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Summary

How does the brain synthesize low-level neural signals
for simple shape parts into coherent representations of

complete objects? Here, we present evidence for a dy-
namic process of object part integration in macaque

posterior inferotemporal cortex (IT). Immediately after
stimulus onset, neural responses carried information

about individual object parts (simple contour frag-
ments) only. Subsequently, information about specific

multipart configurations emerged, building gradually
over the course of w60 ms, producing a sparser and

more explicit representation of object shape. We show
that this gradual transformation can be explained by

a recurrent network process that effectively compares
parts signals across neurons to generate inferences

about multipart shape configurations.

Introduction

In primate visual cortex, object shape information is pro-
cessed in the ventral pathway, a hierarchical network of
areas in the occipital and temporal lobes (Ungerleider
and Mishkin, 1982). At earlier processing stages in the
ventral pathway (V1, V2, and V4), objects are represented
in terms of their constituent parts. Individual neurons sig-
nal simple properties of local edge fragments (e.g., posi-
tion, orientation, curvature) (Gallant et al., 1993; Hubel
and Wiesel, 1962; Ito and Komatsu, 2004; Pasupathy
and Connor, 1999), and objects are encoded by highly
distributed patterns of neural activity (Pasupathy and
Connor, 2002). In contrast, at the final processing stages
in anterior IT, individual neurons show nonlinear selectiv-
ity for global object shape, and objects are encoded by
a sparser pattern of active neurons (Baker et al., 2002;
Freedman et al., 2003; Fujita et al., 1992; Gross et al.,
1972; Logothetis et al., 1995; Tsunoda et al., 2001; Young
and Yamane, 1992). This kind of sparse global shape
coding increases metabolic efficiency, enhances mem-
ory storage potential, and simplifies decoding for pur-
poses of object recognition (Barlow, 2001; Fiete et al.,
2004; Rolls and Treves, 1990). However, the neural trans-
formation from distributed parts coding in V1, V2, and V4
to sparse global shape coding in anterior IT is not yet un-
derstood at a mechanistic level.

Theoretical models suggest two basic alternative
mechanisms for synthesizing parts information into
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global shape representations. One possibility is selec-
tive feedforward convergence, as in Hubel and Wiesel’s
model of V1 orientation tuning based on patterned sum-
mation of thalamic inputs (Hubel and Wiesel, 1962).
Feedforward models of object recognition depend criti-
cally on some kind of nonlinearity in the summation
mechanism at each hierarchical processing stage (Rie-
senhuber and Poggio, 1999). Purely feedforward sum-
mation of parts information would facilitate rapid object
recognition (Thorpe et al., 1996). The alternative is that
recurrent processing within each hierarchical stage may
iteratively refine feedforward stimulus signals that are
initially weak or ambiguous (Chance et al., 1999; Douglas
et al., 1995; Pugh et al., 2000; Salinas and Abbott, 1996).
Although recurrent neural networks operate more slowly
than feedforward networks, they provide a biologically
plausible mechanism for generating the kind of nonlinear
selectivity for element combinations (Salinas and Ab-
bott, 1996) that global shape selectivity requires.

Here, we distinguish between these alternatives by an-
alyzing shape information dynamics in posterior IT (TEO
and posterior TE), which mediates between distributed,
parts-level coding in lower-level ventral pathway areas
and sparse, global coding in anterior IT. We recently re-
ported that neurons in posterior IT vary in the way they
signal the presence of multiple contour parts (Brincat
and Connor, 2004). For present purposes, we define
‘‘parts’’ to be contour fragments that can be described
geometrically with single values for position, orientation,
and curvature; e.g., the backward facing concavity at the
trailing edge of a dolphin’s dorsal fin. We define ‘‘multi-
part configurations’’ to be combinations of such contour
fragments; e.g., the trailing edge concavity plus the lead-
ing edge convexity of a dolphin’s dorsal fin. Thus, ‘‘con-
figurations’’ would always contain more than one distinct
position value and in most cases distinct orientation and
curvature values as well. Obviously, the terms ‘‘parts’’
and ‘‘configurations’’ could be used in other senses; our
conclusions are limited to the specific definitions given
above.

Some posterior IT cells show independent sensitivity
to separate contour parts, i.e., the overall response is a
linear function of the response components associated
with each of those parts. Other neurons exhibit nonlinear
selectivity for specific multipart configurations, i.e., the
overall response is dominated by an interaction effect
associated with the combined presence of two or more
contour parts at specific positions. In the analyses pre-
sented here, we asked how these linear and nonlinear
signals evolved through time after stimulus onset. We
found that linear parts information emerged rapidly,
whereas nonlinear signals for multipart configurations
developed gradually, on a time course consistent with a
recurrent network process for comparing parts informa-
tion across neurons.

Results

We analyzed a sample of 89 posterior IT neurons re-
corded from two macaque monkeys. The monkeys
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Figure 1. Temporal Dynamics of Linear

Single-Part and Nonlinear Multipart Configu-

ration Tuning for Three Individual Posterior

IT Neurons

(A) Neuron with linear tuning for two types of

contour parts. Left column: contour shape

tuning functions corresponding to linear, sin-

gle-part (blue) and nonlinear, multipart (green)

response components. (The full tuning func-

tion also includes position dimensions not

shown here; see Figure S1.) White crosses

mark locations in shape tuning space of con-

tour parts near the tuning peaks for a subset

of ten shape stimuli (second column) that ex-

hibited the closest match to the tuning peaks.

Third column: averages across example stim-

uli of observed responses (gray histogram),

predicted responses (black line), and single-

part (blue line) and multipart (green line) com-

ponents of the predicted responses. Light

gray shading denotes stimulus presentation

period. Right column: temporal profile of lin-

ear single-part and nonlinear multipart re-

sponsecomponents (basedonall stimuli used

to study this cell).

(B) Neuron with nonlinear tuning for a specific

multipart configuration.

(C) Neuron with mixed tuning showing early

responses to single parts and delayed re-

sponses to the multipart configuration.
performed a fixation task while stimuli were flashed in
random order at the receptive field center. Example re-
sults are presented for a cell showing linear summation
of information about separate parts (Figure 1A), a cell
with nonlinear selectivity for multipart configurations
(Figure 1B), and a cell with mixed linear/nonlinear re-
sponse properties (Figure 1C). In each case, spiking re-
sponses to a large number of abstract shape stimuli
were fitted with a model that characterized the cell’s
tuning for contour shape through time. The model was
a combination of temporal response components repre-
senting either linear sensitivity to individual parts (blue
histograms, right column) or nonlinear selectivity for
multipart configurations (green histograms). These tem-
poral response components reflected the evolving
weights for Gaussian functions and combinations of
Gaussian functions used to characterize smooth tuning
for contour part curvature, orientation, and position (left
column and Figures S1–S3). Example stimuli containing
individual contour parts (blue) or multipart configura-
tions (green) near the corresponding Gaussian tuning
peaks are shown in the second column. The predicted
(black line) and observed (gray histogram) average re-
sponses to these example stimulus sets are shown in
the third column.

The linear cell (Figure 1A) responded strongly to
shapes containing either sharp (angle-like) concave cur-
vature oriented toward the right (top row) or sharp con-
cave curvature oriented toward the left (middle row).
The combined effect of these two concavities (bottom
row) was approximately additive (gray histograms, third
column). Correspondingly, this cell’s linear, single-part
model components (blue histograms, right column) were
large, and there was little additional weight in the nonlin-
ear, multipart model component (green histogram). This
kind of linear summation of information about separate
parts produces inherently ambiguous outputs because
a given spike rate can correspond to various combina-
tions of single or multiple contour parts (see Figure S1).

In contrast, the nonlinear cell (Figure 1B) was strongly
selective for shapes containing a specific configuration
of two parts: a broad concavity oriented near 200º and
a broad concavity oriented near 315º (bottom row). Re-
sponses to shapes containing just one of these concav-
ities were weak (top and middle rows). Responses to
shapes containing both concavities were much stronger
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Figure 2. Population-Level Dynamics of Lin-

ear Single-Part and Nonlinear Multipart Re-

sponses in Posterior IT

(A) Temporal profiles of linear and nonlinear

responses for 89 neurons. Each neuron is rep-

resented by a horizontal stripe in which bright-

ness signifies total response strength, and

color signifies relative weighting of linear

(cf. Figure 1, blue histograms) and nonlinear

(Figure 1, green histograms) response com-

ponents (see color scale bar). Neurons are

segregated into categories according to over-

all degree of nonlinearity (linear, nonlinear,

and mixed) and ordered within categories by

response onset latency (white dots). Within

the group of cells showing a mixture of linear

and nonlinear responses, many neurons

exhibited a temporal transition from early

linear / later nonlinear responses (green

dots to the right of single-unit traces),

whereas very few transitioned from nonlinear

/ linear responses (blue dots). Traces corre-

sponding to example neurons displayed in

Figures 1A–1C are labeled at left. Inset: scat-

ter plot showing distribution of nonlinearity

and temporal transition index values used to

classify neurons. Blue, aqua, and green re-

gions demarcate classification boundaries

for linear, mixed, and nonlinear cell groups.

Vertical lines indicate absolute bounds for

classifying neurons as transitional; green

and blue symbols indicate neurons transition-

ing from linear / nonlinear and nonlinear /

linear responses, respectively. Arrows indi-

cate example neurons from Figures 1A–1C.

(B) Population average temporal profiles of

linear and nonlinear response components

across all 89 neurons. Thick blue curve: pop-

ulation mean linear response component.

Thick green curve: population mean nonlinear

component. Colored dots indicate onset and

peak times for corresponding curves.

(C) Average temporal profiles of linear and

nonlinear response components within cell

categories. Thick blue curve: mean linear re-

sponse component across 25 linear cells. Thin

blue curve: mean linear component across

34 transitional cells. Thick green curve: mean

nonlinear component across 15 nonlinear

cells. Thin green curve: mean nonlinear com-

ponent across transitional cells.
than the sum of the single-part responses. Correspond-
ingly, the linear response components (blue histograms)
were small, whereas the nonlinear component (green
histogram) was large. Visual inspection of Figure 1B
and the full stimulus set in Figure S2 reveals that strong
responses were uniquely associated with this combina-
tion of concavities and not with any other single feature
or combination of features. The strong nonlinear com-
ponent associated with this configuration in the fitted
model provides quantitative confirmation of this obser-
vation. Nonlinear responses like these convey explicit
information about multipart shape configurations.

The mixed response pattern in Figure 1C consisted
initially of linear sensitivity to two types of contour parts
but transitioned to nonlinear selectivity for the conjunc-
tion of those two parts. Thus, shapes containing either
a broad concavity oriented near 315º (top row) or a broad
concavity oriented near 135º (middle row) evoked tran-
sient responses. The response to shapes containing
both types of concavities (bottom rows) included an
early phase (100–200 ms poststimulus onset), approxi-
mately equal to the linear sum of these single-part re-
sponses, but also a later, sustained phase not predicted
by the single-part responses. Correspondingly, the lin-
ear response components (blue histograms) consisted
of transient peaks, whereas the nonlinear component
(green histogram) had a delayed rise and a sustained
profile. Neurons like these convey information that is ini-
tially ambiguous but then resolves into an explicit signal
for a multipart configuration (see Figure S3).

To visualize how linear single-part and nonlinear mul-
tipart information developed in time across the popula-
tion, we separately summed each neuron’s linear and
nonlinear response components and plotted the results
against time relative to stimulus onset (Figure 2A). Each
cell is represented by a horizontal stripe in which
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brightness signifies total response strength and color
signifies degree of nonlinearity (blue, linear; green, non-
linear; aqua, intermediate; see color scale bar). To clarify
distinct trends in the population, we segregated cells
into three categories according to whether their re-
sponses were predominantly linear (25 cells), predomi-
nantly nonlinear (15 cells), or mixed (49 cells; see y
axis of inset scatter plot and Experimental Procedures).
This classification is not meant to imply the existence of
qualitatively distinct neural populations. Rather, our
results are consistent with a continuous underlying dis-
tribution of response linearity and timing (see neural net-
work simulation below). Within each category, cells are
orderedaccording to response onset latency (whitedots;
see Experimental Procedures). Predominantly nonlinear
cells responded at significantly (p = 0.008; randomization
two-sample t test) longer latencies (mean 6 SD: 112 6
26 ms) than linear cells (93 6 16 ms) and had delayed
peak response times (181 6 58 versus 146 6 61 ms),
although this trend fell slightly short of significance (p =
0.08). For mixed cells, linear responses predominated
at earlier time points, and nonlinear responses were
strongest at later time points: out of 34 mixed cells with a
substantial change in response type over time (see x axis
of inset scatter plot and Experimental Procedures), 79%
(27/34; p = 0.0004; binomial test) had longer peak laten-
cies for nonlinear as compared to linear response com-
ponents, and across all 49 mixed cells, nonlinear re-
sponse components were delayed by an average of
63 ms relative to linear components (p = 0.007; random-
ization paired t test).

These trends at the single-cell level produced strik-
ingly different temporal profiles for linear single-part
and nonlinear multipart information averaged across
the population (Figure 2B). Linear response strength, av-
eraged across all 89 neurons (thick blue line), grew rap-
idly over the course of about 40 ms, reaching 90% max-
imum at 122 ms after stimulus onset. Nonlinear response
strength (thick green line) grew more slowly over the
course of about 100 ms, reaching 90% maximum at
184 ms after stimulus onset. The 62 ms peak offset be-
tween linear and nonlinear response components was
highly significant (p < 0.0001; randomization test). A sim-
ilar temporal difference was observed between mean lin-
ear and nonlinear response components (Figure 2C, thin
blue and green lines, respectively) averaged across only
those neurons that exhibited substantial transitions in re-
sponse type (linear / nonlinear or nonlinear / linear re-
sponses) over time (cf. Figure 2A, blue and green sym-
bols). This temporal difference was also present, but
smaller in magnitude, between responses of predomi-
nantly linear and nonlinear neurons (Figure 2C, thick
blue and green lines, respectively). These results sug-
gest that both within- and between-cell temporal differ-
ences contribute to the population-level dynamics, but
within-cell transitions from early linear to later nonlinear
responses make a larger contribution.

This large temporal lag between linear and nonlinear
signals suggests a time-consuming network process
that transforms feedforward signals to generate explicit
tuning for multipart configurations. To illustrate how
such a process might work, we simulated a neural net-
work with a simple recurrent architecture based on pre-
vious models of nonlinear cortical processing (Chance
et al., 1999; Salinas and Abbott, 1996). Each model
unit received two feedforward inputs corresponding to
a pair of contour part orientations (Figure 3A, blue ar-
rows and tuning curves). The entire space of orientation
pairs is represented by the 2D grid in Figure 3A. For sim-
plicity, we simulated tuning for orientation only, though
in reality, posterior IT neurons are tuned across multiple
contour-related dimensions (Brincat and Connor, 2004).
In addition, each model unit received recurrent connec-
tions from other units (green arrows and tuning curves).
The recurrent connection weights had a difference-of-
Gaussians (Mexican hat) pattern, such that each unit re-
ceived excitatory inputs from units with similar tuning
and inhibitory inputs from units with dissimilar tuning
(Figure 3A, left). Each point on the 2D orientation-pair
grid contained units ranging continuously from predom-
inantly feedforward to predominantly recurrent connec-
tivity (Figure 3A, right) (Chance et al., 1999).

The time course of inputs to a model unit at the center
of the tuning grid (i.e., tuned for concavities at 0º and
180º) with strong recurrent connectivity illustrates how
nonlinear tuning for multipart configurations could arise
and why it would be delayed (Figure 3B). The temporal
profile of the feedforward input strength (blue arrows)
was matched to the time course of linear responses ob-
served in linear posterior IT neurons (Figure 2B, thick
blue line). When stimulated by an optimal multipart con-
figuration (Figure 3B, top row), excitatory recurrent input
(bright green) to the example unit is initially weak (125
ms) but increases gradually to a peak near 225 ms be-
cause of mutually excitatory interactions between units
near the center of the tuning grid. Thus, the delayed ac-
tivity of these highly recurrent units represents an in-
ference about the presence of multipart configurations
based on implicit comparison of input information across
neurons. In contrast, when these units are stimulated by
a single part (Figure 3B, bottom row), excitatory recur-
rent inputs are recruited only weakly, and activity is sup-
pressed by inhibitory recurrent inputs (dark green) from
units with different tuning profiles. In this way, the infor-
mation conveyed by recurrent neurons remains largely
uncontaminated by single-part information.

For these units with strong recurrent inputs (Figure
3B), the temporal response profile (Figure 3C) is thus
dominated by nonlinear selectivity for multipart configu-
rations (green), and this nonlinear response component
has a slow rise and a delayed peak (near 200 ms). In con-
trast, model units with mixed recurrent/feedforward in-
puts exhibit a rapidly emerging linear sensitivity to indi-
vidual parts (Figure 3D, blue) combined with a slowly
rising nonlinear component (green). Model units with
mainly feedforward inputs exhibit a rapidly emerging lin-
ear response component (Figure 3E, blue) with little non-
linear selectivity (green). These model response types
parallel the neural response types exemplified in Figures
1A–1C.

We separately summed linear and nonlinear response
components across model units with the same proce-
dures used in the neural analysis. This produced tempo-
ral profiles for linear and nonlinear information (Figure 3F)
that paralleled the neural population activity (Figures 2B
and 2C). The agreement between model and neural
temporal profiles was robust across a reasonable range
of model parameters (see Experimental Procedures).
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Figure 3. A Recurrent Network Model Ex-

plains Observed IT Response Dynamics

(A) Illustration of network architecture. Left:

each model unit receives Gaussian-tuned

feedforward inputs (blue curves) for two

ranges of object parts (in this model, concave

contour fragments differing in orientation).

The population of model units spans all com-

binations of tuning for two parts. Green illus-

trations show peak part combinations for

a subsampling of model units. Each model

unit also receives recurrent inputs from other

units. The green curves represent strength of

recurrent inputs to a unit at the center of the

tuning grid. The difference-of-Gaussians or

‘‘Mexican-hat’’ profile of recurrent connec-

tion weights produces mutual excitation be-

tween active units with similar tuning and

mutual suppression between units with dis-

similar tuning. Right: the relative strengths

(arrow thickness) of feedforward (blue) and

recurrent (green) connections vary continu-

ously across the population of model units.

(B) Dynamic evolution of feedforward and re-

current inputs to a model unit at the center

of the tuning grid. Top: an optimal multipart

combination elicits an early feedforward re-

sponse (blue arrows), followed by gradual re-

cruitment of excitatory recurrent inputs from

units with similar tuning (bright green patch

at center of surface plot). Bottom: a single-

part stimulus elicits a weaker feedforward in-

put that is largely suppressed by recurrent in-

puts from units with dissimilar tuning (dark

green patches in surface plot).

(C–E) Linear (blue) and nonlinear (green) re-

sponse components of three example model units with strong (C), moderate (D), and weak (E) recurrent connectivity strengths.

(F) Average temporal profiles of linear and nonlinear response components across the population of model units. Blue curve: mean linear re-

sponse component. Green curve: mean nonlinear response component.
Thus, a relatively simple network architecture with con-
tinuous variation in relative feedforward/recurrent con-
nection strength can explain the existence of delayed,
nonlinear tuning for object part combinations in poste-
rior IT. We conclude that explicit information about ob-
ject part combinations is generated by recurrent pro-
cessing of initially linear signals for individual parts.

Discussion

Our results show that in posterior IT, after stimulus onset,
there is a gradual transformation from linear information
about single object parts (simple contour fragments) to
nonlinear information about multipart configurations.
This transformation is due to a combination of tuning
changes within cells (from linear to nonlinear) and grad-
ual appearance of activity in cells with predominantly
nonlinear tuning. The end result is explicit representation
of multipart configurations and, thus, a more compact
and efficient neural code for shape (Brincat and Connor,
2004). Our conclusions are limited, in a strict sense, to
what we defined here as parts: simple contour fragments
that could be described with single values for position,
orientation, and curvature. However, the important prin-
ciple is that information about simpler components ap-
pears rapidly, whereas information about configurations
of multiple components evolves gradually. One could
speculate that similar dynamic transformations occur
for simpler parts at earlier processing stages and for
more complex parts at later processing stages in the
ventral pathway. Further transformation of this kind
could produce the global shape sensitivity and extreme
sparseness observed in anterior IT (Baker et al., 2002;
Freedman et al., 2003; Fujita et al., 1992; Gross et al.,
1972; Logothetis et al., 1995; Tsunoda et al., 2001; Young
and Yamane, 1992). A sparse, explicit representation of
complex shape configurations is easier to decode for
purposes of object recognition and would maximize effi-
ciency of memory storage and associative learning (Fiete
et al., 2004; Rolls and Treves, 1990).

The gradual emergence of configural information and
gradual changes in single-neuron tuning reflect dynamic
network processing of shape information, as opposed to
a single feedforward pass through the ventral pathway.
Recurrent processing could occur locally or could in-
volve feedback from higher areas. However, many neu-
rons exhibited nonlinear tuning at response onset, sug-
gesting that feedback connections from higher-level
areas—which are thought to modulate rather than es-
tablish neural selectivity (Bullier et al., 2001; Felleman
and Van Essen, 1991)—do not play a primary role. Our
network simulations demonstrated that local recurrent
processing within IT could explain the observed time
courses of linear and nonlinear shape information.
Through recurrent processing, the network implicitly
compares part information across neurons, in the sense
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that active neurons with similar tuning reinforce each
other. Over the course of about 60 ms, this comparison
process yields increasingly strong inferences about mul-
tipart configurations, represented by the growing activity
of highly selective nonlinear neurons. The potential role
of recurrent processing is also supported by other simu-
lation studies showing that recurrent networks exhibit
complex dynamics (Pugh et al., 2000) and can produce
nonlinear selectivity for conjunctions of inputs that are
initially combined additively (Salinas and Abbott, 1996).

Fast reaction times in basic-level object categoriza-
tion tasks (Thorpe et al., 1996) have been interpreted as
evidence that object recognition relies primarily on feed-
forward processing. However, reaction times are virtu-
ally unaffected by manipulations known to degrade con-
figural processing, suggesting that performance of these
tasks depends mainly on detection of diagnostic parts
(Rousselet et al., 2003). Rapidly emerging signals for in-
dividual parts (Figure 2B, blue lines) constitute a prelimi-
nary neural representation that could support this kind
of early, nonconfigural categorization. In contrast, when
object discrimination depends on specific part configu-
rations, processing time is increased (by w30–50 ms
relative to tasks involving differences in simple part
shape) (Arguin and Saumier, 2000; Wolfe and Bennett,
1997). Studies of illusory contour completion also indi-
cate fast local processing of parts and slower integration
of parts into global figures (Ringach and Shapley, 1996).
Gradually emerging signals for multipart configura-
tions (Figure 2B, green lines) constitute a more evolved
neural representation that could support these slower
configuration-based perceptions.

The transition we observed from early representation
of parts to later representation of multipart configura-
tions may help to explain previously observed dynamics
of face-related neural responses. Early responses of
face-selective cells in anterior IT carry information suffi-
cient for distinguishing faces from other object catego-
ries, but information about individual facial identity
does not develop until w50 ms later (Sugase et al., 1999).
Similar dynamics have been described for face-related
MEG responses in human occipitotemporal cortex (Liu
et al., 2002). Categorization of faces versus nonfaces re-
quires only detection of diagnostic parts and could con-
ceivably be based on early linear signals for individual
parts. In contrast, recognition of specific faces requires
configural information (Tanaka and Farah, 1993) and
might be delayed by the slower emergence of nonlinear
signals for multipart configurations.

Recurrent processing to derive information about
combinations of simpler elements may be a general fea-
ture of vision. Area MT is the first stage at which neurons
demonstrate selectivity for the direction of pattern (e.g.,
plaid) motion, which requires integration of multiple sig-
nals for component (e.g., grating) motion directions
(Movshon et al., 1985; Rodman and Albright, 1989). MT
responses encode component motion initially and then
gradually become selective for pattern motion, with a de-
lay of w60 ms (Pack et al., 2001; Smith et al., 2005). This
delay is remarkably similar to what we observed in pos-
terior IT, suggesting a common mechanism for integrat-
ing component signals to derive higher-order structural
information. MT temporal profiles at the level of individ-
ual cells are a matter of debate. Some results suggest
that most MT cells transition from component to pattern
tuning (Pack et al., 2001), whereas other results suggest
distinct subpopulations with stable component or pat-
tern tuning but divergent response latencies (Smith
et al., 2005). A complete transition toward pattern tuning
under some circumstances could reflect a complete shift
toward perception of pattern (plaid) motion, which con-
flicts with perception of component grating motion. For
our shape stimuli, there was no such conflict between
component and pattern perception, which could explain
the persistent component tuning we observed in a sub-
population of posterior IT cells. Pattern responses are
optimal for supporting global percepts, but persistent re-
sponses to simpler components could serve to make in-
formation about local structure continuously available.

Experimental Procedures

Behavioral and Neurophysiological Methods

We recorded spiking activity of well-isolated single neurons from

two monkeys (Macaca mulatta) trained to maintain fixation for a juice

reward. Neurons were sampled in an unbiased manner from poste-

rior and central IT cortex (TEO/PIT and posterior TE/CIT) in the lower

bank and lip of the superior temporal sulcus from stereotaxic A-P 25

to +8.5 mm. No statistically significant trends in response charac-

teristics were observed in the A-P direction, so all neurons were

grouped together in the analyses presented here.

Neurons were studied with parametric shape-stimulus sets in

which simple parts (straight and curved contour fragments) were

varied systematically and permuted into a large number of combina-

tions (Figures S1–S3). For each cell, stimulus sets were optimized for

color, orientation, local curvature, and size, based on preliminary

tests. Stimuli were displayed as colored silhouettes against a blank

gray background and were flashed in random order at the center of

a cell’s receptive field for 500 ms each, with a 250 ms interstimulus

interval, during 4.5 s fixation trials (6 stimuli/trial). Post hoc tests were

used to examine responses of each neuron to preferred and nonpre-

ferred shapes across a range of absolute positions and sizes; the

shape selectivity of almost all neurons was highly consistent across

the ranges within which they responded (Brincat and Connor, 2004)

(Figure S4).

Data Analysis

Spike trains were smoothed with an asymmetric Gaussian function

(15 ms SD causal side, 5 ms SD acausal side) and averaged across

all repetitions of each stimulus. This procedure yielded a robust es-

timate of instantaneous response rate that avoided backward bias in

time by means of the primarily causal weighting in the smoothing fil-

ter (cf. Thompson et al. [1996]).

These responses were fitted with a model that characterized each

neuron’s tuning for contour shape (curvature and orientation) and

position (x,y object-relative position and x,y absolute position)

through time (relative to stimulus onset). The model described shape

selectivity with a combination of multiple excitatory and inhibitory

Gaussian tuning functions (representing linear sensitivity to single

parts) and all higher-order products of same-sign tuning functions

(representing nonlinear sensitivity to multipart configurations). (Re-

sults are only reported here for excitatory response components.)

Each of these linear and nonlinear model components was fitted

with a temporal weight function describing how its contribution to

neural responses varied across time (in 5 ms steps). Model fitting

was carried out in three steps: (1) shape and position tuning param-

eters for varying numbers (1–6) of Gaussian functions were fitted to

time-averaged response rates with an iterative least-squares algo-

rithm, (2) an optimal number of Gaussian functions was selected

based on a stepwise regression procedure (Brincat and Connor,

2004), and (3) these parameters were held constant while temporal

weighting functions for each component were fitted to instanta-

neous response rates.

Response onset latencies were defined by the first time point at

which instantaneous response rate exceeded baseline (mean
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response from 250 to +50 ms relative to stimulus onset) by 10% of

the baseline-to-peak response range and remained above that level

for at least 25 ms (to avoid noise effects). Peak response latencies

were defined by the first time point at which instantaneous response

rate exceeded baseline by 90% of the response range. Reported la-

tencies were calculated from the fitted total excitatory response

strength; the raw neural responses yielded similar results. The index

of nonlinearity represented by the color scale in Figure 2A (and plot-

ted in the inset scatter plot) is defined as: NL/(L + NL), in which L and

NL represent a neuron’s summed linear and nonlinear response

components. This index ranges from 0 (purely linear) to 1 (purely

nonlinear). The same index, integrated across time from response

onset to stimulus offset, was used to classify neurons as predomi-

nantly linear (0–0.2), predominantly nonlinear (0.8–1), or mixed

(0.2–0.8). A temporal transition index (Figure 2A, inset) was used to

measure the degree to which the response type of single neurons

with both meaningful linear and nonlinear response components

changed over time. This index was the signed difference between

the peak latency of a cell’s nonlinear and linear response com-

ponents, expressed as a proportion of the smaller (earlier) of the

two latency values. Negative transition index values indicate a tran-

sition from nonlinear / linear responses, a value of 0 corresponds

to no component latency difference, and positive values indicate

a linear / nonlinear transition; values of 61 correspond to the situ-

ation in which the temporal difference between response com-

ponents is equal to the absolute latency of the earlier component.

Absolute values of the transition index were used to classify neurons

as transitional (>0.33) or nontransitional (<0.33).

All reported significance levels are based on two-tailed randomiza-

tion tests of the associated statistic, unless otherwise noted. For

comparisons based on population-mean response functions (e.g.,

comparison of linear and nonlinear peak latencies in Figure 2B), we

used a randomization test in which the observed difference was com-

pared to a null-hypothesis distribution of difference values based on

randomly reassigning single-unit response components to linear and

nonlinear categories.

We studied 109 shape-selective neurons in posterior IT. Of these,

89 cells were best described by a model with excitatory tuning for

more than one type of part and were, therefore, included in the anal-

yses in this report. 20 cells with excitatory tuning for only a single

type of part were excluded because the current report focuses on in-

tegration of multiple parts. Further methodological details can be

found in Brincat and Connor (2004).

Recurrent Network Simulation

We simulated a neural network with recurrent circuitry similar to pre-

viously published models of response selectivity in parietal and stri-

ate cortex (Chance et al., 1999; Salinas and Abbott, 1996). The intra-

cellular voltage response of each model neuron, V(t), was determined

by the sum of feedforward and recurrent inputs through the standard

rate-model equation (Dayan and Abbott, 2001)

t
dV

dt
+ VðtÞ= gff Vff ðtÞ+ grcrVrcrðtÞ (1)

in which V ff(t) and V rcr(t) are the feedforward and recurrent input vol-

tages, gff and grcr = (12 gff) are the strengths of feedforward and re-

current inputs, and t is the membrane time constant (15 ms). Values

of gff were systematically and evenly varied across model neurons,

from 1.0 (i.e., purely feedforward input) to gff_min (cf. Chance et al.

[1999]); a gff_min value of 0.25 yielded a close approximation to the

observed data. The feedforward connections confer additive selec-

tivity for two Gaussian tuning ranges along separate stimulus dimen-

sions (cf. Salinas and Abbott [1996]), which here could be thought

of as local contour orientation for two spatially separate object parts,

A and B

Vff
i ðqA; qB; tÞ=

2
6664e

ðqA 2 mi;AÞ
2

2 2s2
ff + e

ðqB 2 mi;BÞ
2

2 2s2
ff

3
7775,RlinearðtÞ (2)

In which mi,A and m i,B are the ith model unit’s tuning peaks for parts A

and B (evenly distributed across all pairs of part orientations), sff is

the Gaussian tuning width (30º; the empirically observed population
mean value for orientation), and Rlinear(t) is the empirically observed

mean linear response component of predominantly linear neurons

(Figure 2B, thick blue line). The recurrent input had a difference-of-

Gaussians (Mexican hat) profile with excitatory connections be-

tween neurons with similar tuning for parts A and B and inhibitory

connections for neurons with dissimilar tuning

Vrcr
i ðtÞ=

X
j

2
6664

0
BBB@wEXCcEXCe

ðDmijÞ
2

2 2s2
EXC 2 wINHcINHe

ðDmijÞ2

2 2s2
INH

1
CCCA,Rjðt 2 1Þ

3
7775

(3)

in which Dmij is the Euclidean distance between pairs of neural tuning

peaks in the 2D space defined by tuning dimensions A and B, cEXC

and cINH are constants that make the unweighted excitatory and in-

hibitory Gaussian connectivity functions sum to one, wEXC (1.0) and

wINH (2.0) are weights on the normalized excitatory and inhibitory

functions, sEXC (30º) and sINH (300º) represent the spread of excit-

atory and inhibitory recurrent connections (cf. values in Salinas

and Abbott [1996]), Rj(t21) represents the firing rate of the jth neuron

in the previous 1 ms time step, and the summation is over all 22,500

model neurons (50 3 50 distinct tuning peaks 3 9 distinct gff values).

Finally, intracellular responses were converted to firing rates at each

time stepthroughastandardpower-lawfunctionRðtÞ=a maxðVðtÞ;0Þg,

with gain factor a (6.0) set to produce stable propagation of response

rates similar to the observed values, and exponent g (1.1) set to give

an overall degree of nonlinearity across units similar to the observed

value. The simulation results in Figure 3 are qualitatively robust to

reasonable variations in all parameter values. Networks with only

feedforward connectivity (gff_min = 1) failed to show the temporal dy-

namics observed in the data and in the recurrent network.

Supplemental Data

The Supplemental Data for this article can be found online at http://

www.neuron.org/cgi/content/full/49/1/17/DC1/.
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