Isometric properties of elementary operators

Fernanda Botelho, James Jamison *
Department of Mathematical Sciences, The University of Memphis, Memphis, TN 38152, United States

A R T I C L E I N F O

Article history:

Received 7 April 2009
Accepted 14 August 2009
Available online 17 September 2009
Submitted by C.K. Li
AMS classification:
Primary 30D55
Secondary 30D05

Keywords:
Hilbert-Schmidt class
Elementary operators
Adjoint
n-Isometries

Abstract

We consider the elementary operator \mathcal{L}, acting on the HilbertSchmidt Class $\mathcal{C}_{2}(\mathcal{H})$, given by $\mathcal{L}(T)=A T B$, with A and B bounded operators on \mathcal{H}. We establish necessary and sufficient conditions on A and B for \mathcal{L} to be a 2-isometry or a 3-isometry. We derive sufficient conditions for \mathcal{L} to be an n-isometry. We also give several illustrative examples involving the weighted shift operator on l_{2} and the multiplication operator on the Dirichlet space.

© 2009 Elsevier Inc. All rights reserved.

1. Introduction

An operator T on a complex Hilbert space \mathcal{H} is a 2 -isometry if $T^{* 2} T^{2}-2 T^{*} T+I d=0$, where Id denotes the identity operator. As noted by Richter, in [8], the notion of " 2 -isometry" generalizes in a natural way the well-known definition of isometry. Moreover, these generalized isometries do not belong to well studied classes such as contractions and subnormal operators and can be used as dilations for a class of expanding operators. The class of 2 -isometries has been generalized by Agler and Stankus in a series of papers, see [1-3]. In these papers, the authors indicate connections between m-isometries and the theory of periodic distributions and also a disconjugacy theory for a subclass of Toeplitz operators studied in [6]. For other results on this class see [7].

In this paper, we characterize those elementary operators of length 1, acting on the Hilbert-Schmidt Class, that are 2 -isometries or 3 -isometries. We also propose sufficient conditions for an elementary operator to be an m-isometry.

[^0]The Hilbert-Schmidt Class, $\mathcal{C}_{2}(\mathcal{H})$, is the class of bounded operators S defined on a separable complex Hilbert space \mathcal{H}, satisfying the following condition: If $\left\{e_{n}: n \in \mathbb{N}\right\}$ is an orthonormal basis of \mathcal{H}, then

$$
\sum_{n \in \mathbb{N}}\left\|S e_{n}\right\|^{2}<+\infty
$$

where $\|\cdot\|$ is a norm on \mathcal{H} coming from the inner product. We recall that $\mathcal{C}_{2}(\mathcal{H})$ equipped with the inner product $\langle S, T\rangle=\operatorname{tr}\left(S T^{*}\right)$, where tr denotes the trace operator, is a Hilbert space, see [9]. Furthermore, $\mathcal{C}_{2}(\mathcal{H})$ is an ideal of the algebra of all bounded operators on \mathcal{H}.

Let A and B be bounded operators on \mathcal{H} and \mathcal{L}, a bounded operator on $\mathcal{C}_{2}(\mathcal{H})$, defined by $\mathcal{L}(T)=A T B$. The adjoint \mathcal{L}^{*} is given by $\mathcal{L}^{*}(T)=A^{*} T B^{*}$. We recall the definition of n-isometry, as given in [1].

Definition 1.1. If L is a bounded operator on a Hilbert space, then L is said to be an n-isometry if and only if

$$
\sum_{k=0}^{n}(-1)^{n-k}\binom{n}{k} L^{* k} L^{k} \equiv 0
$$

Moreover, L is said to be a strict n-isometry if it is an n-isometry but not an $(n-1)$-isometry.
In particular, if L is a 2 -isometry or a 3-isometry, then it must satisfy the operator equation

$$
\begin{equation*}
L^{* 2} L^{2}-2 L^{*} L+I d \equiv 0 \tag{1}
\end{equation*}
$$

or

$$
\begin{equation*}
L^{* 3} L^{3}-3 L^{* 2} L^{2}+3 L^{*} L-I d \equiv 0, \quad \text { respectively. } \tag{2}
\end{equation*}
$$

Every 1 -isometry (that is L satisfying $L^{*} L=I d$) is an n-isometry. It follows from (1) and (2) that every 2 -isometry is a 3 -isometry. More generally it is true that an n-isometry is also an m-isometry for all $m \geqslant n$, cf. [7].

2. Examples: weighted shifts

Although our primary interest is elementary operators on $\mathcal{C}_{2}(\mathcal{H})$ which are either 2 or 3 isometric, we now give some illustrative examples of higher order isometries. Not surprisingly, our first list of examples comes from weighted shifts. In this section we show that certain weighted shifts on l_{2} and weighted multiplications on the Dirichlet space are strict n-isometries.

2.1. Weighted shifts on l_{2}

We recall that a weighted shift S on a separable complex Hilbert space with orthonormal basis $\left\{e_{n}\right\}$ is given by (cf. [10,11])

$$
S\left(x_{1}, x_{2}, x_{3}, \ldots\right)=\left(0, x_{1} \omega_{1}, x_{2} \omega_{2}, \ldots\right) \text { or } S\left(\sum_{k=1}^{\infty} x_{k} e_{k}\right)=\sum_{k=1}^{\infty} \omega_{k} x_{k} e_{k+1} \text {, }
$$

where $\left\{\omega_{n}\right\}_{n}$ denotes a bounded sequence of complex numbers. The adjoint of S, relative to the l_{2} inner product, is given by

$$
S^{*}\left(x_{1}, x_{2}, x_{3}, \ldots\right)=\left(x_{2} \bar{\omega}_{1}, x_{3} \bar{\omega}_{2}, \ldots\right)
$$

The shift S is a 2-isometry if and only if $\left|\omega_{i}\right|^{2}\left|\omega_{i+1}\right|^{2}-2\left|\omega_{i}\right|^{2}+1=0$, for all $i=1,2,3, \ldots$. We conclude that solutions of this system of equations must satisfy $\left|\omega_{i}\right|^{2} \geqslant 1$, for all i. A weighted shift is a 2-isometry if and only if $\left|\omega_{1}\right|^{2} \geqslant 1,1 \leqslant\left|\omega_{i}\right|^{2}<2(i>1)$, and $\left|\omega_{i}\right|^{2}=2-\frac{1}{\left|\omega_{i-1}\right|^{2}}(i>1)$. An example of a sequence of weights that yields a strict 2-isometry is $\left|\omega_{n}\right|^{2}=\frac{n+1}{n}$.

The following operator is an example of a weighted shift which is a strict 3 -isometry. Let $T\left(x_{1}, x_{2}, \ldots\right)$ $=\left(0, x_{1} \omega_{1}, x_{2} \omega_{2}, \ldots\right)$. with

$$
\begin{equation*}
\left|\omega_{j}\right|^{2}=\frac{j^{2}-3 j+3}{j^{2}-5 j+7} \quad(j \geqslant 1) \tag{3}
\end{equation*}
$$

This shift is not a 2-isometry, since $\left|\omega_{1}\right|^{2}\left|\omega_{2}\right|^{2}-2\left|\omega_{1}\right|^{2}+1=\frac{1}{3}-\frac{2}{3}+1 \neq 0$. It is a straightforward computation to check that the sequence of weights given satisfies the following system of equations:

$$
\left|\omega_{i}\right|^{2}\left|\omega_{i+1}\right|^{2}\left|\omega_{i+2}\right|^{2}-3\left|\omega_{i}\right|^{2}\left|\omega_{i+1}\right|^{2}+3\left|\omega_{i}\right|^{2}-1=0, \quad \text { for } i=1,2, \ldots
$$

This system gives necessary and sufficient conditions for a weighted shift on l_{2} to be a 3-isometry. Along the same lines we can write the more general situation. A necessary and sufficient condition for a sequence of weights $\left\{\omega_{n}\right\}_{n=1,2,3, \ldots}$ to define a weighted shift which is an n-isometry is that it must satisfy the infinite dimensional system

$$
\begin{equation*}
\sum_{k=1}^{n}(-1)^{n-k}\binom{n}{k} \prod_{j=0}^{k-1}\left|\omega_{t+j}\right|^{2}+(-1)^{n}=0, \quad t=1,2, \ldots \tag{4}
\end{equation*}
$$

Remark 2.1. Though, in particular cases, we were able to find a solution of (4), we were unable to determine a general scheme that establishes the existence of such solutions.

2.2. Weighted multiplication operators on Dirichlet space

We consider the Dirichlet space \mathcal{D} consisting of all analytic functions $f:\{z \in \mathbb{C}:|z|<1\} \rightarrow \mathbb{C}$ such that

$$
f(z)=\sum_{k=0}^{\infty} \hat{f}(k) z^{k} \text { and } \sum_{k=0}^{\infty}(k+1)|\hat{f}(k)|^{2}<\infty
$$

This space, equipped with the inner product

$$
\begin{equation*}
\langle f, g\rangle=\sum_{k=0}^{\infty}(k+1) \hat{f}(k) \overline{\hat{g}(k)} \tag{5}
\end{equation*}
$$

is a Hilbert space. It is well known that multiplication by z is a 2-isometry on the Dirichlet space, see [8]. We give a proof of this fact by just using basic techniques, avoiding heavy machinery from Function Theory. We denote by M the multiplication by z on \mathcal{D},

$$
M(f)(z)=\sum_{k=0}^{\infty} \hat{f}(k) z^{k+1}
$$

It is easy to check that the adjoint operator is given by

$$
M^{*}(f)(z)=\sum_{k=1}^{\infty} \frac{k+1}{k} \hat{f}(k) z^{k-1}
$$

We first note that M is not an isometry. If f is the constant function equal to a (nonzero), then $\|f\|_{\mathcal{D}}^{2}=$ $|a|^{2}$ and $\|M(f)\|_{\mathcal{D}}^{2}=2|a|^{2}$. Now, we verify that M is a 2 -isometry. We have that

$$
M^{*} M(f)(z)=\sum_{k=1}^{\infty} \frac{k+1}{k} \hat{f}(k-1) z^{k-1}
$$

and

$$
M^{* 2} M^{2}(f)(z)=\sum_{k=1}^{\infty} \frac{k+1}{k} \frac{k+2}{k+1} \hat{f}(k-1) z^{k-1}
$$

Therefore

$$
\left(M^{* 2} M^{2}-2 M^{*} M+I d\right)(f)(z)=\sum_{k=1}^{\infty}\left(\frac{k+1}{k} \frac{k+2}{k+1}-2 \frac{k+1}{k}+1\right) \hat{f}(k-1) z^{k-1}=0 .
$$

We now consider the weighted multiplication by z on the Dirichlet space, the operator W defined as follows:

$$
W(f)(z)=\sum_{k=0}^{\infty} \alpha_{k} \hat{f}(k) z^{k+1}
$$

with a bounded sequence of scalars. The adjoint of W, relatively to the inner product in (5), is given by

$$
W^{*}(f)(z)=\sum_{k=0}^{\infty} \frac{k+2}{k+1} \hat{f}(k+1) \bar{\alpha}_{k} z^{k} .
$$

Therefore W is a 3 -isometry provided that

$$
\begin{aligned}
& \frac{j+2}{j+1} \cdot \frac{j+3}{j+2} \cdot \frac{j+4}{j+3}\left|\alpha_{j+2}\right|^{2}\left|\alpha_{j+1}\right|^{2}\left|\alpha_{j}\right|^{2}-3 \cdot \frac{j+2}{j+1} \cdot \frac{j+3}{j+2}\left|\alpha_{j+1}\right|^{2}\left|\alpha_{j}\right|^{2} \\
& \quad+3 \cdot \frac{j+2}{j+1}\left|\alpha_{j}\right|^{2}-1=0, \quad \text { for } j \geqslant 0
\end{aligned}
$$

We observe that W is a strict 3-isometry provided we set $\left|\alpha_{j}\right|^{2}=\frac{j+1}{j+2} \cdot \frac{j^{2}-3 j+3}{j^{2}-5 j+7}$ (for all j), by using the sequence of weights consider in (3).

3. Characterization of $\mathbf{2}$-isometries on $\mathcal{C}_{2}(\mathcal{H})$

In this section we return to the Hilbert space $\mathcal{C}_{2}(\mathcal{H})$ and we give necessary and sufficient conditions on the fixed operators A and B under which the elementary operator \mathcal{L}, given by $\mathcal{L}(T)=A T B$, is a 2 isometry. Our characterization follows from a theorem of Fong and Sourour [4], a special case of which is stated below. This theorem was also used by Magajna [5] to characterize subnormal elementary operators on $\mathcal{C}_{2}(\mathcal{H})$.

We consider $\left\{A_{i}\right\}_{i=1, \ldots, m}$ and $\left\{B_{i}\right\}_{i=1, \ldots, m}$ bounded operators on the Hilbert space \mathcal{H} and Φ an operator acting on $\mathcal{C}_{2}(\mathcal{H})$ as follows:

$$
\Phi(T)=A_{1} T B_{1}+A_{2} T B_{2}+\cdots+A_{m} T B_{m},
$$

with not all the A_{i} equal to 0 .
Theorem 3.1 [4]. If $\Phi(T)=0$, for all $T \in \mathcal{C}_{2}(\mathcal{H})$, then $\left\{B_{1}, B_{2}, \ldots, B_{m}\right\}$ is linearly dependent. Furthermore, if $\left\{B_{1}, B_{2}, \ldots, B_{n}\right\}(n \leqslant m)$ is a maximal linearly independent subset of $\left\{B_{1}, B_{2}, \ldots, B_{m}\right\}$, and ($c_{k j}$) denote constants for which

$$
B_{j}=\sum_{k=1}^{n} c_{k j} B_{k}, \quad n+1 \leqslant j \leqslant m,
$$

then $\Phi(T)=0$, for all $T \in \mathcal{C}_{2}(\mathcal{H})$, if and only if

$$
A_{k}=-\sum_{j=n+1}^{m} c_{k j} A_{j}, \quad 1 \leqslant k \leqslant n
$$

The following theorem gives necessary and sufficient conditions for the elementary operator $\mathcal{L}(T)=$ ATB, on $\mathcal{C}_{2}(\mathcal{H})$ to be a 2 -isometry.

Theorem 3.2. If A and B are bounded operators on a Hilbert space \mathcal{H} and \mathcal{L} is an operator on $\mathcal{C}_{2}(\mathcal{H})$ given by $\mathcal{L}(T)=A T B$, then \mathcal{L} is a 2-isometry if and only if one of the following two conditions holds:

1. There exists a positive real number μ so that $A^{*} A=\mu$ Id and $\sqrt{\mu} B^{*}$ is a 2-isometry, or
2. there exists a positive real number μ so that $B B^{*}=\mu$ Id and $\sqrt{\mu} A$ is a 2-isometry.

Proof. We first observe that whenever $A^{*} A$ is a scalar multiple of the $I d$, i.e. $A^{*} A=\mu I d$, then μ must be a positive real number. If $A^{*} A=\mu I d$, then equation (1) reduces to

$$
\mu^{2} B^{2} B^{* 2}-2 \mu B B^{*}+I d \equiv 0
$$

which implies that $\sqrt{\mu} B^{*}$ is a 2 -isometry. Similar technique applies whenever $B B^{*}$ is a scalar multiple of the identity. Now, we show that conditions 1 and 2 in the statement of the theorem follow from the assumption that \mathcal{L} is a 2 -isometry.

If $\mathcal{L}^{* 2} \mathcal{L}^{2}-2 \mathcal{L}^{*} \mathcal{L}+I d \equiv 0$, then for every $T \in \mathcal{C}_{2}(\mathcal{H})$, we have that

$$
A^{* 2} A^{2} T B^{2} B^{* 2}-2 A^{*} A T B B^{*}+T=0 .
$$

We apply Fong-Sourour's theorem, with $B_{i}=B^{i-1} B^{* i-1}$ (for $i=1,2,3$), $A_{1}=I d, A_{2}=-2 A^{*} A$, and $A_{3}=A^{* 2} A^{2}$. Since Theorem 3.1 asserts that $\left\{B_{1}, B_{2}, B_{3}\right\}$ is linearly dependent, we consider the following cases:
a. If $\left\{B_{1}\right\}$ is a maximal linearly independent subset of $\left\{B_{1}, B_{2}, B_{3}\right\}$, then $B_{2}=\mu B_{1}$ and $B_{3}=\mu^{2} B_{1}$. This implies that μ is a positive real number. Furthermore, we also have that $I d=2 \mu A^{*} A-$ $\mu^{2} A^{* 2} A^{2}$, or equivalently $\sqrt{\mu} A$ is a 2 -isometry.
b. If $\left\{B_{1}, B_{2}\right\}$ is a maximal linearly independent subset of $\left\{B_{1}, B_{2}, B_{3}\right\}$, then $B_{3}=c_{13} B_{1}+c_{23} B_{2}$. From this we get that $A_{1}=I d=-c_{13} A^{* 2} A^{2}$, and $-2 A^{*} A=-c_{23} A^{* 2} A^{2}$. This implies that $c_{13}<$ $0, A^{* 2} A^{2}=-\frac{1}{c_{13}} I d$ and $A^{*} A=-\frac{c_{23}}{2 c_{13}} I d$. Therefore $c_{23}^{2}+4 c_{13}=0$ and $\sqrt{-\frac{c_{23}}{2 c_{13}} B^{*}}$ is a 2-isometry.
c. If $\left\{B_{1}, B_{3}\right\}$ is a maximal linearly independent subset of $\left\{B_{1}, B_{2}, B_{3}\right\}$, then $B_{2}=B B^{*}=\lambda_{1} B_{1}+$ $\lambda_{3} B_{3}$. This implies that $\lambda_{3} \neq 0$, otherwise the first case applies. Therefore $B_{3}=\frac{1}{\lambda_{3}} B_{2}-\frac{\lambda_{1}}{\lambda_{3}} B_{1}$. The analysis done in the previous case applies.

4. Characterization of 3-isometries on $\mathcal{C}_{\mathbf{2}}(\mathcal{H})$

In this section we give a characterization of 3-isometries for operators of the form $\mathcal{L}(T)=A T B$. This characterization is somewhat surprising since the 3-isometry case entails a broader lists of possibilities than for the 2-isometry case.

Theorem 4.1. If A and B are bounded operators on a Hilbert space \mathcal{H} and \mathcal{L} is an operator on $\mathcal{C}_{2}(\mathcal{H})$ given by $\mathcal{L}(T)=A T B$, then \mathcal{L} is a 3-isometry if and only if one of the following three conditions holds:

1. There exists a positive real number μ so that $A^{*} A=\mu I d$ and $\sqrt{\mu} B^{*}$ is a 3-isometry, or
2. there exists a positive real number μ so that $B B^{*}=\mu$ Id and $\sqrt{\mu} A$ is a 3-isometry, or
3. there exists a nonzero real number λ so that λA and $\frac{1}{\lambda} B^{*}$ are 2 -isometries.

Proof. If \mathcal{L} is a 3-isometry, then for every $T \in \mathcal{C}_{2}(\mathcal{H})$, we have that

$$
\begin{equation*}
A^{* 3} A^{3} T B^{3} B^{* 3}-3 A^{* 2} A^{2} T B^{2} B^{* 2}+3 A^{*} A T B B^{*}-T=0 . \tag{6}
\end{equation*}
$$

We set the terminology as in Theorem 3.1: $B_{i}=B^{i-1} B^{* i-1}(i=1,2,3,4), A_{1}=-I d, A_{2}=3 A^{*} A, A_{3}=$ $-3 A^{* 2} A^{2}$, and $A_{4}=A^{* 3} A^{3}$. It follows from Theorem 3.1 that $S=\left\{B_{1}, B_{2}, B_{3}, B_{4}\right\}$ is linearly dependent. We then consider the following cases:

1. If $\left\{B_{1}\right\}$ is a maximal linearly independent subset of S, then there exists a positive real number μ so that $B_{2}=\mu I d$. This implies that $B_{3}=\mu^{2} I d, B_{4}=\mu^{3} I d$. Therefore Eq. (6) implies that $\sqrt{\mu} A$ is a 3-isometry.
2. If $\left\{B_{1}, B_{2}\right\}$ is a maximal linearly independent subset of S, then there exist scalars c_{13}, c_{23}, c_{14}, and c_{24} so that $B_{3}=c_{13} B_{1}+c_{23} B_{2}$ and $B_{4}=c_{14} B_{1}+c_{24} B_{2}$. It follows that $c_{14}=c_{13} c_{23}$ and $c_{24}=c_{13}+c_{23}^{2}$.
Theorem 3.1 asserts that
$\left\{\begin{array}{l}A_{1}=-c_{13} A_{3}-c_{14} A_{4} \\ A_{2}=-c_{23} A_{3}-c_{24} A_{4} .\end{array}\right.$
This implies that $c_{13} \neq 0$ and the system has the unique solution given by
$A^{* 3} A^{3}=-\frac{3}{c_{13}} A^{*} A-\frac{c_{23}}{c_{13}^{2}} I d$
and
$A^{* 2} A^{2}=-\frac{c_{23}}{c_{13}} A^{*} A-\frac{c_{24}}{3 c_{13}^{2}} I d$.
We are reduced to consider that $c_{23} \neq 0$. Otherwise we would have that $3 A^{*} A=-c_{13} A^{* 3} A^{3}$ and $-3 c_{13} A^{* 2} A^{2}=I d$. This leads to an absurd.
Multiplying (8) with A^{*} from the left and A from the right, we get

$$
\begin{aligned}
A^{* 3} A^{3} & =-\frac{c_{23}}{c_{13}}\left[-\frac{c_{23}}{c_{13}} A^{*} A-\frac{c_{24}}{3 c_{13}^{2}} I d\right]-\frac{c_{24}}{3 c_{13}^{2}} A^{*} A \\
& =\frac{2 c_{23}^{2}-c_{13}}{3 c_{13}^{2}} A^{*} A+\frac{c_{23} c_{24}}{3 c_{13}^{3}} I d .
\end{aligned}
$$

Comparing this with (7) we get
$2\left(c_{23}^{2}+4 c_{13}\right) A^{*} A=-\frac{c_{23}}{c_{13}}\left(c_{23}^{2}+4 c_{13}\right) I d$.
If $c_{23}^{2}+4 c_{13} \neq 0$, then $A^{*} A=-\frac{c_{23}}{2 c_{13}} I d$ and $\sqrt{-\frac{c_{23}}{2 c_{13}}} B^{*}$ is a 3-isometry.
It remains to assume that $c_{23}^{2}+4 c_{13}=0$. In such case, we have
$A^{* 2} A^{2}=\frac{1}{c_{13}} I d-\frac{c_{23}}{c_{13}} A^{*} A$
and
$B^{2} B^{* 2}=c_{13} I d+c_{23} B B^{*}$.
The relation $c_{23}^{2}+4 c_{13}=0$ implies that $A^{* 2} A^{2}=-\frac{4}{c_{23}^{2}} I d+\frac{4 c_{23}}{c_{23}^{2}} A^{*} A$ and $B^{2} B^{* 2}=-\frac{c_{23}^{2}}{4} I d+$ $c_{23} B B^{*}$. Hence $\sqrt{\frac{c_{23}}{2}} A$ and $\sqrt{\frac{2}{c_{23}}} B^{*}$ are 2-isometries.
3. If $\left\{B_{1}, B_{3}\right\}$ is a maximal linearly independent subset of S then $B_{2}=c_{12} I d+c_{32} B_{3}$ (with $c_{32} \neq 0$). Therefore $B_{3}=\frac{1}{c_{32}} B_{2}-\frac{c_{12}}{c_{32}}$ Id and case $\mathbf{2}$ applies.
4. If $\left\{B_{1}, B_{4}\right\}$ is a maximal linearly independent subset of S then $B_{2}=c_{12} I d+c_{42} B_{4}$ (with $c_{42} \neq 0$) and $B_{3}=c_{13} I d+c_{43} B_{4}$. We then conclude that $B_{4}=\frac{1}{c_{42}} B_{2}-\frac{c_{12}}{c_{42}} I d$ and $B_{3}=\left(c_{13}-\frac{c_{12} c_{43}}{c_{42}}\right) I d+$ $\frac{c_{43}}{c_{42}} B_{2}$. If $c_{43} \neq 0$, then the previous cases apply. If $c_{43}=0$, then $B_{3}=c_{13}$ Id, $B_{4}=c_{13} B_{2}$, hence $B_{2}=c_{12}$ Id $+c_{42} c_{13} B_{2}$ or $\left(1-c_{42} c_{13}\right) B_{2}=c_{12}$ Id. If $1-c_{42} c_{13} \neq 0$, then B_{2} is a scalar multiple of the Id and case $\mathbf{1}$ applies. If $1-c_{42} c_{13}=0$, then $c_{12}=0$. This implies that $B_{2}=c_{42} B_{4}$ with $c_{42} \neq 0$. Hence $B_{4}=\frac{1}{c_{42}} B_{2}$ and case $\mathbf{2}$ applies.
5. If $\left\{B_{1}, B_{2}, B_{3}\right\}$ is a maximal linearly independent subset of S, then $B_{4}=c_{14} I d+c_{24} B_{2}+c_{34} B_{3}$. Therefore $A_{1}=-c_{14} A_{4}, A_{2}=-c_{24} A_{4}$, and $A_{3}=-c_{34} A_{4}$. These three last equations imply that c_{14} is nonzero, $A^{*} A=-\frac{c_{24}}{3 c_{14}} I d$ and $\sqrt{-\frac{c_{24}}{3 c_{14}}} B^{*}$ is a 3-isometry.
6. If $\left\{B_{1}, B_{2}, B_{4}\right\}$ is a maximal linearly independent subset of S, then $A_{1}=-c_{13} A_{3}, A_{2}=-c_{23} A_{3}$, $c_{13} \neq 0$, which implies $A^{*} A=-\frac{c_{23}}{3 c_{13}} I d$ and $\sqrt{-\frac{c_{23}}{3 c_{13}}} B^{*}$ is a 3-isometry.
7. If $\left\{B_{1}, B_{3}, B_{4}\right\}$ is a maximal linearly independent subset of S, then $A_{1}=-c_{12} A_{2}, c_{12} \neq 0$, thus $A^{*} A=\frac{1}{3 c_{12}} I d$ and $\sqrt{\frac{1}{3 c_{12}}} B^{*}$ is a 3-isometry.
8. If $\left\{B_{2}, B_{3}, B_{4}\right\}$ is a maximal linearly independent subset of S, then $A_{2}=-c_{21} A_{1}$, which implies $A^{*} A=\frac{c_{21}}{3} I d$ and $\sqrt{-\frac{c_{21}}{3}} B^{*}$ is a 3-isometry.

Conversely, it is straightforward to show that the conditions on A and B stated in the theorem imply that \mathcal{L} is a 3-isometry. This concludes the proof.

The next corollary follows from the previous theorem and from the fact that an n-isometry is also an m-isometry for all $m \geqslant n$, cf. [7].

Corollary 4.1. If A and B^{*} are 2 -isometries then \mathcal{L} is an n-isometry for all $n \geqslant 3$.
If A and B^{*} are strict 2 -isometries then \mathcal{L} is a strict 3 -isometry.

5. The \boldsymbol{n}-isometry case

In this section we state sufficient conditions for an elementary operator on $\mathcal{C}_{2}(\mathcal{H})$, given by $\mathcal{L}(T)=$ ATB, to be an n-isometry. First we state a preliminary result that follows directly from the definition (1.1) and shows how the isometric properties of \mathcal{L} imply isometric properties on the defining operators.

Proposition 5.1. Let A and B be bounded operators on a Hilbert space \mathcal{H} and \mathcal{L}, an operator on $\mathcal{C}_{2}(\mathcal{H})$, given by $\mathcal{L}(T)=A T B$. If \mathcal{L} is an n-isometry and μ is a positive real number, then

1. If $A^{*} A=\mu$ Id then $\sqrt{\mu} B^{*}$ is an n-isometry.
2. If $B B^{*}=\mu$ Id, then $\sqrt{\mu} A$ is an n-isometry.

The next proposition shows how isometric properties of the defining operators affect the isometric properties of \mathcal{L}.

Proposition 5.2. If A is a 2 -isometry and B^{*} is an n-isometry, then \mathcal{L} is an $(n+1)$-isometry.
Proof. We assume that A is a 2 -isometry and B^{*} is an n-isometry. We have that $A^{* k} A^{k}=k A^{*} A-(k-$ 1)Id for $k=2,3, \ldots$ Since

$$
B^{n} B^{* n}=-\sum_{i=0}^{n-1}(-1)^{n-i}\binom{n}{i} B^{i} B^{* i}
$$

then

$$
\begin{aligned}
B^{n+1} B^{* n+1} & =n(-1)^{n+1} I d-\sum_{i=1}^{n-1}(-1)^{n-i}\binom{n+1}{i}(n-i) B^{i} B^{* i} \\
& =\sum_{i=0}^{n-1}(-1)^{n-i+1}\binom{n+1}{i}(n-i) B^{i} B^{* i} .
\end{aligned}
$$

This implies

$$
\begin{aligned}
& \sum_{k=0}^{n+1}(-1)^{n+1-k}\binom{n+1}{k} \mathcal{L}^{* k} \mathcal{L}^{k}(T) \\
&= \sum_{k=0}^{1}(-1)^{n+1-k}\binom{n+1}{k} A^{* k} A^{k} T B^{k} B^{* k}+\sum_{k=2}^{n-1}(-1)^{n+1-k}\binom{n+1}{k} A^{* k} A^{k} T B^{k} B^{* k} \\
&+\sum_{k=n}^{n+1}(-1)^{n+1-k}\binom{n+1}{k} A^{* k} A^{k} T B^{k} B^{* k} \\
&=(-1)^{n+1} T+(-1)^{n}(n+1) A^{*} A T B B^{*}+\sum_{k=2}^{n-1}(-1)^{n+1-k}\binom{n+1}{k} k A^{*} A T B^{k} B^{* k} \\
&-\sum_{k=2}^{n-1}(-1)^{n+1-k}(k-1)\binom{n+1}{k} T B^{k} B^{* k}+\left(n^{2}+n\right) \sum_{k=0}^{n-1}(-1)^{n-k}\binom{n}{k} A^{*} A T B^{k} B^{* k} \\
&-\left(n^{2}-1\right) \sum_{k=0}^{n-1}(-1)^{n-k}\binom{n}{k} T B^{k} B^{* k} \\
&+\left[(n+1) A^{*} A-n I d\right] T\left\{\begin{array}{c}
\sum_{k=0}^{n-1}(-1)^{n-k+1}(n-k)\binom{n+1}{k} B^{k} B^{* k} \\
=
\end{array}\right. \\
& \sum_{k=0}^{n-1} c_{(0, k)} T B^{k} B^{* k}+\sum_{k=0}^{n-1} c_{(1, k)}\binom{n+1}{k} A^{*} A T B^{k} B^{* k},
\end{aligned}
$$

with

$$
\begin{aligned}
& c_{(0,0)}=(-1)^{n+1}-\left(n^{2}-1\right)(-1)^{n}+n^{2}(-1)^{n}=0, \\
& c_{(0,1)}=-\left(n^{2}-1\right)(-1)^{n-1}\binom{n}{1}-n(-1)^{n}\binom{n+1}{1}(n-1)=0, \\
& c_{(0, k)}=(-1)^{n-k}\left[(k-1)\binom{n+1}{k}-\left(n^{2}-1\right)\binom{n}{k}+n\binom{n+1}{k}(n-k)\right]=0 \quad(k \geqslant 2), \\
& c_{(1,0)}=(-1)^{n}\left[\left(n^{2}+n\right)-(n+1) n\right]=0, \\
& c_{(1,1)}=(-1)^{n}\left[(n+1)-\left(n^{2}+n\right) n+(n+1)\binom{n+1}{1}(n-1)=0,\right. \\
& c_{(1, k)}=(-1)^{n-k+1}\left[\binom{n+1}{k} k-n(n+1)\binom{n}{k}+(n+1)\binom{n+1}{k}(n-k)\right]=0 \quad(k \geqslant 2) .
\end{aligned}
$$

This completes the proof.
Remark 5.1. If we assume that A is an n-isometry and B^{*} is a 2 -isometry, then we also have that \mathcal{L} is an ($n+1$)-isometry. Furthermore, we believe that a more general result holds. More precisely, given p and q some positive integers, if λA is a p-isometry (with λ a nonzero real number) and $\frac{1}{\lambda} B^{*}$ a q-isometry, then \mathcal{L} is a $(p+q-1)$-isometry.

Acknowledgments

The authors are grateful to a referee for a very careful reading of the paper and many helpful suggestions.

References

[1] J. Agler, M. Stankus, m-Isometric transformations of Hilbert space I, Integral Equations Operator Theory 21 (4) (1995) 383-429.
[2] J. Agler, M. Stankus, m-Isometric transformations of Hilbert space II, Integral Equations Operator Theory 23 (1) (1995) 1-48.
[3] J. Agler, M. Stankus, m-Isometric transformations of Hilbert space III, Integral Equations Operator Theory 24 (4) (1996) 379-421.
[4] C.K. Fong, A.R. Sourour, On the operator identity $\sum A_{k} X B_{k}=0$, Canad. J. Math. XXXI (1979) 845-857.
[5] B. Magajna, On subnormality of generalized derivations and tensor products, Bull. Austral. Math. Soc. 31 (1985) 235-243.
[6] B. Monvel, V. Guilleman, The Spectral Theory of Toeplitz Operators, Princeton University Press, Princeton, NJ, 1981.
[7] L. Patton, M. Robbins, Composition operators that are M-isometries, Houston J. Math. 31 (1) (2005) 255-267.
[8] S. Richter, A representation theorem for cyclic analytic two-isometries, Trans. Amer. Math. Soc. 328 (1) (1991) 325-349.
[9] J. Ringrose, Compact Non-selfadjoint Operators, Van Nostrand, London, 1971.
[10] A. Shields, Weighted shift operators and analytic function theory, Math. Surveys AMS 13 (1974) 51-122.
[11] Q. Stout, The numerical range of a weighted shift, Proc. Amer. Math. Soc. 88 (3) (1983) 495-502.

[^0]: * Corresponding author.

 E-mail addresses: mbotelho@memphis.edu (F. Botelho), jjamison@memphis.edu (J. Jamison).

