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A bicyclo[6.2.1]undecane model compound of the core structure of the biologically active furanohelian-
golide sesquiterpene was synthesized. This new and short route was developed by using a solvent-free
Diels–Alder reaction between cyclopentadiene and 3-nitro-2-cyclohexenone, followed by simple
transformations. Theoretical calculations were performed in order to understand reactivity aspects of
the cycloaddition.

� 2013 Elsevier Ltd. All rights reserved.
Bicyclo[6.2.1]undecane ring systems (1) are particularly inter-
esting because they can be good precursors of natural products
such as the furanoheliangolide sesquiterpene1,2 goyazensolide
(2), isolated from Eremanthus goyazensis3 or Cladiellins which are
part of a large family of highly oxygenated marine natural
products.4 These natural products present anti-cancer, anti-inflam-
matory, insecticidal, and schistosomicidal properties,3,4 and
because of these biological activities these compounds have been
the synthetic targets of several research groups (Fig. 1).4–9

We have been interested in developing synthetic methodolo-
gies for these structures by cycloaddition reactions.10 In a previous
publication,10a we reported the preparation of the macrocycle 6,
which has many of the structural features of the basic skeleton
of the natural product 2, using a retro-aldol reaction of the keto-
alcohol tricycle 5. This compound was obtained from the Diels–Al-
der adduct 3, followed by a four step transformation (Scheme 1).

In this Letter we describe an alternative route to obtain the
same intermediate 4, prepared in the earlier synthesis of 6.
Theoretical calculations were also performed in order to under-
stand some reactivity aspects of the cycloadditions.

The new synthesis consists of a solvent-free Diels–Alder
reaction followed by base promoted elimination of HNO2. Transfor-
mation 4 ? 5 ? 6 was performed in the same manner as
previously described.10a
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In principle, the keto-alcohol 5 could be prepared as the corre-
sponding acetate in one step, by cycloaddition of cyclopentadiene
and the enol acetate 7 (Scheme 2). Unfortunately, compound 7
does not react with cyclopentadiene to give the Diels–Alder
adducts 10a–10b. We thus decided to use the nitro olefin 8, which
is an excellent substrate for cycloaddition reactions such as Diels–
Alder11 and photocycloadditions,12 and can be easily prepared
from cyclohexanone.13

The solvent-free reaction between cyclopentadiene and the ni-
tro compound 8 (cyclopentadiene as solvent, method A) for 48 h,
resulted in the two cycloaddition products 9a and 9b (Scheme 2)
in a 1:1 ratio (verified by 1H NMR) and 65% yield. The diastereoiso-
mers 9a and 9b were separated and characterized by IR, 1H, and 13C
NMR spectroscopies and mass spectrometry,14 including the
relative stereochemistry determination by NOE experiments (see
the Supplementary data). When this reaction was performed in tol-
uene at reflux for 3 h (method B), we obtained the same result with
regard to the endo/exo stereoselectivity. The exo adduct 9b is a
crystalline solid, while the endo adduct 9a is a yellowish oil.
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Figure 2. Relative energies of the TSs using the B3LYP/6-31+G(d,p) mod
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Figure 3. Transition states (T
In addition to these experimental results, we have performed
some DFT calculations for the reactants and transition states
(TSs), in order to compare the reactivity of dienophiles 7 and 8,
and also to study the endo/exo ratio of the adducts 9a and 9b. First,
we have found a significant difference (ca. 10 kcal mol�1) between
the activation energies for the cycloaddition reactions of cyclo-
pentadiene and the nitro-enone 8 with respect to compound 7
(Fig. 2). The reaction between cyclopentadiene and the nitro-enone
8 was much more favorable, explaining the improved reactivity of
8 compared to 7. Also, we found very similar transition state ener-
gies for the endo and exo products 9a and 9b, which is in agreement
with the experimental results (1:1 endo:exo ratio) (Fig. 3).

Thus, we have performed the treatment of each isomer of the
Diels–Alder adducts 9a and 9b, and also an equimolar mixture,
with 1,5-diazabicyclo[4.3.0]non-5-ene (DBN) at room temperature.
All the reactions yielded the a,b-unsaturated ketone 4 in 90% after
purification (Scheme 3). As described in our previous communica-
tion,10a enone 4 was hydrated to 5 by treatment with a mixture of
acetone/water/p-toluenesulfonic acid at reflux. Compound 5 was
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obtained in 60% yield as an epimeric mixture of 5a (80%) and 5b
(20%). They were separated by chromatography and characterized
by NMR (including NOE experiments). Both isomers were
converted to the retro aldol product 6 by treatment with sodium
hydride (NaH) in toluene at reflux, in 75% yield after purification.

Compound 4 proved to be very susceptible to Michael addition,
when treated with NaOH in methanol/water at room tempera-
ture.15 The stereoselectivity observed in these 1,4-additions was
confirmed since the compound 11 was obtained and its structure
completely elucidated. This high stereoselectivity is probably due
to the cage-like structure of the norbornadiene moiety 4 that per-
mits the addition on only one face of the conjugated double bond.

H'H
H

OMe

11

11

O

However, after the 1,4-addition of methoxide in 4, an enolate
intermediate is obtained and the protonation on both a and b faces
yields two different isomers. Since only one methoxylated com-
pound 11 was formed, we can conclude that the steric accessibility
in the two faces of the enolate unit are different (Scheme 3) and we
strongly believe that this is a typical case of thermodynamic con-
trol where the epimer 11 is thermodynamically accumulated un-
der the equilibrium conditions (methanol/base). It can be
reinforced by the experimental and molecular modeling studies
involving cyclopentenone annulated norbornadiene systems16,17

that show the addition of methanol yielding exclusively the cis-
isomer.

In summary, we describe an alternative, shorter, and efficient
method for the synthesis of strained dienone 4, a precursor of
the bicyclo[6.2.1]undecane ring system 6, using as a key step a sol-
vent-free Diels–Alder reaction. Also, we report a highly stereose-
lective Michael addition which allows the synthesis of the
previously reported compound 6.
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