanded 
(mod(O, ,..., 0,)) entirely in terms of monomials that have already been 
recovered. 

We can thus proceed backwards and use (9.32) to recover each monomial 
in terms of previously recovered ones. This completes our argument. 

Our next task is to derive analogues of Theorems 9.1 and 9.2 in a Weyl 
group setting. We shall use here the same notation as in Section 8. Let @ be 
a root system of n-dimensional Euclidean space and let W be the 
corresponding Weyl group. Moreover, let 

R = Q[z, ,..., zn; l/z ,,..., l/z,]. 

We define the action of W on R as follows. Given a monomial 

m=zplz;? . . . zpn I n * 

By formally setting 

we may rewrite m in the form 

m = e” 

with 

(9.33) 

/I = c pi/$. 
i=l 

This given, for w E W we simply set 

wm = eWW. 
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For example, in the case of G, (treated in Section 8) the monomial z:/z: is 
expressed as 

and since (see Figs. 4 and 5) 

we get 

sIs*z;/z: = (z*/zJ2 (z;/z:)” = z;/z;. (9.34) 

This action naturally leads us to study the rings R” consisting of H- 
invariant elements of R for a given subgroup H c W. We shall see that every 
single result we have obtained for S, has a counterpart in the Weyl group 
case. 

Our first task is to obtain the analogue of Theorem 9.1. Here the Coxeter 
complex ring R,(,, p la y s the role of RBn and the role of T is played by the 
transformation induced by the substitution 

xwAi + ewAi. 

More precisely, for a multifacet monomial 

we set 

x(T) = fj (x,,Ji 
i=l 

Tx(^F) = fi (TxwAi)Pi = e”“?=IPtAi, 
i=l 

(9.35) 

For instance, in the case of G, we have 

Tyiy, = (e-“1)’ (eA,-Az) = e-Al-A2 - 
1 . 

ZlZZ 

We claim that T extends linearly to a vector space isomorphism of R,(,, 
onto R. To see this, note that given a monomial m = e” there is a unique 
dominant weight 1 such that 

m = ewa (for some w  E IV). (9.36) 

Indeed, A. is simply the unique (see [ 161) representative of p in the 
fundamental chamber. This given, if 
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and *F denotes the multifacet with monomial 

n 
x(*F) = n (x,,,$? 

i=l 

then 

m = Tx(*F). 

It is not difficult to see that, although the element w in (9.36) is not uniquely 
determined by P, the facet “F itself is. We thus get a one-to-one map of the 
monomial basis of R,(,, onto the monomial basis of R and our assertion 
necessarily follows. The dominant weight 1 giving (9.36) will be referred to 
as the shape of m and will be denoted by A(m). It develops that the coun- 
terpart of the dominance order of shapes is the root order. More precisely for 
two weight vectors 1 and p we shall write 

if and only if the difference A -P is a linear combination of simple roots 
with nonnegative integer coefficients. This given, the analogue of Lemma 9.1 
may be stated as 

LEMMA 9.2. Let m, , m, ,..., m, be monomials in R and let 

m=m,m,..-m, 

with 

Then 

m=e WA(m) = Tx(^F) and m, = e “‘iA = Tx(^Fi). 

A(m) <, Z: n(mi> 
i=l 

with equality if and only if 

-F,, *Fz,..., ^F, 
are all contained in ^F. 

Proof From (9.37) and (9.38) we get 

WA(m) = wlk(m,) + ... + w,A(m,v). 

Thus 

A(m) = wp’wlA(m,) + ... + ti-‘w,A(m,). 

(9.37) 

(9.38) 

(9.39) 

(9.40) 
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Now, it is well known (see [ 16, Lemma A, p. 681) that for a dominant 
weight 13. we have w,I Gp I for all w  E W. Applying this result to (9.40) we 
get (9.39). Moreover, equality in (9.39) holds if and only if 

w  - I w&n,) = +I,) (for i = 1, 2 ,..., IV). 

Thus in this case all the wi in (9.38) may be replaced by w. From this fact 
the last assertion of the lemma follows easily. 

Now let 

be dominant. For convenience, let H,(R,(,, ) denote the finely homogeneous 
component of I&,, which is the linear span of the monomials 

Similarly, let H,(R) denote the linear span of monomials of the form 

* = &+‘A, WE w. 

We simply refer to the elements of H,(R) as finely homogeneous polynomials 
of shape 1. Clearly, the transformation T defined in (9.35) yields a vector 
space isomorphism of H,(R,,,,) onto H,(R). Thus the Hilbert series of 
R c(W) and R relative to fine grading by shapes must be identical. That is, we 
must have (see (8.29)) 

FR= 1 tfl . . . tRndimH,,+(R)=F, 
c WE w to,(w) 

P,.....P” 
cw= (1 -t*)... (1 -t,)’ 

This crucial fact, combined with Lemma 9.3 yields that R is essentially 
dominated by each of the rings R,(,,. 

More precisely, we have 

THEOREM 9.4. If (r],(x) : w  E W} is a finely homogeneous basic set for 
R cCwj then the image set 

~,A) = TV,&) WEW 

is basic for the ring 

R =Q[z, ,..., z,,; l/z ,,..., l/z,] 

relative to the set of parameters 

a,(z) = 1 eWai, 
wcwIwqi, 

i = 1, 2 ,..., n. 
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Proof: Our task is to show that the polynomials 

d,(z) a:’ ... a4,n, WE w, qi>o (9.4 1) 

form a vector space basis for R. For convenience, let HGd(Rcc,.,) and 
HcDA(R) denote the linear spans of the monomials of shape less than or 
equal to A in R,(,, and R, respectively. Since we have 

by our previous remarks we derive that Hsp~(R,~,,) and HGD,(R) have the 
same dimension. Indeed, the transformation T yields an isomorphism 
between these spaces as well. 

For a moment let us denote by ZTGp.{ the collection of n + 1 tup’es 

(w, 91? 9 2,..., q,) such that the polynomial 

r]Jx) 07’ . . . @Zn (9.42) 

is finely homogeneous of shape less than or equal to A. 
Our plan is to show that the polynomials 

form a basis for HGpn(R). 
The assumption that (q,(x) : w E W) is basic for R,, M,, implies that 

#II 6..l = dim *,J&,d = dim f&(R). 

Thus we need only show that the system in (9.43) spans ~IZ,,.~(R). 
To this end note that we may write 

and if 

d,(z) ap * * ’ azn= (T~,(x))(TOJ’ 1.. (TO,Jqn, (9.44) 

q,(x) 0:’ ... Ozn E H,(Rcc.,,) (9.45) 

then each monomial coming out of the expression in (9.44) is of the form 

m = Tx(F,) Tx(F,) ... Tx(F,) (9.46) 

with F, , F, ,..., F, facets C( IV) such that 

Wx(F,)) + A(Tx(FZ)) + se. A(Tx(F,)) = 1. 
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However, this fact combined with Lemma 9.2 yields that 

4m> Go A. (9.47) 

This shows that each of the polynomials in (9.43) belongs to H,&(R). 
Moreover, Lemma 9.2 yields also that equality holds in (9.47) if and only if 
the facets in (9.46) belong to the same chamber of C(w). In the latter case, 
of course, we have 

m = 7’(x(F,) x(F,) . . . x(F,J) 

with 

a monomial of 

Thus we see, that under the assumption (9.4.5), all the monomials occurring 
in the difference 

Aw(z) **-a ;n - T(q..(x) oy . . . 09,n) 

have shape strictly less than A. 
Now let 

m = e”” 

with ,? = CpiAi. Clearly, 

m = T fi (x,~,)~~. 
i=l 

By our assumption we have 

(9.48) 

with each of the terms occurring on the right-hand side finely homogeneous 
of shape 1. From our observations we derive that all the monomials 
occurring in the difference 

m - y’ 5‘ u~,~A,,,(z) a:’ . . . a: Ld 
w  4 

=v‘ra YY ,,,F%&) 07’ ..a O;n) - A(z) ... Q). 
w’ 4 

Have shape strictly less than II. 
For convenience let us say that II is fame if the polynomials in (9.43) span 

HcBA(R). From the considerations above it follows that I is tame 
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(1) if A is minimal in the root order, or 

(2) if every A’ <p 1 is tame. 

Under these circumstances every k must necessarily be tame. Thus our proof 
is complete. 

A corollary of this result is the analogue of Theorem 9.2, namely, 

THEOREM 9.5. Let 0 be an idempotent of the group algebra of W and let 

be aJne!v homogeneous basic set for R’R,.,,.,, then the image set 

TV,, TV, l . . . ,  TV,\ 

is basic for R*Q[z ,,..,, z,,; l/z, ,..., l/z, ] relatioe to the parameters 

ai = (9.49) 

Proof: The arguments used in the proof of Theorem 9.2 may be used 
here with only minor modifications. 

Theorems 8.7 and 9.5 combined yield 

THEOREM 9.6. For each w E W set 

d,,.(z) = JI,,, e”‘-‘i. 

Then for any subset I c [n], the collection of polynomials 

(R%,,.(z) : DL(w) c ‘Z) 

is basic for Q”‘I[z, ,..., z,,; l/z, ,..., l/z,] relative to the parameters on (9.49). 

In particular, from Example 1 of Section 8 we deduce that the 
polynomials 

1, 

z:/z, + z:/z:, 

d/z* + z,/z:, 

z;/z: + zz/z:, 

zJz2 + l/z, 7 

l/Z,, 

607/5 112~7 
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is basic for Q(‘~)[zr, z2; l/z,, l/z?] relative to the parameters 

q(z) = 2, + q/z, + q/z: + l/z, + z,/q + z:/q, 

u*(z) = z* + z:/z: + z,/z: + l/z, + z:/z: + z:/z*. 

Similarly, from Example 2 we derive that the polynomials 

1, 
R(S~VS2)~2/~, , 

R-)z;/zl, 

R-)z3/zI, 

R-)z~/z;, 

RCSlVS2) l/z,, 

are basic for Qcsls2)[z1, z2, z3; l/z,, l/z,, 1/z3]. We leave it to the reader to 
derive the corresponding parameters a,, u2, u3. 

Remark 9.2. It is well known (see [ 161) that when W is a Weyl group, 
foreachaE@+ andwE Wwehave 

wu, <B w  

if and only if 

wa < 0. 

From this we easily derive that 

DR(w) = {i : wai < 0}, DL(w) = {i : wplai < O}. 

Moreover, note that from the case I = [n] of Theorem 9.6 we deduce that 

Q’%,..., z,,; l/z, ,..., l/z,] = Q[a, ,..., a,]. 

This given, it is not difficult to see that the invariants given by Theorem 9.6 
are precisely those obtained by Steinberg in [29]. 

Remark 9.3. It may be worthwhile pointing out that Theorem 9.5 does 
include Theorem 9.2 as a particular case. Indeed, for type A,-r there is a 
simple transformation which converts identities in Q[z, ,..., z,- ,; l/z, ,..., 
l/z,- ,] into identities in Q[x, ,..., xn]. This comes about as follows. The 
symmetric group S, is generated by the transpositions 

(1, 2), (2, 3)Y.., (n - 1, n>, 
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which may be interpreted as reflections with respect to the root vectors 

e,-e,,e,-e ,,..., en-,--e,, (9.50) 

where e, denotes the ith coordinate vector in n-dimensional space. 

If we realize type A,_, by taking @’ = {ei - ej : i < j} and choose the 
vectors in (9.50) as simple roots, then the corresponding Weyl group W is 
S,. Indeed, if we formally set 

xi = eef (9.5 1) 

then the action of W on Q[xr,..., x,] is precisely the same as that of S,. 
With these choices, we see that the corresponding fundamental weights are 
the vectors 

&=e,+e,+... + ei - i/n(e, + e, + -.+ + e,). 

Combining (9.5Ok(9.52) with 9.33 we see that the substitution 

(9.52) 

gives the isomorphism 

zi = x,x> ... xi (9.53) 

Q[z , ,-.., z,-,; l/z, ,..., l/z,-,] = Q[x ,,..., x,,]/(x, .+. x, - 1). 

It is not difficult to see that, by specializing our treatment of Weyl groups 
to type A,_ r, we do recover all the ingredients and results we have obtained 
in the case of S,. In particular, the reader may find it instructive to see that 
the dominance order does infact correspond (via the substitution (9.53)) to 
the root order. 

10. APPLICATIONS TO REPRESENTATION THEORY 

The construction given in Section 2 (see Theorem 2.1) of a representation 
of S, with character ps can be carried out for any finite Coxeter group W. 
Indeed, let a, denote the character of the representation resulting from the 
action of W on the facets of rank set S of C( IV) and set, as in (1.6), 

(10.1) 

Proceeding as we did in Sections 1 and 2 we can see that the expression in 
(10.1) gives the character of the representation resulting from the action of 
W on the finely homogeneous component of weight t, in the ring 

&v,l(O, ,..., 0,). 
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Representations with character p, have been constructed by Solomon [ 19, 
201, Stanley [26] and Bjorner [4]. In these works they are obtained by 
studying the action of W on the homology of the simplicial complex C(w). 
However, these treatments require some rather sophisticated tools (e.g., the 
Hopf trace formula is used in both [4,26]). 

Richard Stanley asked for a recipe giving a basis (d,(x)},,,, for the ring 

Q[x, ,..., ~,]/(a, ,..., a,> 

such that each A,(x) generates under the action of S, an invariant subspace 
affording an irreducible representation. 

It develops that our results here yield an algorithm for constructing such a 
basis. To see how this comes about note that from (1.6) we deduce that 

This implies that the action of S, on RB,/(O,,..., 0,-i) induces the left 
regular representation. Let {XA}n,, denote the fundamental characters of S, 
and let 

A%) = II &a 3 u E s, (10.2) 

be a unitary representation with character x.‘. Let nA denote the dimension of 
A*. This given, it follows that there exists a basis 

{y$ : i k n i, j = 1, 2 ,..., n,} 

for R,“/(O, ,..., 0, _ ,) such that for each j and o we have 

u(dj >..*y Y:-,,) = (di,***, d,j> A * (0). (10.3) 

Our aim is to show that we may construct the 7; in such a manner that the 
image set 

A; = 7-y; 

is a basis for Q[x, ,..., ~,,]/(a~ ,..., a,) which also satisfies the identity 

o(A$ ,..., Afnj) = (Afj ,..., A;.,j) A’(a). (10.4) 

Note that this implies that for fixed j and any given i the translates of AC fill 
the linear span 

L [A;,,..., A;jlj]. 

Moreover, the action of S, on this space induces A*. 
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We see that this basis not only satisfies Stanley’s requirements but 
completely decomposes the action of S, on Q [x, ,..., ~,]/(a, ,..., a,). Inciden- 
tally, we thus obtain also a proof that this action induces the left regular 
representation. 

Keeping all this in mind, let us set 

From the definition of the a$ it is not diffkult to derive the multiplication 
table 

ei * eFs = e-! IS if A=.D and j=r, 

zz 0 otherwise. 
(10.5) 

(Here * denotes convolution product.) Moreover, a simple calculation yields 
that 

i=l 

In other words we have 

u(efj,..., eilj) = (efj,..., et-lj) A-‘(a). (10.6) 

For convenience set 

Rf=et. 

From the relations in (10.5) we deduce that {Rf } is a complete system of 
orthogonal idempotents. in particular we have 

(10.7) 

From this it follows (by a routine extension of Theorem 4.3) that if (~O}oEs, 
is a finely homogeneous basis for RB,/(O,,..., 0,-r) then there is a pair of 
functions i(a), A(o) such that 

(10.8) 

is also a basis. 
Note that from the considerations of Section 3 (see the proof of Theorem 

3.1) we deduce that the dimension of the range of Rf on 
WR,J(@, ,...> 0, _ r) is given by the scalar product 

Ceh P,> = W7 P,). 
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Summing for all S G [n - I] yields that the dimension of the range of Rf on 

RB,lF4 ,..-, O,- ,) is equal to 

(x”, a WI) = na. 

Combining this with the fact that (10.8) is a basis we derive that, for given 1 
and j, the number of u E S, such that A(o) = A, i(a) =j is precisely equal to 

na. 
For sake of definiteness let (v,) be the descent monomial basis (given in 

(7.23)). Let 
a A 

Vlj~“‘~ Vn.,j 

denote the monomials q, for which A(u) = A, i(u) = j written say in the 
lexicographic order of permutations. Thus our basis in (10.8) may be written 
in the form 

(Rfqt : A F n, i, j = 1, 2 ,..., n.I}. 

Note now that we have the following basic fact: 

(10.9) 

LEMMA 10.1. If V is a vector space on which S, acts and v E V is a 
vector such that 

R,;v # 0 

then 

(1) the translates of Rfv span the space 

L[efjV,..., e;l,jV], 

(2) the vectors etjv,..., efljv are independent, and 

(3) for each u we have 

u(etjv ,..., e;lAjv) = (etjv ,..., epIjv)AA(u). 

Proof: Clearly, (3) follows from (10.6) and (1) is a consequence of (3). 
Thus we need only show (2). To this end note that if for some constants 
c, ,..., c,,* we have 

c,efjv + ... + c,Ae~ljv = 0 

then upon multiplication by ei we get 

cieiv = 0. 

Thus we must have c, , c2 ,..., c,,* = 0 and our proof is complete. 
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Let us now go back to the basis in (10.9). Note that since Rf II;‘, # 0, by 
the lemma, we deduce that the polynomials 

A A I A A A 1 I 1 yl, = e,, vi 1 yzl = ezl rl - yi,li = e,,, vi (10.10) 

are independent. Here for convenience we have set r;” = q;‘, . 
Clearly we can find a set S, of pairs (i,j) such that the polynomials 

{R;q; : (i,j) E S,} (10.11) 

together with those in (10.10) do give a basis for the range of the idempotent 

Rf+R;+-.+R;,. (10.12) 

Since the dimension of the range of Rt is n, and r;“, is the only one of the 
polynomials in (10.10) that is in this range, we deduce that n, - 1 of the 
polynomials in 10.11 must therefore be in it. Let R; qij, be the first of them, 
set II< = &, and let 

A\_,4 A 1 A I \ I I y12 - e12v2 9 yi2 = e,,rli - yi,,I = ei,2vi. (10.13) 

By the lemma these polynomials are independent. Moreover, since both 
spaces 

L [yf, 1.*., Y;j,llJlY;\2~...~ Y,‘.,zI 

afford an irreducible representation their intersection is either zero or they 
coincide. However, by selection, y:, is not in the first subspace. Thus 

,I 
Y,, 3***, y;.,,; &..., y&z (10.14) 

are independent. We can thus select a subset S, c S, such that the 
polynomials 

(R;& : (i,j) E S,) (10.15) 

together with those in (10.14) form a basis for RR,/(O, ,..., On-,). 
Clearly, we can repeat the argument and obtain a sequence of monomials 

such that the n: polynomials 

y$ = e$ rj$, i,j= 1, 2 )...) n,3 

form a basis for the range of the idempotent in (10.12). This construction 
can be carried out for each A. and the resulting n! polynomials will 
necessarily form a basis for R,“/(O, ,..., On-,). 
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Let us then set 

A; = Ty;. 

Note that since the actions of S, and T commute we can write as well 

Thus from (10.6) (and associativity of group action) we deduce that for all 
u E s, 

o(A$ ,..., A;,,J = (Atj ,..., A;.,) A “(a). 

Moreover, we see that by our choice of q,, the polynomials vt are finely 
homogeneous. Thus Theorem 9.1 applies and we deduce that {A:} is a basis 
for Q[x, ,..., x,l/(~, ,..., a,). This completes our program. 
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