
Proteins Wriggle

Michael Cahill,* Sean Cahill,† and Kevin Cahill‡

*School of Medicine, Uniformed Services University, Bethesda, Maryland 20814, †Department of Computer Science, and ‡Department of
Physics and Astronomy, University of New Mexico, Albuquerque, New Mexico 87131-1156

ABSTRACT We propose an algorithmic strategy for improving the efficiency of Monte Carlo searches for the low-energy
states of proteins. Our strategy is motivated by a model of how proteins alter their shapes. In our model, when proteins fold
under physiological conditions, their backbone dihedral angles change synchronously in groups of four or more to avoid steric
clashes and respect the kinematic conservation laws. They wriggle; they do not thrash. We describe a simple algorithm that
can be used to incorporate wriggling in Monte Carlo simulations of protein folding. We have tested this wriggling algorithm
against a code in which the dihedral angles are varied independently (thrashing). Our standard of success is the average
root-mean-square distance (rmsd) between the �-carbons of the folding protein and those of its native structure. After
100,000 Monte Carlo sweeps, the relative decrease in the mean rmsd, as one switches from thrashing to wriggling, rises from
11% for the protein 3LZM with 164 amino acids (aa) to 40% for the protein 1A1S with 313 aa and 47% for the protein 16PK
with 415 aa. These results suggest that wriggling is useful and that its utility increases with the size of the protein. One may
implement wriggling on a parallel computer or a computer farm.

WHY PROTEINS WRIGGLE

We propose an algorithmic strategy for improving the effi-
ciency of Monte Carlo searches for the low-energy states of
proteins. Our strategy is motivated by a model in which
proteins alter their shapes by means of local motions that
minimize the displacement of distant atoms.

Folding proteins avoid steric clashes and respect the kine-
matic conservation laws. The system consisting of a protein
and the nearby solvent molecules approximately conserves its
energy, momentum, and angular momentum. The shape of a
protein is mainly defined by the angles of rotation, �i and �i,
about the backbone bonds that link the �-carbons to the adja-
cent amide planes. A change in one of these dihedral angles
would rotate a significant part of the protein molecule, moving
each atom by a length proportional to its distance from the axis
of rotation. In a protein consisting of hundreds or thousands of
amino acids in water, such a rotation would engender steric
clashes and grossly violate the kinematic conservation laws.
Instead, when a protein folds or unfolds in our model, its
backbone dihedral angles conspire in groups of four or more to
change in ways that limit their displacement of distant atoms.
Proteins wriggle; they do not thrash.

Localized motions of the protein backbone involve at
least four bonds, but simpler local motions are possible in
simpler systems. In lattice models, all local motions, such as
corner moves and crankshaft moves (Schatzki 1965), are
localized. Polymers also possess simple local motions in the
continuum. In polyethylene, for instance, two backbone
bonds separated by a trans bond are parallel, and so equal
and opposite rotations about these parallel bonds constitute

a motion that is localized. Such crankshaft moves in polymers
have been seen in simulations guided by brownian and molec-
ular dynamics (Helfand, 1971, 1984; Skolnick and Helfand,
1980; Helfand et al., 1980, 1981a,b; Weber et al., 1983).

Continuum Monte Carlo searches strike a balance be-
tween the temporal detail of molecular dynamics and the
rigidity of the lattice. They are defined by their “kinematics”
(how the proteins move) and their “dynamics” (why they
move). By kinematics, we mean the variables that define the
state of the protein and the kinds of Monte Carlo moves that
are permitted. The dynamics is determined by the energy
function. Monte Carlo simulations do not incorporate wrig-
gling in their kinematics; this paper is about how they could
and whether they should.

Our wriggling algorithm is based upon the linear depen-
dence of every quartet of three-dimensional (3D) vectors. In
the next section, we use this linear dependence to show that
one may choose the four angles of rotation about any four
backbone bonds so that the combined motion of the protein
is localized. A simple computer algorithm that may be used
to incorporate wriggling in Monte Carlo searches is outlined
in the section, A Wriggling Algorithm.

We have run three simple tests to determine whether wrig-
gling actually improves the efficiency of a Monte Carlo search;
we describe these tests and their results in the section, Does
Wriggling Work. In each test, we compared simulations
guided by the wriggling algorithm to ones guided by a standard
thrashing algorithm in which the dihedral angles are varied
independently. To separate the kinematics of folding from the
dynamics of folding, we used a nearly perfect but artificial
energy function that is proportional to the root-mean-square
distance (rmsd) of the folding �-carbons from the �-carbons of
the native structure. Because there is no simple relation be-
tween this rmsd and an energy, and because the use of wrig-
gling alters the effective temperature, we performed our Monte
Carlo runs at absolute zero. On each protein, we performed

Submitted August 21, 2001, and accepted for publication January 2, 2002.

Address reprint requests to Kevin Cahill, Dept. of Physics and Astronomy,
Univ. of New Mexico, Albuquerque, NM 87131. Tel.: 505-277-5318; Fax:
505-277-1520; E-mail: cahill@unm.edu.

© 2002 by the Biophysical Society

0006-3495/02/05/2665/06 $2.00

2665Biophysical Journal Volume 82 May 2002 2665–2670

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by Elsevier - Publisher Connector

https://core.ac.uk/display/82161161?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1

two sets of eight or more runs of 100,000 sweeps, one set
controlled by the wriggling algorithm and the other by a
thrashing algorithm. The runs started from fully denatured
random coils. We averaged the final rmsd. The relative de-
crease in the average final rmsd as one switches from the
thrashing code to the wriggling code (�rmsd�th � �rmsd�wr)/
�rmsd�wr is a measure of the utility of wriggling. This wriggling
advantage rose from 11% for the protein 3LZM with 164
amino acids (aa), to 40% for the protein 1A1S with 313 aa, and
to 47% for the protein 16PK with 415 aa. The advantage of
wriggling seems to grow with the length of the protein.

In the section, Wriggling on a Parallel Computer, we
sketch how one might implement wriggling with a realistic
energy function on a parallel computer or on a farm of com-
puters. We summarize the present work and mention some of
its limitations in the Conclusions and Caveats section.

HOW PROTEINS WRIGGLE

Three-dimensional space is spanned by any three linearly
independent vectors. Every quartet of 3D vectors is linearly
dependent—that is, for every four 3D vectors v�1, v�2, v�3, v�4,
there exist four numbers x1, x2, x3, x4, such that the weighted
sum of the vectors vanishes,

�
i�1

4

xiv�i � 0. (1)

In this section, we use these mathematical facts to show that
one always may choose the angles of rotation about any four
bonds to minimize the net effect of the four rotations upon
distant atoms.

The change dr� in the position r� of an atom due to a
rotation by a small angle � about a bond axis taken to be a
unit vector b̂ is the cross-product of �b̂ with the vector to the
point r� from any point c� on the axis,

dr� � �b̂ � �r� � c��. (2)

To first order in �, the net displacement dr� of the position r�
of an atom due to four rotations by the small angles �i about
the bonds b̂i for i � 1, 2, 3, 4, is the sum

dr� � �
i�1

4

dr�i � �
i�1

4

��ib̂i � �r� � c�i��. (3)

If we use a� for the average of the four points c�i, which
typically would be the midpoint between two �-carbons,
then we may express the net displacement dr� as

dr� � �
i�1

4

��ib̂i � �r� � a� 	 a� � c�i��

� ��
i�1

4

�ib̂i� � �r� � a�� 	 �
i�1

4

��ib̂i � �a� � c�i��. (4)

The displacement dr� will be independent of the potentially
long vector r� � a� (for every atom) if the sum of the bond
vectors b̂i weighted by their angles �i vanishes. That is, the
net displacement dr� is merely

dr� � �
i�1

4

��ib̂i � �a� � c�i��, (5)

which is independent of r� � a�, if the angle-weighted sum of
bond vectors vanishes,

�
i�1

4

�ib̂i � 0. (6)

And, because every quartet of 3D vectors is linearly dependent
(Eq. 1), it is always possible to choose the four small angles �i

so that this sum vanishes for any four bond vectors b̂i.

A WRIGGLING ALGORITHM

In this section, we show how to transform the wriggling
condition (Eq. 6) into a matrix equation that can be solved
by standard linear-algebra software, such as the freely avail-
able LAPACK (Anderson et al., 1999a) subroutine DGESV

(Anderson et al., 1999b).
The wriggling condition (Eq. 6) can be written in the

more explicit form

�
n�1

3

b̂in���n/�4� � b̂i4 (7)

for i � 1, 2, 3. Let us arrange the first three axes b̂1, b̂2, and
b̂3 into the matrix A with elements Ain � b̂in for i, n � 1, 2,
3 and rename the fourth axis b̂4 as the vector B with
components Bi � b̂i4. If we now use X for the vector with
components Xn � ��n/�4 for n � 1, 2, 3, then the wriggling
condition (Eq. 7) becomes

�
n�1

3

AinXn � Bi for i � 1, 2, 3. (8)

The LAPACK subroutine DGESV is designed to solve such
linear equations. The call

call DGESV(3, 1, A, 3, ipiv, B, 3, info) (9)

returns the three angle ratios Xn � ��n/�4 for n � 1, 2, 3 as
the three components Bn of the vector B. The value info �
0 indicates that the computation is successful, and ipiv
contains pivot indices, which may be ignored. We set �4 �
�1 so that �n � ��4Bn � Bn for n � 1, 2, 3 and then
normalize the four angles,

�
n�1

4

�n
2 � 1. (10)

2666 Cahill et al.

Biophysical Journal 82(5) 2665–2670

Last, we multiply them by a random number x drawn
uniformly from the interval (�0.0125, 0.0125) radians, so
that our final angles are
n � x�n for n � 1, 2, 3, 4.

Although we used the linear equation (Eq. 7) as our
wriggling condition, we used the exact and general form
(Eq. A8) of the rotation matrix described in the Appendix to
implement all rotations.

DOES WRIGGLING WORK?

To test the utility of our wriggling algorithm, we performed
Monte Carlo simulations of protein folding on three pro-
teins: lysozyme (3LZM.pdb, 164 aa), ornithine carbamoyl-
transferase (1A1S.pdb, 313 aa), and phosphoglycerate ki-
nase (16PK.pdb, 415 aa). We used an artificially nearly
perfect energy function that is proportional to the rmsd
between the �-carbons of the folding protein and those of its
native structure. This nearly perfect energy function al-
lowed us to separate the kinematics of folding (the Monte
Carlo moves—wriggling or thrashing) from the dynamics of
folding (the mechanisms in the energy function—confor-
mational entropy, charge–charge interactions, hydrogen
bonds, van der Waals interactions, hydrophobicity (Dill
1990; Chan and Dill 1990)). Because there is no simple
relationship between the �-carbon rmsd and an energy, and
because wriggling changes the effective temperature, we
conducted our simulations at absolute zero rather than at
physiological temperatures or at that of liquid nitrogen.

Each of our tests consisted of 8 or 10 pairs of Monte
Carlo runs, one guided by the wriggling algorithm and the
other by a thrashing algorithm. Each run began with a
random coil and ran for 100,000 sweeps, each sweep being
a sequence of applications of the algorithm successively
along the primary structure of the protein. The wriggling
code applies the algorithm described in Eqs. 7–10 to suc-
cessive quartets of dihedral angles. After each wriggle, the
code performs a Metropolis step; because the temperature is
zero, the wriggle is accepted if and only if it lowers the
rmsd. In each sweep, the wriggling code wriggles first the
four dihedral angles �2, �2, �3, �3 of residues 2 and 3;
second, the angles �2, �3, �3, �4 of residues 2, 3, and 4;
third, the angles �3, �3, �4, �4 of residues 3 and 4, and
continues in this way down the chain to the penultimate
residue. The code does not vary the � angle of any proline
residue. To keep these angles fixed, the code performs one
of several procedures when one or more proline residues is
involved in a wriggle. In each sweep, the thrashing code
successively and independently changes, by a random angle
�
 drawn uniformly from the interval (�0.0125, 0.0125)
radians, every dihedral angle from the first � to the last �,
except for the � of the prolines; it accepts each change if
and only if the change lowers the rmsd. Apart from end
effects, the thrashing code makes the same number of
Monte Carlo judgments per sweep as does the wriggling
code.

In our first test of wriggling, we constructed eight fully
denatured random coils of the protein 3LZM, which has 164
residues. The rmsd of these denatured configurations ranged
from 18.2 to 128.5 Å. In eight runs of 100,000 sweeps, the
average rmsd was 1.46 � 0.07 Å for the wriggling code and
1.62 � 0.05 Å for the thrashing code. The mean thrashing
rmsd was 11% larger than the mean wriggling rmsd.

We performed our second test of wriggling on the protein
1A1S, which has 313 residues. Our eight denatured coils of
1A1S had rmsd running from 25.9 to 251.5 Å. The rmsd of
the 16 wriggling and thrashing runs are plotted in Fig. 1.
After 	40,000 sweeps, the thrashing runs separate out into
a cluster of lines, labeled as thrashing, that lie distinctly
above the wriggling runs, labeled as wriggling. The eight
wriggling runs had an average final rmsd of 1.67 � 0.04 Å,
whereas that of the eight thrashing runs was 2.33 � 0.03 Å
or 40% greater.

For our third test of wriggling, we first randomized and
stretched the native structure of the protein 16PK, which has
415 (visible) residues, into 10 fully denatured coils with
rmsd running from 24.7 to 341.8 Å. We then allowed our
wriggling and thrashing codes to reduce the rmsd of these
10 random coils in runs of 100,000 sweeps. The rmsd of the
20 runs are plotted in Fig. 2 as a function of sweep number.
Apart from one thrashing run, the rmsd of the wriggling
runs drop below those of the thrashing runs after 	30,000
sweeps. The outlying thrashing run, labeled by the letter “t,”
did slightly better than the two worst wriggling runs. After
100,000 sweeps, the average rmsd of the wriggling runs was
1.66 � 0.03 Å, whereas that of the thrashing runs was
2.44 � 0.08 Å. The mean rmsd of the thrashing code was
47% greater than that of the wriggling code.

One estimate of the utility of wriggling is the relative
decrease in the average final rmsd as one switches from the
thrashing code to the wriggling code,

�rmsd�th � �rmsd�wr

�rmsd�wr
. (11)

FIGURE 1 For the protein 1A1S, the lines trace the values of the rmsd
for eight runs guided by the wriggling algorithm and eight guided by the
thrashing algorithm.

Proteins Wriggle 2667

Biophysical Journal 82(5) 2665–2670

In these three tests, the utility of wriggling increased with
the size of the protein, rising from an 11% advantage at 164
aa to 40% at 313 aa and 47% at 415 aa. The longer the
protein, the larger are the motions that occur when the
backbone-bond angles are varied one at a time, and so the
greater are the need for and the advantage of wriggling.

Each of the proteins 1A1S and 16PK has two domains. Is
the advantage of wriggling over thrashing in these two cases
due merely to a better twist in the polypeptide strand that
connects the two domains? To answer this question, we
measured the rmsd of the individual domains of the final
configurations of 1A1S and 16PK given by the wriggling
and thrashing codes. The average rmsd of the first and
second domains of 1A1S, respectively, were 1.78 and 1.56
Å with wriggling, and 2.05 and 2.57 Å with thrashing. Those
of 16PK were 1.52 and 1.79 Å with wriggling, and 2.34 and
2.55 Å with thrashing. These results suggest that wriggling
gives better domains, not just better connecting strands.

The wriggling code differs from the thrashing code in two
respects: its basic moves are four rotations rather than a
single rotation and it suppresses large motions of remote
atoms. To evaluate the two effects separately, we wrote a
code in which the elemental moves are groups of four
rotations but in which no wriggling condition is imposed.
We let this coordinated-thrashing code fold our 10 dena-
tured starting configurations of the protein 16PK and found,
after 100,000 sweeps, that the average rmsd was 1.88 �
0.04 Å, which is to be compared with 1.66 � 0.03 Å for the
wriggling code and 2.44 � 0.08 Å for the thrashing code. So
wriggling is better than coordinated thrashing and much better
than thrashing, but part of the success of wriggling arises from
the coordination of its compound elemental moves.

Because of our use of the rmsd as an artificially nearly
perfect energy function, the proteins of our simulations are
phantoms; they can move through each other. A real but
approximate energy function would reject all moves into
excluded volume; it therefore would reject many thrashing

moves because of their large-scale motions. The use of the
rmsd in our three tests deprives wriggling of one of its key
advantages over thrashing and over coordinated thrashing,
namely that its localized motions are less likely to involve
steric clashes. Thus, the utility of wriggling in simulations
with real energy functions may be greater than is indicated
by these tests.

The wriggling code runs somewhat more slowly than the
thrashing code. But a realistic energy function would slow
down both codes by so much that the speed advantage of
thrashing would be negligible.

In the first 10,000 sweeps of our tests of the wriggling
algorithm, the thrashing code reduced its rmsd more quickly
than the wriggling code. It might therefore be worthwhile to
experiment with codes that relax the wriggling condition for
the first 10,000 sweeps or that mix coordinated thrashing
with wriggling.

The action of a wriggle is much less than that of a thrash;
the action of a small-angle wriggle may be as little as 10
.
So quantum-mechanical effects are more important with
wriggling than with thrashing, but even so, they probably
would be obscured by decoherence (Habib et al., 1998).

WRIGGLING ON A PARALLEL COMPUTER

Most of the residues of a folded protein lie in alpha helices
and beta sheets. The secondary structure of a protein is the
assignment of residues to helices, sheets, turns, and coils.
One may list the possible secondary structures of a protein
and assign one secondary structure to each processor of a
parallel computer or computer farm. Each processor would
perform Monte Carlo moves on the dihedral angles of the
residues in the turns and coils of its secondary structure, but
would leave invariant the dihedral angles of its helices and
sheets. Wriggling should be used in the coils and in turns
longer than 4 or 5 aa, but probably not in turns of 3 or 4 aa,
where it might overly constrain the folding of the protein.
Because each processor would vary the dihedral angles (and
possibly the principal side-chain angles) only of the residues
in the coils and turns, the simulation would run quickly
enough to be guided by a realistic energy function (Weiner
and Kollman 1981; Brooks et al., 1983; Lazarides and
Karplus 1998, 1999) with solvation and excluded volume.
At the end of a run of perhaps 100,000 sweeps, the final
energies of the different secondary structures would be
compared and their folds stored. Many runs would be re-
quired to test all the plausible secondary structures. This
implementation of wriggling would make optimum use of a
parallel computer or of a computer farm; no time would be
lost to interprocessor communication or to waiting.

CONCLUSIONS AND CAVEATS

We have described and tested an algorithmic strategy for
improving the efficiency of Monte Carlo searches for the

FIGURE 2 For the protein 16PK, the lines trace the values of the rmsd
for 10 runs guided by the wriggling algorithm and 10 guided by the
thrashing algorithm. The plot labeled by the letter “t” is a successful
thrashing outlier.

2668 Cahill et al.

Biophysical Journal 82(5) 2665–2670

low-energy states of proteins. Our strategy is motivated by
a model in which the laws of physics constrain the incre-
mental motions of proteins to be essentially local. Localized
motions can be incorporated in Monte Carlo searches by a
simple algorithm that rotates the dihedral angles in groups
of four. To test this wriggling algorithm, we performed 52
zero-temperature, 100,000-sweep, Monte Carlo searches for
the low-energy states of the proteins 3LZM, 1A1S, and
16PK using the rmsd as an artificially nearly perfect energy
function. The searches guided by the wriggling algorithm
reached lower rmsd than those guided by the usual thrashing
algorithm by a margin that increased with the length of the
protein. But it remains to be seen whether and how this
wriggling algorithm might improve the efficiency of Monte
Carlo searches performed at finite temperature and guided
by an approximate, realistic energy function with solvation
and excluded volume.

APPENDIX: ROTATION MATRICES

For the sake of completeness, we derive in this appendix an exact formula
for the general rotation matrix from the expression (Eq. 2) for an infini-
tesimal rotation. To simplify the notation, we shall consider an axis that
runs through the origin, and choose c� � 0. In this case by Eq. 2, a
right-handed rotation about a bond b̂ by an infinitesimal angle � changes a
vector r� by the small amount d�r � �b̂ � r� where the cross-product b̂ � r�
has the components

�b̂ � r��i � �
j�1

3 �
k�1

3

�ikjb̂krj (A1)

in which the totally antisymmetric tensor �ikj has elements �123 � �231 �
�312 � 1, �213 � �132 � �321 � �1, with all other elements zero, e.g.,
�113 � 0, etc. If we use the definition (Lk)ij � �ikj of the rotation generators
L� , then we may write the change dri as

dri � � �
j�1

3 �
k�1

3

b̂k�Lk�ijrj � � �
j�1

3

�b̂ � L� �ijrj, (A2)

or, in matrix notation as

dr � �b̂ � L�r. (A3)

Let us use r�(
) for the vector r� after a right-handed rotation by the angle

about the axis b̂. Then, by Eq. A3, the vector r�(
) satisfies the differential
equation

dr�
�

d

� b̂ � L�r�
�. (A4)

The solution that satisfies the boundary condition r�(0) � r� is

r�
� � exp�
b̂ � L� �r�0�, (A5)

and so the matrix that represents a finite rotation by the angle
 about the
axis b̂ is

R�
b̂� � exp�
b̂ � L� �. (A6)

The exact form of Eq. 2 when the axis b̂ does not go through the origin
but through another point c� is

ri�
� � ci � �
j�1

3

Rij�
b̂��rj � cj�

� �
j�1

3

�exp�
b̂ � L� �ij�rj � cj�. (A7)

In our codes, we used this formula with the matrix R given by (Cahill et al.,
2000)

Rij�
b̂� � cos
�ij � sin
� �
k�1

3

�ijkb̂k� 	 �1 � cos
�b̂ib̂j,

(A8)

which is convenient for computation.

We have benefited from conversations with Susan Atlas, David Baker, Ken
Dill, Norman van Gulick, Gary Herling, and Charlie Strauss. One of us
(S.C.) would like to thank Ken Dill for the hospitality extended to him at
the University of California–San Francisco. Most of our computations were
performed on the computers of the Albuquerque High-Performance Com-
puting Center.

REFERENCES

Anderson, E., Z. Bai, C. Bischof, S. Blackford, J. Demmel, J. Dongarra,
J. Du Croz, A. Greenbaum, S. Hammarling, A. McKenney, and D.
Sorensen. 1999a. LAPACK Users’ Guide. 3d ed. SIAM, Philadel-
phia, PA. Available on line at http://www.netlib.org/lapack/lug/
lapack_lug.html.

Anderson, E., Z. Bai, C. Bischof, S. Blackford, J. Demmel, J. Dongarra,
J. Du Croz, A. Greenbaum, S. Hammarling, A. McKenney, and D.
Sorensen. 1999b. LAPACK Users’ Guide. 3d ed. SIAM, Philadel-
phia, PA. 237–238. Available on line at http://www.netlib.org/
lapack/.

Brooks, B. R., R. E. Bruccoleri, B. D. Olafson, D. J. States, S. Swami-
nathan, and M. Karplus. 1983. Charmm: a program for macromolecular
energy, minimization, and dynamics calculations. J. Comput. Chem.
4:187–217.

Cahill, M., M. Fleharty, and K. Cahill. 2000. Simulations of protein
folding. Nucl. Phys. B (Proc. Suppl.). 83:929–931.

Chan, H. S., and K. A. Dill. 1990. Origins of structure in globular proteins.
Proc. Natl. Acad. Sci. U.S.A. 87:6388.

Dill, K. A. 1990. Dominant forces in protein folding. Biochemistry. 29:
7133–7155.

Habib, S., K. Shizume, and W. H. Zurek. 1998. Decoherence, chaos, and
the correspondence principle. Phys. Rev. Lett. 80:4361–4365.

Helfand, E. 1971. Theory of the kinetics of conformational transitions in
polymers. J. Chem. Phys. 54:4651–4661.

Helfand, E. 1984. Dynamics of conformational transitions in polymers.
Science. 226:647–650.

Helfand, E., Z. R. Wasserman, and T. A. Weber. 1980. Brownian-
dynamics study of polymer conformational transitions. Macromolecules.
13:526–533.

Helfand, E., Z. R. Wasserman, and T. A. Weber. 1981a. Kinetics of
conformational transitions in bulk polymers. Polymer Preprints
(American Chemical Society, Division of Polymer Chemistry). 22:
279 –280.

Proteins Wriggle 2669

Biophysical Journal 82(5) 2665–2670

Helfand, E., Z. R. Wasserman, T. A. Weber, J. Skolnick, and R. J. H.
1981b. The kinetics of conformational transitions: effect of variation of
bond angle bending and bond stretching force constants. J. Chem. Phys.
75:4441–4445.

Lazarides, T., and M. Karplus. 1998. Discrimination of the native from
misfolded protein models with an energy function including implicit
solvation. J. Mol. Biol. 288:477–487.

Lazarides, T., and M. Karplus. 1999. Effective energy function for proteins
in solution. Proteins Struct. Funct. Genet. 35:133–152.

Schatzki, T. F. 1965. Molecular interpretation of the -transition in

polyethylene and related compounds. Polymer Preprints (American
Chemical Society, Division of Polymer Chemistry). 6:646 – 651.

Skolnick, J., and E. Helfand. 1980. Theory of the kinetics of conforma-
tional transitions in polymers. J. Chem. Phys. 72:5489–5500.

Weber, T. A., E. Helfand, and Z. R. Wasserman. 1983. Simulation of
polyethylene, molecular-based study of fluids 20. In ACS Advances in
Chemistry Series. No. 204. American Chemical Society, Washington,
DC. 487–500.

Weiner, P. K., and P. A. Kollman. 1981. Amber: assisted model building
with energy refinement. A general program for modeling molecules and
their interactions. J. Comput. Chem. 2:287.

2670 Cahill et al.

Biophysical Journal 82(5) 2665–2670

	Proteins Wriggle
	Why proteins wriggle
	How proteins wriggle
	A Wriggling algorithm
	Does wriggling work?
	Wriggling on a parallel computer
	Conclusions and caveats
	Acknowledgement
	Appendix: Rotation matrices
	References

