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1. INTRODUCTION 

Section 2 presents nonoscillatory results for the discrete equation 

A (a(k) A (y(k) + py(k - T))) + F(k + 1, y(k + 1 - 0)) = 0, k E N; (1.1) 

here N = {1,2,... }. Recall a nontrivial solution of (1.1) is called oscillatory if it is neither 
eventually positive nor eventually negative. Otherwise, it is called nonoscillatory. Our results 
rely on a nonlinear alternative of Leray-Schauder type (to be found in [l]) and on a compactness 
criterion [2-4] in B(N) (the Banach space of all continuous, bounded mappings from N (discrete 
topology) to R, endowed with the usual supremum norm; i.e., ]u], = supiEN [u(i)] for u E 
B(N)). 

THEOREM 1.1. Let C be a closed, convex subset of a Banach space E and U an open subset 
of C with p* E U. Also N : 0 + C is a continuous, condensing map with N(u) bounded. Then 
one of the following hold: 

(Al) N has a fixed point in 8; or 
(A2) there is an z E XJ and X E (0,l) with II: = (1 - X)p* + X N 2. 

THEOREM 1.2. Let E be a uniformly bounded subset of the Banach space B(N). If E is equicon- 
vergent at 00, it is also relatively compact. 

We finally remark here that the results in this paper could be established using Krasnosel’skii’s 
fixed-point theorem instead of Theorem 1.1. Also, the results in this paper extend and correct 
the results in [5, Section 211. 
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2. DISCRETE EQUATIONS 
In this section, we discuss the discrete equation 

A (a(k) A (y(k) + py(k - 7))) + F(k + 1, y(k + 1 - g)) = 0, k E N; (2.1) 

here N = { 1,2, . . . }. Also, the following conditions are assumed throughout this section: 

r and u are fixed nonnegative integers; (2.2) 

F : N x (0, co) + [0, oo) is continuous; i.e., it is continuous as a map 
from the topological space N x (0, co) into the topological space [0, 03); (2.3) 
the topology on N is the discrete topology; 

and 
a:N-t(O,oo) and p E R. (2.4 

THEOREM 2.1. Suppose (2.2)-(2.4) hold. Also assume the following two conditions are satisfied: 

IPI # 1, (2.5) 

(2.6) 

Then (2.1) has a bounded nonoscillatory solution. 

PROOF. Let Y = max{r, g}. The proof will be broken into two cases, namely IpI < 1 and IpI > 1. 

CASE I. Ipl < 1. 
Choose a positive integer T > msx{v, ko} sufficiently large so that 

z &I z w$L] F(i + 1, w) < $ (1 - IpI) K. 

Then there exists E > 0 with E < K/2 and 

z $7 z WC&&q F(i + 1, w) I a (1 - IpI) K - E. 

We wish to apply Theorem 1.1. For notational purposes, let 

N(T - v) = {T - v,T - Y + 1,. . . }. 

We will apply Theorem 1.1 with E = (B(N(T - v)), I. loo), 

C = 
1 

y E B(N(T - v)) : y(i) 1 G for i E N(T - V) 
> 

, 

u = {Y E C : lyloo < K) , 

and with p* = K - E, 

(2.7) 

P-8) 

i(l+p)K-py(T--7), iE{T-v ,..., T}, 
N y(i) = 

i(l+p)K-py(i--7), iE{T+l,T+2,...}, 
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and 

i 

0, i E {T-v,...,T}, 

N2 y(i) = i-1 1 -xl 
& a(lc) jy(~+LY(.i+l-4), iE {Tfl>...l. 

Notice p* E U since 0 < E < K/2. First, we show 

N=Nl+N2:D+C. (2.9) 

To see this take y E I-r, so in particular K/2 5 y(i) 5 K for i E N(T - v). Our discussion is 
broken into two subcases, namely 0 5 p < 1 and -1 < p < 0. 

SUBCASE I. 0 5 p < 1. 
If i E {T + 1, T + 2,. . . } we have 

whereas, if i E (2 - V, . . . , 7’) we have 

As a result, K/2 < Nl y(i) + N2 y(i) f or i E N(T - V) for every y E u. Thus, (2.9) holds in this 
case. 

SUBCASE II. -1 < p < 0. 
IfiE{T+l,T+2,...}wehave 

N,y(i)+N&)+l+p)K-P;= ;++P K>;. 
( > 

whereasifiE{T-v,...,T}wehave 

Thus, (2.9) holds in this case also. 

Next, we show 
N2 : 6 -+ E is a continuous, compact map. (2.10) 

The continuity of N2 is immediate from (2.3). To see that N2 fi is relatively compact we will use 
Theorem 1.2. Clearly, Y = {Nz y : y E 0) is a uniformly bounded subset of B(N(T - v)). Also, 
ifyE~andiE{T+l,T+2,...}wehave 

IN2 y(m) - N2 y(i)1 5 g & g sup w + Lw), 
3=k 4KI%Kl 

so Y is equiconvergent at 00. Theorem 1.2 guarantees that N2 u is a relatively compact subset 
of B(N(T - v)). Next, we claim that 

Ni : 0 --+ E is a contractive map. 

To see this, notice if yi, y2 E u and i E {T - V, . . . , T}, then we have 

(2.11) 

WI ~(4 - NI ~z(i)l = IP{YI(T -T) - y2G” - ~>)l 5 IPI IYI - ~2100, 
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whereasifiE{T+l,T+2,...}wehave 

IN1 Y(i) - Nl Y2(i)l = IP{Yl(i - T) - YZ(i - T))I 5 IPI IYl - YPICO. 

Combining gives 
IN Yl - Nl Yalta I IPI IYl - Y2lc0, 

so (2.11) is true since ]p] < 1. 
Now (2.10) and (2.11) guarantee that 

N : 0 + C is a continuous, condensing map. (2.12) 

Next, we show condition (A2) in Theorem 1.1 cannot occur. Suppose y E B(N(T - v)) is a 
solution of 

y=(l-X)p*+XNy (2.13)~ 

for some X E (0,l) with y E dU. Notice K/2 5 y(i) _< K for i E N(T - v). Our discussion is 
broken into two subcases, namely 0 5 p < 1 and -1 < p < 0. 

SUBCASE I. 0 5 p < 1. 
If i E {T + 1, T + 2,. . . } we have 

y(i) = (I - X)p* -t A [NI y(i) + Nzy(i)l 

F(j + l,w) 1 
and so (2.8) implies 

sup y(i) 5 (1 - X) [K - E] + x 
iE{T+l,T+2,... } [ 

;(l+p)K-p;+ i(l-p)K-e 
1 11 

=(l-X)[K-e]+X[K-e]=K-E<K. 

Thus, 

i&y+2,.-) y(i) < K. 
(2.14) 

Now if i E (2’ - V, . . . , T}, we have 

y(i)=(l-X)~*+AN~~(~)I(~-X)[K-E]+X ;(l+p)K-p; , 1 
and so 

SUP 
iE{T--Y,...,T} 

y(i)<(l-X)[K-~]+X ;+$J K<(~-~[K-E]+XK=K. 1 1 
Thus, 

(2.15) 

Combining (2.14) and (2.15) gives 

sup y(i) < K. (2.16) 
GN(T-Y) 

This is a contradiction since K = lyloo = supicN(T-v) y(i). 
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SUBCA~E II. -1 <p < 0. 
If i E {T + l,T + 2,. . . } we have 

y(i)<(l-X)[K-c]+X 

[ 
;(l+PJX-pK+g ‘5 

/&.=T a(k) j=k W~lsKup2,~l 
F(j+1,uJ) 1 

As a result 

sup 
iG{Tfl,T-k2,... } 

y(i)<(l-X)[K-61+X i(l+P)K-PK+ 
[ { 

;(l+P)K-r}] 

=(l-X)[K-E]fX[K-E]=K-E<K. 

Thus, 
SUP y(i) < K. 

G{T+l,T+2,...} 

NowifiE{T-v,...,T}wehave 

(2.17) 

~(~)<(~-X)[K-E]+X i(l+P)K-pK ’ 1 
and so 

SUP 
iE{T-v,...,T} 

y(i)<(l-X)[K-E]+X a-;p K<(l-X)[K-c]+XK=K. [ 1 
Thus, 

. 
SUP y(i) < K. (2.18) 

iE{T-v,...,T} 

Combining (2.17) and (2.18) gives 

SUP y(i) < K 
GN(T-v) 

a contradiction. 

Theorem 1.1 implies that there exists y E 0 with y = Nr y + N2 y. Hence, for i E {T + l,T + 
2,. . . } we have 

so the proof is complete in this case. 

CASE II. IpI > 1. 
Choose a positive integer T > max{v, kc} sufficiently large so that 

Then there exists e > 0 with e < K/2 and 
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Let E, C, U, and p* be as in Case I with 

and 

3 1+p 
4 P 

(-) K- ;y(T+~h i E {T-v,...,T}, 

Nl y(i) = 
3 lfp 
4 P 

(-) K-;Y@+T), in {T+l,...}, 

0, i E {T - v, . . . , T}, 
1 i+~-1 1 m 
; k& ao g F(~‘+l,~(j+l-a)), i~U’+-l,...l. 

3 k 
A slight modification of the argument in Case I guarantees’ that N = Nl + Nz : 8 + C is 
a continuous, condensing map, and any solution y to (2.13)~ satisfies 1~1~ # K. Now apply 
Theorem 1.1. I 

In Theorem 2.1 it is possible to replace (2.6) with the less restrictive condition: there exists 

(2.19) 

The proof is essentially the same as the proof in Theorem 2.1; the only difference is that we 
write Nz in Case I as 

f 0, i E {T - v,. . . , T}, 

and Ns is Case II as 
i E {T-v,...,T}, 

i E {T + 1,. . . }. 

Thus, we have the following theorem. 

THEOREM 2.2. Suppose (2.2)-(2.5) are satisfied. Also, assume there exists K > 0 and IGO E 
{ 1,2, . . . } with (2.19) holding. Then (2.1) h as a bounded nonoscillatory solution. 

REMARK 2.1. It is possible to use the ideas in [5, Section 211 to discuss when the solution y in 
Theorem 2.1 (or Theorem 2.2) lies in M +, etc. (see [5] for the appropriate definitions). We leave 
the details to the reader. 
REMARK 2.2. Minor adjustments are only necessary to discuss higher-order equations. Again 
the details are left to the reader. 
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