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a b s t r a c t

We consider a free boundary problemmodeling tumor growth where the model equations
include a diffusion equation for the nutrient concentration and the Stokes equation for
the proliferation of tumor cells. For any positive radius R, it is known that there exists a
unique radially symmetric stationary solution. The proliferation rate µ and the cell-to-cell
adhesiveness γ are two parameters for characterizing ‘‘aggressiveness’’ of the tumor. We
compute symmetry-breaking bifurcation branches of solutions by studying a polynomial
discretization of the system. By tracking the discretized system, we numerically verified
a sequence of µ/γ symmetry breaking bifurcation branches. Furthermore, we study the
stability of both radially symmetric and radially asymmetric stationary solutions.

© 2012 Elsevier B.V. All rights reserved.

1. Introduction

Mathematical models of tumor growth, which consider the tumor tissue as a density of proliferating cells, have been
developed and studied in many papers; see [1–9] and their references. These models treat tumor tissue as a porous medium
described by Darcy’s law. However, there are tumors for which the tissue is more naturally modeled as a fluid. For example,
in the early stages of breast cancer, the tumor is confined to the duct of a mammary gland, which consists of epithelial cells,
a meshwork of proteins, and mostly extracellular fluid. Several papers on ductal carcinoma in the breast that use the Stokes
equation in their mathematical models are [10–12], which focus on the radially symmetric case since tumors grown in vitro
have a nearly spherical shape. It is important to determine whether these radially symmetric tumors are asymptotically
stable. While tumors grown in vitro have a nearly spherical shape, tumors grown in vivo are usually not. It is therefore also
interesting to study what will happen for the radially asymmetric tumors.

Discretization of a tumor growthmodel with Stokes equation gives rise to sparse polynomial systems. We use numerical
algorithms based on algebraic geometry to solve this free-boundary problem. Over the last decade, numerical algebraic
geometry (see [13] for some background), which grew out of continuation methods for finding all isolated solutions of
systems of nonlinearmultivariate polynomials, has reached a high level of sophistication. The polynomial systems that arise
from the discretizations of tumor-growthmodels [14,15] are many orders of magnitude larger than the polynomial systems
that the algorithms of numerical algebraic geometry have been applied to. However, the numerical methods that have been
developed are good tools to investigate polynomial systems arising from discretizations of systems of tumor models.
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In this article, we apply a general numerical algorithmic approach to study a tumor growthmodel with Stokes equation:

1. numerically compute values of the parameter where bifurcation occurs;
2. numerically compute nonspherical solutions on a branch far from the bifurcation; and
3. determine stability of these solutions.

2. Mathematical model

Let Ω(t) denote the tumor domain at time t , and p be the pressure within the tumor resulting from proliferation of the
tumor cells. The density of the cells, c , depends on the concentration of nutrients, σ , and assuming that this dependence is
linear, we may simply identify c with σ . We also assume the proliferation rate, S, depends linearly upon σ . That is,

divv⃗ = S = µ(σ −σ) in Ω(t), (1)

whereσ > 0 is a threshold concentration, µ is the proliferation rate which expresses the ‘‘intensity’’ of the expansion or
shrinkage and v⃗ is the velocity of the cells moving. The first order Taylor expansion for the fully nonlinear model yields the
linear approximation µ(σ −σ) used here.

If we assume that the consumption rate of nutrients is proportional to the concentration of the nutrients, then after
normalization, σ satisfies

ϵσt − 1σ = −σ in Ω(t) and σ = 1 on ∂Ω(t), (2)

where ϵ is a small parameter. Most tumor models assume that the tissue has the structure of a porous medium so that
Darcy’s law holds. In particular, v⃗ = −∇p where p is the pressure. However, the tissue is modeled as a fluid in the current
model. In this case, the stress tensor is given by σij = −pδij + 2ν


eij − 1

3 1̄δij


where p = −

1
3

3
k=1 σkk, ν is the viscosity

coefficient, eij =
1
2


∂vi
∂xj

+
∂vj
∂xi


is the strain tensor, δ is the Kronecker delta and ∆̄ =

3
k=1 ekk = divv⃗ is the dilation. If there

are no body forces, then
3

j=1
∂σij
∂xj

= 0 which can be written as the Stokes equation (see [10–12] for details)

− ν1v⃗ + ∇p −
1
3
ν∇divv⃗ = 0 in Ω(t), t > 0, (3)

where ν is a constant and is taken to 1 in our computation for simplicity. Assuming that the strain tensor is continuous up
to the boundary of the domain, we then obtain a boundary condition [16]:

T (v⃗, p)n⃗ = −γ κ n⃗ on ∂Ω(t), t > 0, (4)

where T is the stress tensor: T (v⃗, p) = ν(∇v⃗ + (∇v⃗)T ) − (p +
2
3ν divv⃗)I with components

Tij = ν


∂vi

∂xj
+

∂vj

∂xi


− δij


p +

2ν
3

divv⃗


,

where n⃗ is the outward normal, κ is the mean curvature computed from the shape of the boundary, and γ is the cell-to-cell
adhesiveness constant.

The free boundary condition is given by the kinematic condition

Vn(t) = v⃗ · n⃗ on ∂Ω(t). (5)

Summarizing these equations, we obtain (see more details in [16])

ϵσt − 1σ + σ = 0 in Ω(t)
−1v⃗ + ∇p = (µ/3)∇(σ −σ) in Ω(t)
divv⃗ = µ(σ −σ) in Ω(t)

T (v⃗, p)n⃗ =


−γ κ +

2ν
3

µ(1 −σ)


n⃗ on ∂Ω(t)

σ = 1 on ∂Ω(t)
v⃗ · n⃗ = Vn on ∂Ω(t)

Ω(t)
v⃗dx = 0,


Ω(t)

v⃗ × x⃗dx = 0

(6)

where the last two conditions represent the choice of a coordinate system that excludes the six-dimensional kernel of (1),
(3) and (4), which consists of rigid motions.
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The steady state fluid-like tumor system is (see more details in [16]):

−1σ + σ = 0 in Ω

−1v⃗ + ∇p = (µ/3)∇(σ −σ) in Ω

divv⃗ = µ(σ −σ) in Ω

T (v⃗, p)n⃗ =


−γ κ +

2ν
3

µ(1 −σ)


n⃗ on ∂Ω

σ = 1 on ∂Ω

v⃗ · n⃗ = 0 on ∂Ω
Ω

v⃗dx = 0,


Ω

v⃗ × x⃗dx = 0

(7)

where T (v⃗, p)n⃗ = (∇v⃗)T + ∇v⃗ − pI with I the 3 × 3 identity matrix.
In [16], it is proved that there exists a unique radially symmetric solution with free boundary r = R for any given

positive number R. For a sequence µ/γ = Mn(R) there exist symmetry-breaking bifurcation branches of solutions with
boundary r = R + ϵYl,0(θ) + O(ϵ2) (n even ≥ 2) for small |ϵ|, where Yn,0 is the spherical harmonic of mode (n, 0).
Note that these results are valid only in a small neighborhood of the bifurcation branching point. In this paper, we use
the numerical method presented in [15] to find the radially asymmetric solutions as the parameters go beyond this small
neighborhood, e.g., Fig. 4. Compared with the system in [15], this system has more variables and increased complexity when
using a similar discretization scheme. The comparison of the complexity is shown in Table 1 and thus the extension of our
method is not a trivial extension; Due the singular nature of the Jacobian at the bifurcation points, the double precision
arithmetic in standard double-precision linear algebra packages such as Matlab had trouble accurately computing these
tangent directions. Usingmulti-precision arithmetic linear algebra,we accurately computed the tangent directions, agreeing
with the symbolic formulas. In particular, this large system required us to implement and use parallel differentiation and a
sparse linear solver in order to perform the large-scale numerical computations needed for the method developed in [15],
which is discussed in Section 4. Just like the system in [15], our numerical bifurcation value matches the theoretical value
very well as shown in Table 2.

3. Discretization

We use the floating grid mentioned in [14,15] and third order finite difference scheme for the spherical coordinate
expression of the radially symmetric stationary solution of system (7) presented in [16]. The formula for the operators in the
system in spherical coordinates is deduced in the Appendix. The values (σ , v⃗, p) in the small neighborhood of a bifurcation
point obtained in [16] via linearization are

σ = σs + ϵσ1 + O(ϵ2), σ1 = −(σs)r(R)
Il+1/2(r)
r1/2

R1/2

Il+1/2(R)
Yl,0(θ, φ)

p = ps + ϵp1 + O(ϵ2), p1 =
4µ
3

σ1 + pl,0(r)Yl,0(θ, φ)

v⃗ = v⃗s + ϵv⃗1 + O(ϵ2), v⃗1 = a⃗ + b⃗ × x⃗ + H1(r)Yl,0e⃗r + H2(r)∇ωYl,0(θ, φ),

where Yl,0(θ, φ) is the spherical harmonic function, which satisfies Yl,0(θ, φ) = Yl,0(π − θ, φ), Il+1/2(r) is the Modified
Bessel function and H1(r),H2(r) are functions of r (see [16] for detail). Then σ and p are symmetric with respect to π

2 . We

note that v⃗ can be written as vr e⃗r + vθ e⃗θ + vφ e⃗φ , that ∇ω =
1

sin(θ)
∂
∂θ


sin(θ) ∂

∂θ


+

1
sin2 θ

∂2

∂φ2 , and
σ(θ) = σ(π − θ)
p(θ) = p(π − θ)
vr(θ) = vr(π − θ)
vφ(θ) = 0
−vθ (θ) = vθ (π − θ)

for θ ∈


0,

π

2



for the bifurcation branch of Mn(R), where n is an even number. In particular, due to this symmetry, we can construct the
grid points on one-eighth of the domain and then extend using symmetry to yield solutions to the whole domain.

4. Bifurcation ofMn(R)

Using the floating grid and third order scheme presented in [14,15], we setup a discretization of the system (7) yielding a
polynomial system. Due to the complexity of this polynomial system, it requiredmore computational power than the tumor
systems in [14,15]. We used Bertini [17] to handle this polynomial system running on a Xeon 5410 processor using 64-bit
Linux. In order to better handle this large-scale problem using Bertini, we implemented parallel differentiation and a sparse
linear algebra solver based on BLAS [18] in Bertini. Table 1 compares the number of variables and time needed to track the
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Table 1
Comparison of polynomial system solving times.

Tumor model Nθ NR Number of variables Time

Porous media in [15] 16 30 575 8 min 24 s
32 60 1135 1 h 30 min

Fluid-like (using sparse linear algebra solver) 16 30 1008 7 h 28 min
32 60 3938 26 h 34 min

Table 2
Comparison of the numerical values ofMn with the actual value for a radius of R = 12.5.

n Formula [16] Numerical value

M4 0.47481 0.47494
M6 0.47629 0.47702
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Fig. 1. Condition number of the radially symmetric solution vs. µ.

discretized polynomial systems along the radially symmetric branch between porous media tumor model and fluid-like
tumor model. In this table, Nθ and NR denote the number of grid points in the angular and radial directions, respectively.

The system is parameterized byµ and γ , which characterize the ‘‘aggressiveness’’ of the tumor. It is known [16] that there
exists a unique radially symmetric solution with any given µ. When we are tracking the radially symmetric solutions along
the parameterµwithγ = 1, the Jacobianwill become singular atMn where there exists a bifurcation. Starting froma radially
symmetric solution and using parameter continuationwith respect toµ, we are able to compute the value ofMn numerically.
Fig. 1 plots the condition number of radially symmetric solutions for different µ ranging between µ = 0.47 and µ = 0.48
with R = 12.5. We note that there are two bifurcations in the figure, namely µ = M4 and µ = M6, respectively. Table 2
compares the numerically computed values ofMn with the values ofMn given by the symbolic formulas derived in [16].

The radially asymmetric solutions along the bifurcation branches are even more interesting. We found that the double
precision arithmetic in Matlab was unable to accurately compute the tangent directions atMn. This stems from the fact that
the Jacobian matrix is singular at Mn and has condition number around 109 even at values of µ where it is nonsingular. By
using multi-precision arithmetic [19,20], we were able to compute the tangent directions which agreed with the symbolic
formulas derived in [21]. Upon computing the tangent direction, we utilized parameter continuation to track the radially
asymmetric solution branches passing through the values ofM4 andM6 computed above. Fig. 2 shows the solution behavior
of these branches which were computed using NR = 60 grid points in the radial direction and Nθ = 32 grid points in the
angular direction. The function ϵ(θ) in this figure is defined in [15] allowing us to plot the branches. By looking at Fig. 2,
we see that there are three intersections. The two intersections, denoted byMU andML in Fig. 2 are self-intersections which
arise simply by the choice of the projection since the corresponding nonspherical solutions at these points are distinct.
The intersection denoted as Mnonspherical in Fig. 2 is indeed a nonspherical bifurcation. To demonstrate this, Fig. 3 plots the
condition number along this path and clearly shows a bifurcation corresponding to the point Mnonspherical. Fig. 4 plots two
nonspherical solutions lying on theM4 andM6 branches, respectively. The color at each point represents the value of pressure
at this point.

5. Homotopy continuation ofMn to R

For the porous medium tissue model, the smallest value of µ/γ which generates protrusions is M2(R). At this point,
the tumor will have just three protrusions independent of the value of R. However, in the case of a fluid-like tissue, [21]
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shows that the smallest value ofµ/γ which generates protrusions isMn∗(R), where n∗ depends on R. Therefore, one natural
question is to determine the values of Rwhere n∗ changes.

Since the value ofMn(R) correspondswith a singular solution of a polynomial system, we use deflation [13] to construct a
newpolynomial systemwhich allows us to track along the pathMn(R) parameterized by R. Let f (x, µ) denote the discretized
polynomial system, where x∗ corresponds to the numerical solution (σ , p, v⃗) at the bifurcation point µ∗ of interest. Let
Jf (x, µ) be the Jacobian matrix of f at x. Since the Jacobian is rank deficient, it has nonzero null vectors. One step of the
deflation process adds polynomials to f to yield a general element in this null space, namely the polynomial system

g(x, µ, ξ) =

f (x, µ)
Jf (x, µ)ξ
L(ξ)



where L(ξ) is a general linear system so that there is a unique value of ξ such that g(x∗, µ∗, ξ) = 0. Using this augmented
polynomial system, we can track a bifurcation value Mn as R varies. Fig. 5 plots the value of M4 with respect to R along
with the numerical error. At the values R∗ where n∗ changes, the solution (x, µ, ξ) is singular, that is, the Jacobian matrix
of g(x, µ, ξ) is rank deficient. Fig. 6 plots the condition number of Jg(x, µ, ξ) with respect to R. This computation yields a
numerical value of R∗

= 12.8778.

6. Linear stability

We now turn our attention to the numerical determination of solution stability. In order to check linear stability, we
rewrite (6) as

ut = F(u, µ,σ , γ ),
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Table 3
Maximum eigenvalue for different values of µ.

Radial branch M4 nonspherical branch M6 nonspherical branch
µ |ρ(A)| µ |ρ(A)| µ |ρ(A)|

1e−2 0.99865 4.75766e−1U 1.00013 4.76956e−1U 1.00013
5e−2 0.99990 4.76641e−1U 1.00026 4.77128e−1U 1.00014
1e−1 0.99999 4.78324e−1U 1.00034 4.77297e−1U 1.00017
2e−1 1.00032 4.79012e−1U 1.00057 4.78802e−1U 1.00024
3e−1 1.00012 4.82764e−1U 1.00106 4.79208e−1U 1.00039
4e−1 1.00049 4.75766e−1L 1.00010 4.77093e−1L 1.00014
5e−1 1.00148 4.76000e−1L 1.00017 4.78053e−1L 1.00267
6e−1 1.00638 4.76290e−1L 1.00022 4.78727e−1L 1.00462
8e−1 1.01846 4.77101e−1L 1.00027 4.82026e−1L 1.00983
1 1.09861 4.77629e−1L 1.00032 4.84000e−1L 1.01472

where u = (r, σ , p, v⃗), r is the function of the angle θ describing the boundary and F(u, µ,σ , γ ) represents the steady
state system (7). The linearization of the system (6) gives

u(t) = u0 + ϵu1(t) + O(ϵ2), (8)

where u0 is the steady state solution. Substituting (8) into (6), we have
u0 + ϵu1(t) + O(ϵ2)


t

= F(u0 + ϵu1(t) + O(ϵ2), µ,σ , γ )

⇒ (u0)t + ϵ(u1)t + O(ϵ2) = F(u0, µ,σ , γ ) + JF(u0, µ,σ , γ )u1ϵ + O(ϵ2)

⇒ (u1)t = JF(u0, µ,σ , γ )u1, (9)

where JF(u0, µ,σ , γ ) is the Jacobian of F(u, µ,σ , γ ) at u0. Let Un
1 denote the numerical approximation of u1(nτ), where τ

is the time step size. Then the discretization of (9) leads to

Un+1
1 = (I − JF(u0, µ,σ , γ )τ )−1Un

1
.
= AUn

1 ,

where I is the identitymatrix. This process transfers the linear stability to the spectrum of A. Let |ρ(A)| denote themaximum
of the absolute values of the eigenvalues of A. If |ρ(A)| < 1, then ∥Un

1∥ → 0 yielding a stable system. The system is unstable
if |ρ(A)| > 1. Continuing with the working example described in Section 3, namely R = 12.5, we computed the eigenvalues
of A for different values of µ along the radially asymmetric solution branches to determine the stability which are displayed
in Table 3. We note that ‘‘U’’ and ‘‘L’’ represent the ‘‘upper’’ and ‘‘lower’’ branches, respectively.

Table 3 shows that the solution is unstable even before the parameter µ reaches its first bifurcation point. This is in
contrast with tumors growing in porous media environment where spherical instability occurs only when µ reaches the
first bifurcation point. Moreover, all of the nonspherical solutions computed are unstable while there are some stable
nonspherical solutions for a porous tumor [15].

7. Conclusion

In this paper, we applied numerical algebraic geometry methods to compute steady states of tumor growth with Stokes
equation. The tumor model we considered is a free boundary model with bifurcation phenomenon. The difficulty level of
this problem is due to large scale computation magnitude. By implementing parallel differentiation and sparse homotopy
tracking with multi-precision arithmetic, we can compute the bifurcation point numerically and track the bifurcation
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branches more efficiently. These tools are general numerical algorithmic approaches that can be applied to other large scale
polynomial systems.

The model discussed in this article has incorporated important physical quantities such as internal tumor pressure and
cell-to-cell adhesion. The bifurcation diagram, which was drawn using homotopy tracking, shows the local behavior of the
steady state solutions. Although the tumor model analyzed here is quite simple, this work provides a possible way to study
the behavior of the tumor as the parameter changes. In early results, bifurcation theory was used to analyze the bifurcation
branch, but only in a small neighborhood of the bifurcation point. In reality, tumor in vivo is unlikely to be of spherical shape.
Thus, our tracking along the nonspherical bifurcation branch in this paper may provide significant application.
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Appendix. Operators under the spherical coordinate

We use the notation e⃗r , e⃗θ , e⃗φ for the unit normal vectors in the r, θ, φ directions, respectively; here 0 ≤ r ≤ ∞, 0 ≤

θ ≤ π, 0 ≤ φ ≤ 2π . Then, written in Cartesian coordinates in R3,
e⃗r = e⃗1 sin θ cosφ + e⃗2 sin θ sinφ + e⃗3 cos θ,

e⃗θ = e⃗1 cos θ cosφ + e⃗2 sin θ sinφ + e⃗3 cos θ,

e⃗φ = −e⃗1 sinφ + e⃗2 cosφ,

where (e⃗1, e⃗2, e⃗3) is the standard basis in R3 in Cartesian coordinates.
The gradient of the vector ∇v⃗, where v⃗ = (vr , vθ , vφ)T = vr e⃗r + vθ e⃗θ + vφ e⃗φ , is given by

∇v⃗ = ∇vr ⊗ e⃗r + ∇vθ ⊗ e⃗θ + ∇vφ ⊗ e⃗φ + vr∇ e⃗r + vθ∇ e⃗θ + vφ∇ e⃗φ . (10)
In polar spherical coordinates, the gradient of a function f has the following form:

∇f =
∂ f
∂r

e⃗r +
1

r sin θ

∂ f
∂φ

e⃗φ +
1
r

∂ f
∂θ

e⃗θ .

Then, we can deduce the each term of (10) as follows,

∇vr ⊗ e⃗r =


∂vr

∂r
e⃗r +

1
r sin θ

∂vr

∂φ
e⃗φ +

1
r

∂vr

∂θ
e⃗θ


⊗ e⃗r

=
∂vr

∂r
e⃗r ⊗ e⃗r +

1
r sin θ

∂vr

∂φ
e⃗φ ⊗ e⃗r +

1
r

∂vr

∂θ
e⃗θ ⊗ e⃗r

∇vθ ⊗ e⃗θ =
∂vθ

∂r
e⃗r ⊗ e⃗θ +

1
r sin θ

∂vθ

∂φ
e⃗φ ⊗ e⃗θ +

1
r

∂vθ

∂θ
e⃗θ ⊗ e⃗θ

∇vφ ⊗ e⃗φ =
∂vφ

∂r
e⃗r ⊗ e⃗φ +

1
r sin θ

∂vφ

∂φ
e⃗φ ⊗ e⃗φ +

1
r

∂vφ

∂θ
e⃗θ ⊗ e⃗φ

vr∇ e⃗r = vr


∂ e⃗r
∂r

e⃗r +
1

r sin θ

∂ e⃗r
∂φ

e⃗φ +
1
r

∂ e⃗r
∂θ

e⃗θ


=

vr

r
(e⃗φ ⊗ e⃗φ + e⃗θ ⊗ e⃗θ )

vθ∇ e⃗θ =
vθ

r
(cot θ e⃗φ ⊗ e⃗φ − e⃗r ⊗ e⃗θ )

vφ∇ e⃗φ = −
vφ

r
(cot θ e⃗θ ⊗ e⃗φ + e⃗r ⊗ e⃗φ).

Therefore, we summarize the gradient of velocity as

∇v⃗ =



∂vr

∂r
,

1
r

∂vr

∂θ
,

1
r sin θ

∂vr

∂φ

∂vθ

∂r
−

vθ

r
,

1
r

∂vθ

∂θ
+

vr

r
,

1
r sin θ

∂vθ

∂φ

∂vφ

∂r
−

vφ

r
,

1
r

∂vφ

∂θ
−

cot θ
r

vφ,
1

r sin θ

∂vφ

∂φ
+

vr

r
+

cot θ
r

vθ

 .
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A vector Laplacian can be defined for a vector v⃗ by

1v⃗ = ∇(∇ · v⃗) − ∇ × (∇ × v⃗).

Moreover, the curl ∇ × v⃗ under spherical coordinates is given by

∇ × v⃗ =
e⃗r

r sin θ


∂

∂θ
(vφ sin θ) −

∂vθ

∂φ


+

e⃗θ

r sin θ


∂vr

∂φ
− sin θ

∂

∂r
(rvφ)


+

e⃗φ

r


∂

∂r
(rvθ ) −

∂vr

∂θ


.

Thus, the Laplacian of velocity can be expressed as

1v⃗ =



1
r

∂2(rvr)

∂r2
+

1
r2

∂2vr

∂θ2
+

1
r2 sin2 θ

∂2vr

∂φ2
+

cot θ
r2

∂vr

∂θ
−

2
r2

∂vθ

∂θ
−

2
r2 sin θ

∂vφ

∂φ
−

2vr

r2
−

2 cot θ
r2

vθ

1
r

∂2(rvθ )

∂r2
+

1
r2

∂2vθ

∂θ2
+

1
r2 sin2 θ

∂2vθ

∂φ2
+

cot θ
r2

∂vθ

∂θ
−

2
r2

cot θ
sin θ

∂vφ

∂φ
+

2
r2

∂vr

∂θ
−

1
r2 sin2 θ

vθ

1
r

∂2(rvφ)

∂r2
+

1
r2

∂2vφ

∂θ2
+

1
r2 sin2 θ

∂2vφ

∂φ2
+

cot θ
r2

∂vφ

∂θ
+

2
r2 sin θ

∂vr

∂φ
+

2 cot θ
r2 sin θ

∂vθ

∂φ
−

1
r2 sin2 θ

vφ

 .
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