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We consider the elementary operator L, acting on the Hilbert–

Schmidt Class C2(H), given by L(T) = ATB, with A and B bounded

operators on H. We establish necessary and sufficient conditions

on A and B for L to be a 2-isometry or a 3-isometry. We derive

sufficient conditions for L to be an n-isometry.We also give several

illustrative examples involving the weighted shift operator on l2
and the multiplication operator on the Dirichlet space.
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1. Introduction

An operator T on a complex Hilbert space H is a 2-isometry if T∗2T2 − 2T∗T + Id = 0, where

Id denotes the identity operator. As noted by Richter, in [8], the notion of “2-isometry" generalizes

in a natural way the well-known definition of isometry. Moreover, these generalized isometries do

not belong to well studied classes such as contractions and subnormal operators and can be used as

dilations for a class of expanding operators. The class of 2-isometries has been generalized by Agler

and Stankus in a series of papers, see [1–3]. In these papers, the authors indicate connections between

m-isometries and the theory of periodic distributions and also a disconjugacy theory for a subclass of

Toeplitz operators studied in [6]. For other results on this class see [7].

In this paper,we characterize those elementary operators of length 1, acting on theHilbert–Schmidt

Class, that are 2-isometries or 3-isometries. We also propose sufficient conditions for an elementary

operator to be anm-isometry.
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The Hilbert–Schmidt Class, C2(H), is the class of bounded operators S defined on a separable

complex Hilbert space H, satisfying the following condition: If {en : n ∈ N} is an orthonormal basis

of H, then∑
n∈N

‖Sen‖2 < +∞,

where‖ · ‖ is anormonH coming fromthe innerproduct.Werecall thatC2(H)equippedwith the inner

product 〈S, T〉 = tr(ST∗), where tr denotes the trace operator, is a Hilbert space, see [9]. Furthermore,

C2(H) is an ideal of the algebra of all bounded operators on H.

LetA andB be boundedoperators onH andL, a boundedoperator on C2(H), definedbyL(T) = ATB.

The adjoint L∗ is given by L∗(T) = A∗TB∗. We recall the definition of n-isometry, as given in [1].

Definition 1.1. If L is a bounded operator on a Hilbert space, then L is said to be an n-isometry if and

only if

n∑
k=0

(−1)n−k

(
n

k

)
L∗kLk ≡ 0.

Moreover, L is said to be a strict n-isometry if it is an n-isometry but not an (n − 1)-isometry.

In particular, if L is a 2-isometry or a 3-isometry, then it must satisfy the operator equation

L∗2L2 − 2L∗L + Id ≡ 0, (1)

or

L∗3L3 − 3L∗2L2 + 3L∗L − Id ≡ 0, respectively. (2)

Every 1-isometry (that is L satisfying L∗L = Id) is an n-isometry. It follows from (1) and (2) that every

2-isometry is a 3-isometry. More generally it is true that an n-isometry is also an m-isometry for all

m� n, cf. [7].

2. Examples: weighted shifts

Although our primary interest is elementary operators on C2(H) which are either 2 or 3 isometric,

we now give some illustrative examples of higher order isometries. Not surprisingly, our first list of

examples comes from weighted shifts. In this section we show that certain weighted shifts on l2 and

weighted multiplications on the Dirichlet space are strict n-isometries.

2.1. Weighted shifts on l2

We recall that a weighted shift S on a separable complex Hilbert space with orthonormal basis {en}
is given by (cf. [10,11])

S(x1, x2, x3, . . .) = (0, x1ω1, x2ω2, . . .) or S

⎛⎝ ∞∑
k=1

xkek

⎞⎠ =
∞∑
k=1

ωkxkek+1,

where {ωn}n denotes a bounded sequence of complex numbers. The adjoint of S, relative to the l2 inner

product, is given by

S∗(x1, x2, x3, . . .) = (x2ω̄1, x3ω̄2, . . .).

The shift S is a 2-isometry if and only if |ωi|2|ωi+1|2 − 2|ωi|2 + 1 = 0, for all i = 1, 2, 3, . . .. We

conclude that solutions of this system of equations must satisfy |ωi|2 � 1, for all i. A weighted shift is a

2-isometry if and only if |ω1|2 � 1, 1� |ωi|2 < 2 (i > 1), and |ωi|2 = 2 − 1

|ωi−1|2 (i > 1). An example

of a sequence of weights that yields a strict 2-isometry is |ωn|2 = n+1
n

.
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The followingoperator is anexampleofaweightedshiftwhich isa strict3-isometry. LetT(x1, x2, . . .)= (0, x1ω1, x2ω2, . . .). with

|ωj|2 = j2 − 3j + 3

j2 − 5j + 7
(j � 1). (3)

This shift is not a2-isometry, since |ω1|2|ω2|2 − 2|ω1|2 + 1 = 1
3

− 2
3

+ 1 /= 0. It is a straightforward

computation to check that the sequence of weights given satisfies the following system of equations:

|ωi|2|ωi+1|2|ωi+2|2 − 3|ωi|2|ωi+1|2 + 3|ωi|2 − 1 = 0, for i = 1, 2, . . .

This system gives necessary and sufficient conditions for a weighted shift on l2 to be a 3-isometry.

Along the same lines we canwrite themore general situation. A necessary and sufficient condition for

a sequence of weights {ωn}n=1,2,3,... to define a weighted shift which is an n-isometry is that it must

satisfy the infinite dimensional system

n∑
k=1

(−1)n−k

(
n

k

) k−1∏
j=0

|ωt+j|2 + (−1)n = 0, t = 1, 2, . . . (4)

Remark 2.1. Though, in particular cases, we were able to find a solution of (4), we were unable to

determine a general scheme that establishes the existence of such solutions.

2.2. Weighted multiplication operators on Dirichlet space

We consider the Dirichlet space D consisting of all analytic functions f : {z ∈ C : |z| < 1} → C
such that

f (z) =
∞∑
k=0

f̂ (k)zk and

∞∑
k=0

(k + 1)|f̂ (k)|2 < ∞.

This space, equipped with the inner product

〈f , g〉 =
∞∑
k=0

(k + 1)f̂ (k)̂g(k), (5)

is a Hilbert space. It is well known that multiplication by z is a 2-isometry on the Dirichlet space, see

[8].We give a proof of this fact by just using basic techniques, avoiding heavymachinery from Function

Theory. We denote byM the multiplication by z on D,

M(f )(z) =
∞∑
k=0

f̂ (k)zk+1.

It is easy to check that the adjoint operator is given by

M∗(f )(z) =
∞∑
k=1

k + 1

k
f̂ (k)zk−1.

We first note thatM is not an isometry. If f is the constant function equal to a (nonzero), then ‖f‖2
D =

|a|2 and ‖M(f )‖2
D = 2|a|2. Now, we verify that M is a 2-isometry. We have that

M∗M(f )(z) =
∞∑
k=1

k + 1

k
f̂ (k − 1)zk−1,

and

M∗2M2(f )(z) =
∞∑
k=1

k + 1

k

k + 2

k + 1
f̂ (k − 1)zk−1.
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Therefore

(M∗2M2 − 2M∗M + Id)(f )(z) =
∞∑
k=1

(
k + 1

k

k + 2

k + 1
− 2

k + 1

k
+ 1

)
f̂ (k − 1)zk−1 = 0.

We now consider the weighted multiplication by z on the Dirichlet space, the operator W defined as

follows:

W(f )(z) =
∞∑
k=0

αkf̂ (k)z
k+1,

with a bounded sequence of scalars. The adjoint ofW , relatively to the inner product in (5), is given by

W∗(f )(z) =
∞∑
k=0

k + 2

k + 1
f̂ (k + 1)ᾱkz

k.

ThereforeW is a 3-isometry provided that

j + 2

j + 1
· j + 3

j + 2
· j + 4

j + 3
|αj+2|2|αj+1|2|αj|2 − 3 · j + 2

j + 1
· j + 3

j + 2
|αj+1|2|αj|2

+ 3 · j + 2

j + 1
|αj|2 − 1 = 0, for j � 0.

We observe thatW is a strict 3-isometry provided we set |αj|2 = j+1

j+2
· j2−3j+3

j2−5j+7
(for all j), by using the

sequence of weights consider in (3).

3. Characterization of 2-isometries on C2(H)

In this sectionwe return to the Hilbert space C2(H) andwe give necessary and sufficient conditions

on the fixed operators A and B under which the elementary operator L, given by L(T) = ATB, is a 2-

isometry. Our characterization follows from a theorem of Fong and Sourour [4], a special case of which

is stated below. This theorem was also used by Magajna [5] to characterize subnormal elementary

operators on C2(H).
We consider {Ai}i=1,...,m and {Bi}i=1,...,m bounded operators on the Hilbert space H and Φ an

operator acting on C2(H) as follows:

Φ(T) = A1TB1 + A2TB2 + · · · + AmTBm,

with not all the Ai equal to 0.

Theorem3.1 [4]. IfΦ(T) = 0, for all T ∈ C2(H), then {B1, B2, . . . , Bm} is linearly dependent. Furthermore,

if {B1, B2, . . . , Bn} (n�m) is a maximal linearly independent subset of {B1, B2, . . . , Bm}, and (ckj) denote
constants for which

Bj =
n∑

k=1

ckjBk , n + 1� j �m,

then Φ(T) = 0, for all T ∈ C2(H), if and only if

Ak = −
m∑

j=n+1

ckjAj , 1� k � n.

The following theoremgivesnecessaryandsufficientconditions for theelementaryoperatorL(T) =
ATB, on C2(H) to be a 2-isometry.



F. Botelho, J. Jamison / Linear Algebra and its Applications 432 (2010) 357–365 361

Theorem 3.2. If A and B are bounded operators on a Hilbert space H and L is an operator on C2(H) given
by L(T) = ATB, then L is a 2-isometry if and only if one of the following two conditions holds:

1. There exists a positive real number μ so that A∗A = μId and
√

μB∗ is a 2-isometry, or

2. there exists a positive real number μ so that BB∗ = μId and
√

μA is a 2-isometry.

Proof. We first observe that whenever A∗A is a scalar multiple of the Id, i.e. A∗A = μId, then μ must

be a positive real number. If A∗A = μId, then equation (1) reduces to

μ2B2B∗2 − 2μBB∗ + Id ≡ 0,

which implies that
√

μB∗ is a 2-isometry. Similar technique applies whenever BB∗ is a scalar multiple

of the identity. Now, we show that conditions 1 and 2 in the statement of the theorem follow from the

assumption that L is a 2-isometry.

If L∗2L2 − 2L∗L + Id ≡ 0, then for every T ∈ C2(H), we have that

A∗2A2TB2B∗2 − 2A∗ATBB∗ + T = 0.

We apply Fong–Sourour’s theorem, with Bi = Bi−1B∗i−1 (for i = 1, 2, 3), A1 = Id, A2 = −2A∗A, and
A3 = A∗2A2. Since Theorem3.1 asserts that {B1, B2, B3} is linearly dependent,we consider the following

cases:

a. If {B1} is a maximal linearly independent subset of {B1, B2, B3}, then B2 = μB1 and B3 = μ2B1.

This implies that μ is a positive real number. Furthermore, we also have that Id = 2μA∗A −
μ2A∗2A2, or equivalently

√
μA is a 2-isometry.

b. If {B1, B2} is a maximal linearly independent subset of {B1, B2, B3}, then B3 = c13B1 + c23B2.

From this we get that A1 = Id = −c13A
∗2A2, and −2A∗A = −c23A

∗2A2. This implies that c13 <

0,A∗2A2 = − 1
c13

Id andA∗A = − c23
2c13

Id. Therefore c223 + 4c13 = 0 and
√− c23

2c13
B∗ is a 2-isometry.

c. If {B1, B3} is a maximal linearly independent subset of {B1, B2, B3}, then B2 = BB∗ = λ1B1 +
λ3B3. This implies that λ3 /= 0, otherwise the first case applies. Therefore B3 = 1

λ3
B2 − λ1

λ3
B1.

The analysis done in the previous case applies. �

4. Characterization of 3-isometries on C2(H)

In this sectionwe give a characterization of 3-isometries for operators of the formL(T) = ATB. This

characterization is somewhat surprising since the 3-isometry case entails a broader lists of possibilities

than for the 2-isometry case.

Theorem 4.1. If A and B are bounded operators on a Hilbert space H and L is an operator on C2(H) given
by L(T) = ATB, then L is a 3-isometry if and only if one of the following three conditions holds:

1. There exists a positive real number μ so that A∗A = μId and
√

μB∗ is a 3-isometry, or

2. there exists a positive real number μ so that BB∗ = μId and
√

μA is a 3-isometry, or

3. there exists a nonzero real number λ so that λA and 1
λ
B∗ are 2-isometries.

Proof. If L is a 3-isometry, then for every T ∈ C2(H), we have that

A∗3A3TB3B∗3 − 3A∗2A2TB2B∗2 + 3A∗ATBB∗ − T = 0. (6)

We set the terminology as in Theorem 3.1: Bi = Bi−1B∗i−1 (i = 1, 2, 3, 4), A1 = −Id, A2 = 3A∗A, A3 =
−3A∗2A2, and A4 = A∗3A3. It follows from Theorem 3.1 that S = {B1, B2, B3, B4} is linearly dependent.

We then consider the following cases:
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1. If {B1} is a maximal linearly independent subset of S, then there exists a positive real number μ
so that B2 = μId. This implies that B3 = μ2Id, B4 = μ3Id. Therefore Eq. (6) implies that

√
μA

is a 3-isometry.

2. If {B1, B2} is a maximal linearly independent subset of S, then there exist scalars c13, c23, c14,

and c24 so that B3 = c13B1 + c23B2 and B4 = c14B1 + c24B2. It follows that c14 = c13c23 and

c24 = c13 + c223.

Theorem 3.1 asserts that{
A1 = −c13A3 − c14A4

A2 = −c23A3 − c24A4.

This implies that c13 /= 0 and the system has the unique solution given by

A∗3A3 = − 3

c13
A∗A − c23

c213
Id (7)

and

A∗2A2 = − c23

c13
A∗A − c24

3c213
Id. (8)

We are reduced to consider that c23 /= 0. Otherwise we would have that 3A∗A = −c13A
∗3A3

and −3c13A
∗2A2 = Id. This leads to an absurd.

Multiplying (8) with A∗ from the left and A from the right, we get

A∗3A3 = − c23

c13

[
− c23

c13
A∗A − c24

3c213
Id

]
− c24

3c213
A∗A

= 2c223 − c13

3c213
A∗A + c23c24

3c313
Id.

Comparing this with (7) we get

2
(
c223 + 4c13

)
A∗A = − c23

c13

(
c223 + 4c13

)
Id.

If c223 + 4c13 /= 0, then A∗A = − c23
2c13

Id and
√− c23

2c13
B∗ is a 3-isometry.

It remains to assume that c223 + 4c13 = 0. In such case, we have

A∗2A2 = 1

c13
Id − c23

c13
A∗A

and

B2B∗2 = c13Id + c23BB
∗.

The relation c223 + 4c13 = 0 implies that A∗2A2 = − 4

c223
Id + 4c23

c223
A∗A and B2B∗2 = − c223

4
Id +

c23BB
∗. Hence

√
c23
2
A and

√
2
c23

B∗ are 2-isometries.

3. If {B1, B3} is amaximal linearly independent subset of S thenB2 = c12Id + c32B3 (with c32 /= 0).

Therefore B3 = 1
c32

B2 − c12
c32

Id and case 2 applies.

4. If {B1, B4} is amaximal linearly independent subset of S then B2 = c12Id + c42B4 (with c42 /= 0)

andB3 = c13Id + c43B4.Wethenconclude thatB4 = 1
c42

B2 − c12
c42

IdandB3 =
(
c13 − c12c43

c42

)
Id +

c43
c42

B2. If c43 /= 0, then the previous cases apply. If c43 = 0, then B3 = c13Id, B4 = c13B2, hence

B2 = c12Id + c42c13B2 or (1 − c42c13)B2 = c12Id. If 1 − c42c13 /= 0, then B2 is a scalarmultiple

of the Id and case 1 applies. If 1 − c42c13 = 0, then c12 = 0. This implies that B2 = c42B4 with

c42 /= 0. Hence B4 = 1
c42

B2 and case 2 applies.
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5. If {B1, B2, B3} is a maximal linearly independent subset of S, then B4 = c14Id + c24B2 + c34B3.

Therefore A1 = −c14A4, A2 = −c24A4, and A3 = −c34A4. These three last equations imply that

c14 is nonzero, A∗A = − c24
3c14

Id and
√− c24

3c14
B∗ is a 3-isometry.

6. If {B1, B2, B4} is a maximal linearly independent subset of S, then A1 = −c13A3, A2 = −c23A3,

c13 /= 0, which implies A∗A = − c23
3c13

Id and
√− c23

3c13
B∗ is a 3-isometry.

7. If {B1, B3, B4} is a maximal linearly independent subset of S, then A1 = −c12A2, c12 /= 0, thus

A∗A = 1
3c12

Id and
√

1
3c12

B∗ is a 3-isometry.

8. If {B2, B3, B4} is a maximal linearly independent subset of S, then A2 = −c21A1, which implies

A∗A = c21
3
Id and

√
− c21

3
B∗ is a 3-isometry.

Conversely, it is straightforward to show that the conditions on A and B stated in the theorem imply

that L is a 3-isometry. This concludes the proof. �

The next corollary follows from the previous theorem and from the fact that an n-isometry is also

anm-isometry for allm� n, cf. [7].

Corollary 4.1. If A and B∗ are 2-isometries then L is an n-isometry for all n� 3.
If A and B∗ are strict 2-isometries then L is a strict 3-isometry.

5. The n-isometry case

In this sectionwe state sufficient conditions for an elementary operator on C2(H), given by L(T) =
ATB, to be an n-isometry. First we state a preliminary result that follows directly from the definition

(1.1) and showshow the isometric properties ofL imply isometric properties on the defining operators.

Proposition 5.1. Let A and B be bounded operators on a Hilbert space H and L, an operator on C2(H),
given by L(T) = ATB. If L is an n-isometry and μ is a positive real number, then

1. If A∗A = μId then
√

μB∗ is an n-isometry.
2. If BB∗ = μId, then

√
μA is an n-isometry.

The next proposition shows how isometric properties of the defining operators affect the isometric

properties of L.

Proposition 5.2. If A is a 2-isometry and B∗ is an n-isometry, then L is an (n + 1)-isometry.

Proof. We assume that A is a 2-isometry and B∗ is an n-isometry. We have that A∗kAk = kA∗A − (k −
1)Id for k = 2, 3, . . . Since

BnB∗n = −
n−1∑
i=0

(−1)n−i

(
n

i

)
BiB∗i

then

Bn+1B∗n+1 = n(−1)n+1Id −
n−1∑
i=1

(−1)n−i

(
n + 1

i

)
(n − i)BiB∗i

=
n−1∑
i=0

(−1)n−i+1

(
n + 1

i

)
(n − i)BiB∗i.
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This implies∑n+1
k=0(−1)n+1−k

(
n + 1

k

)
L∗kLk(T)

= ∑1
k=0(−1)n+1−k

(
n + 1

k

)
A∗kAkTBkB∗k + ∑n−1

k=2(−1)n+1−k

(
n + 1

k

)
A∗kAkTBkB∗k

+ ∑n+1
k=n(−1)n+1−k

(
n + 1

k

)
A∗kAkTBkB∗k

= (−1)n+1T + (−1)n(n + 1)A∗ATBB∗ + ∑n−1
k=2(−1)n+1−k

(
n + 1

k

)
kA∗ATBkB∗k

− ∑n−1
k=2(−1)n+1−k(k − 1)

(
n + 1

k

)
TBkB∗k + (n2 + n)

∑n−1
k=0(−1)n−k

(
n

k

)
A∗ATBkB∗k

−(n2 − 1)
∑n−1

k=0(−1)n−k

(
n

k

)
TBkB∗k

+ [
(n + 1)A∗A − nId

]
T

{∑n−1
k=0(−1)n−k+1(n − k)

(
n + 1

k

)
BkB∗k

}
= ∑n−1

k=0 c(0,k)TB
kB∗k + ∑n−1

k=0 c(1,k)

(
n + 1

k

)
A∗ATBkB∗k ,

with

c(0,0) = (−1)n+1 − (n2 − 1)(−1)n + n2(−1)n = 0,

c(0,1) = −(n2 − 1)(−1)n−1

(
n

1

)
− n(−1)n

(
n + 1

1

)
(n − 1) = 0,

c(0,k) = (−1)n−k

[
(k − 1)

(
n + 1

k

)
− (n2 − 1)

(
n

k

)
+ n

(
n + 1

k

)
(n − k)

]
= 0 (k � 2),

c(1,0) = (−1)n[(n2 + n) − (n + 1)n] = 0,

c(1,1) = (−1)n[(n + 1) − (n2 + n)n + (n + 1)

(
n + 1

1

)
(n − 1) = 0,

c(1,k) = (−1)n−k+1

[(
n + 1

k

)
k − n(n + 1)

(
n

k

)
+ (n + 1)

(
n + 1

k

)
(n − k)

]
= 0 (k � 2).

This completes the proof. �

Remark 5.1. If we assume that A is an n-isometry and B∗ is a 2-isometry, then we also have that L
is an (n + 1)-isometry. Furthermore, we believe that a more general result holds. More precisely,

given p and q some positive integers, if λA is a p-isometry (with λ a nonzero real number) and
1
λ
B∗ a q-isometry, then L is a (p + q − 1)-isometry.
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