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The planetary exospheres are poorly known in their outer parts, since the neutral densities are low com-
pared with the instruments detection capabilities. The exospheric models are thus often the main source
of information at such high altitudes. We present a new way to take into account analytically the addi-
tional effect of the radiation pressure on planetary exospheres. In a series of papers, we present with an
Hamiltonian approach the effect of the radiation pressure on dynamical trajectories, density profiles and
escaping thermal flux. Our work is a generalisation of the study by Bishop and Chamberlain (Bishop, J.,
Chamberlian, J.W. [1989]. Icarus 81, 145–163). In this first paper, we present the complete solutions of
particles trajectories, which are not conics, under the influence of the solar radiation pressure with some
assumptions. This problem is similar to the classical Stark problem (Stark, J. [1914]. Ann. Phys. 348,
965–982). This problem was largely tackled in the literature and more specifically, recently by Lantoine
and Russell (Lantoine, G., Russell, R.P. [2011]. Celest. Mech. Dynam. Astron. 109, 333–366) and by
Biscani and Izzo (Biscani, F., Izzo, D. [2014]. Mon. Not. R. Astron. Soc. 439, 810–822) as we will discuss
in this paper. We give here the full set of solutions for the motion of a particle (in our case for an atom
or a molecule), i.e. the space coordinates and the time solution for bounded and unbounded trajectories
in terms of Jacobi elliptic functions. We thus provide here the complete set of solutions for this so-call
Stark effect (Stark, J. [1914]. Ann. Phys. 348, 965–982) in terms of Jacobi elliptic functions (Jacobi, C.G.
J. [1829]. Fundamenta nova theoriae functionum ellipticarum. Sumtibus fratrum), which may be used
to model the trajectories of particles in planetary exospheres.

� 2015 The Authors. Published by Elsevier Inc. This is an open access article under the CC BY license
(http://creativecommons.org/licenses/by/4.0/).
1. Introduction

The exosphere is the upper layer of any planetary atmosphere:
it is a quasi-collisionless medium where the particle trajectories
are more dominated by gravity than by collisions. Above the exo-
base, the lower limit of the exosphere, the Knudsen number
(Ferziger and Kaper, 1972) becomes large, collisions become
scarce, the distribution function cannot be considered as Maxwel-
lian any more and, gradually, the trajectories of particles are essen-
tially determined by the gravitation and radiation pressure by the
Sun. The trajectories of particles, subject to the gravitational force,
are completely solved with the equations of motion, but it is not
the case with the radiation pressure (Bishop and Chamberlain,
1989).

In the absence of radiation pressure, the exospheric particles
can be distinguished into three categories according to their
trajectories:

� the escaping particles come from the exobase and have a posi-
tive mechanical energy such as escape from the gravitational
well of the planet because their velocity is larger than the
escape velocity. These particles are responsible for the Jeans’
escape (Jeans, 1916) or thermal escape: supposing a Maxwellian
distribution for atoms or molecules at the exobase, it always
exists a piece of its distribution exceeding the escape velocity.
Theirs trajectories describe an hyperbola crossing only once
the exobase,

� the ballistic particles come from the exobase as well but have a
negative mechanical energy. They are gravitationally bounded
to the planet. They reach a maximum altitude and fall down
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on the exobase if they do not undergo collisions. Theirs trajec-
tories describe an ellipse crossing twice the exobase: their peri-
apsis is below the exobase but their apoapsis is above,

� the satellite particles have elliptic trajectories as well but they
never cross the exobase. They also have a negative mechanical
energy but their periapsis is above the exobase: they orbit along
an entire ellipse around the planet without crossing the exo-
base. The satellite particles result in their major part from bal-
listic particles undergoing few collisions mainly near the
exobase (Beth et al. (2014)). Thus, they cannot exist in collision-
less models of the exosphere.

The radiation pressure disturbs the conics (ellipses or hyperbo-
las) described by the particles under the influence of gravity. The
resonant scattering of solar photons leads to a total momentum
transfer from the photon to the atom or molecule (Burns et al.,
1979). In the non-relativistic case, assuming an isotropic reemis-
sion of the solar photon, this one is absorbed in the Sun direction
and scattered with the same probability in all directions. For a suf-
ficient flux of photons in the absorption wavelength range, the ree-
mission in average does not induce any momentum transfer from
the atom/molecule to the photon. The momentum variation, each
second, between before and after the scattering imparts a force,
the radiation pressure.

Bishop and Chamberlain (1989) proposed to analyse its effect
on the structure of planetary exospheres. In particular, they high-
lighted analytically the ‘‘tail” phenomenon at Earth: the density
for atomic Hydrogen, which is sensitive to the Lyman-a photons,
is higher in the nightside direction than in the dayside direction
in the Earth corona. Nevertheless, their work was limited only to
the Sun-planet axis, with a null component assumed for the angu-
lar momentum around the Sun-planet axis. We thus generalise
here their work to a full 3D calculation, in order to investigate
the influence of the radiation pressure on the trajectories (this
paper) by presenting results from Celestial Mechanics in order to
be transposed to this study, as well as the density profiles, the
escape flux and the planetary atmosphere stability (following
works).

This problem is similar to the so-called Stark effect (Stark,
1914): the effect of a constant electric field on the atomic Hydro-
gen’s electron. Its study can be transposed to celestial mechanics
in order to describe the orbits of artificial and natural satellites
in the perturbed (e.g. by the radiation pressure force) Two-Body
Problem with the assumption that the Sun is fixed in the planetary
frame (i.e. no stellar gravity, no centrifugal force and no Coriolis
force). A recent description of the Stark effect solutions was already
given by Lantoine and Russell (2011) in terms of Jacobi elliptic
functions, by Biscani and Izzo (2014) in terms of Weierstrassian
fomulations and by Pellegrini et al. (2014) in terms of Taylor series.

Lantoine and Russell (2011) provided the analytical solutions of
all trajectories in the planar case (2D coordinates and time solu-
tion). Moreover, they proposed the necessary transformations to
pass from the 2D case to the 3D one. However, they omitted the
analytical solution for the motion around the Sun-planet axis for
unbounded trajectories, even if the methodology is given. The
knowledge of this solution is essential to us: in order to estimate
the escaping density and flux from the exobase or take into
account the asymmetries of the exobase for future works. Indeed,
at a given position in space, the density of escaping or unbounded
particles depends on the number of particles (1) coming from the
exobase and (2) passing through the point of interest. Thus, we
shall identify which trajectory fills both (1) and (2) conditions.
Finally, the Jacobi elliptic functions are often defined by two ways
(see Appendix A) in the literature and computational software. One
should be careful about the definition used. In this paper, we use
the second definition and explain our choice (see Appendix A).
The study proposed by Biscani and Izzo (2014) used the Weier-
strassian formulations to solve the motions for bounded and
unbounded trajectories and to find periodic motions. This formula-
tion is pretty inconvenient for numerical transpositions: the
Weierstrass function, its derivative and its inverse are defined in
the complex plane. This leads to time consuming operations to
describe the trajectory of a particle according to the initial
conditions.

On another hand, the motion can be approached numerically by
developing the equations of motion in Taylor series (Pellegrini
et al., 2014) but this leads to some issues for high eccentricities
(Hatten and Russell, 2015): as pointed out, some mean anomaly
values may cause the divergence of the series. By the way,
Hatten and Russell (2015) compared recently the three methods
and their computing efficiencies as well.

In this paper, based on the same formalism as Bishop and
Chamberlain (1989), we provide the keys to introduce our future
works whose purpose is to describe the influence of the radiation
pressure on planetary exospheres by a Hamiltonian way. In this
first paper, we provide the complete exact 3D and time solutions
of the Stark effect (and its celestial mechanics analogue) for any
initial condition and for both bounded and unbounded trajectories,
whose some of them are not explicitly given in the literature up to
now and simplify some formulations in order to describe the
motion of the exospheric atoms and molecules.

Section 2 describes the formalism used, before the Sections
3/4/5 provide the equations of motion and time. We then discuss
about circular orbits in Section 6, whilst a comparison with previ-
ous works is given in Section 7, before we conclude in Section 8.

2. Model

In this work, we decide to study the effect of the radiation pres-
sure on atomic Hydrogen in particular. Nevertheless, this formal-
ism can be applied to any species subject to this force or to the
interplanetary dust. We model the radiation pressure by a constant
acceleration a coming from the Sun. According to Bishop (1991),
this acceleration depends on the line centre solar Lyman-a flux
f 0, in 1011 photons cm�2 s�1 Å�1:

a ¼ 0:1774 f 0 ðcm s�2Þ ð1Þ
In spherical coordinates, the Hamiltonian of one Hydrogen atom

can be written in the spherical coordinate system:

Hðr;h;/;pr ;ph;p/; tÞ ¼
p2
r

2m
þ p2

h

2mr2
þ p2

/

2mr2 sin2 h
�GMm

r
þmar cosh

ð2Þ
with r the distance from the planet, h the angle between the zenith
and the Sun direction, / the angle with respect to the ecliptic plane,
pr; ph and p/ the conjugate momenta. �GMm=r represents the grav-
itational potential and mar cos h the potential energy from the radi-
ation pressure acceleration a. An example of trajectory of a H atom
subject to the radiation pressure is given in the Fig. 1.

This problem is similar to the classical Stark effect (Stark, 1914):
a constant electric field (here the radiation pressure) is applied to
an electron (here an Hydrogen atom) attached to a proton (here
the planet). Both systems are equivalent because the force applied
by the proton (the planet) to the electron (the Hydrogen atom), i.e.
the electrostatic force, varies in r�2 as the gravitational force from
the planet on the Hydrogen atom. Thus, we adopt the same formal-
ism as Sommerfeld (1934) and use the parabolic coordinates. We
use the transformation:

u ¼ r þ x ¼ rð1þ cos hÞ
w ¼ r � x ¼ rð1� cos hÞ ð3Þ



Radiation pressure
acceleration

Fig. 1. Example of the trajectory of a Hydrogen atom in the Earth (central sphere) exosphere assuming that the Sun is placed at the infinity and so is fixed in the planetary
frame. Left panel: view from the Sun. Middle panel: view from the side. Right panel: view from the top. The position of the Sun is given by the opposite direction of the arrow.
The initial position is provided by the black cross and the final one by the blue cross. Without the radiation pressure, the trajectory must be the red ellipse. The trajectory with
radiation pressure is clearly far from the one without. (For interpretation of the references to colour in this figure legend, the reader is referred to the web version of this
article.)
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with u and w always positive. Consequently, the Hamiltonian
becomes:

Hðu;w;pu;pw;p/Þ ¼
2up2

u þ 2wp2
w

mðuþwÞ þ p2
/

2muw
� 2GMm

uþw
þma

u�w
2

ð4Þ
independent from t and /.

According to hamiltonian canonical relations, we have:

pu ¼ mðuþwÞ
4u

du
dt

¼ pr

2
�

ffiffiffiffi
w
u

r
ph

uþw

pw ¼ mðuþwÞ
4w

dw
dt

¼ pr

2
þ

ffiffiffiffi
u
w

r
ph

uþw

p/ ¼ muw
d/
dt

ð5Þ
2.1. Constants of the motion

In this new system of coordinates, we study this Hamiltonian.
First, H is independent from t explicitly. H is a conserved quantity
along the time. In this case study, the gravity and the radiation
pressure are conservative forces, i.e. they depend only on the posi-
tion of the particle. Thus, the mechanical energy E is conserved and
corresponds to the Hamiltonian H. Moreover, as H is independent
from /, according to canonical relations:

dp/

dt
¼ �dH

d/
¼ 0 ð6Þ

Thus, p/ is another constant of the motion. This corresponds to the
component of the angular momentum along the x-axis. Indeed, the
gravitation does not affect the evolution of this one because this is a
central force and the radiation pressure acts only along the x-axis
and thus do not affect either in this direction. Once E and p/ defined,
the Eq. (4) can be rewritten:

2muE� 4up2
u �

p2
/

u
�m2au2 þ 2GMm2

¼ �2mwEþ 4wp2
w þ p2

/

w
�m2aw2 � 2GMm2 ð7Þ
The left hand side is a function dependent only on u and pu, the
right hand side depends only on w and pw. As both functions are
equal and independent, they are equal to a constant A, a separation
constant:

A ¼ 2muE� 4up2
u �

p2
/

u
�m2au2 þ 2GMm2

¼ �2mwEþ 4wp2
w þ p2

/

w
�m2aw2 � 2GMm2 ð8Þ

A is similar to the norm of the Laplace–Runge–Lenz vector
(Redmond, 1964) which is proportional to the eccentricity, con-
stant in the Keplerian problem.

The motion possesses three constants: E;A and p/. The Eq. (8)
allows to express pu (respectively pw) as a functions of E;A; p/

and u (respectively w):

pu ¼ �
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
�P3ðuÞ
4u2

r

pw ¼ �
ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
Q3ðwÞ
4w2

r ð9Þ

with (see Bishop and Chamberlain (1989) Eq. (6) or Lantoine and
Russell (2011), Eq. (89a) with P3ðu2Þ ¼ �PgðgÞ and Eq. (89b) with
Q3ðw2Þ ¼ PnðnÞ)
P3ðuÞ ¼ mau3 � 2mEu2 � ð2GMm2 � AÞuþ p2

/

Q3ðwÞ ¼ maw3 þ 2mEw2 þ ð2GMm2 þ AÞw� p2
/

ð10Þ
2.2. Effective potentials

We have already introduced the Hamiltonian H of the system.
We can extend the approach according to Hamilton–Jacobi
equations:

@S

@qi
¼ pi

@S

@t
¼ �H

ð11Þ

where S is the Hamilton’s principal function or action. This function
depends on initial conditions (as u0;w0;/0 and t0) and the actual
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Fig. 2. Representation in dimensionless units of the shape of both potentials VU

(corresponding to VU , blue line) and VW (corresponding to VW , red line) for a set of
E;A and p/ values. The motion is possible only in the area where the potential is
below the mechanical energy E, represented by the black horizontal line. The
different roots of P3 and Q3 are displayed and correspond to the intersection of the
potentials with the horizontal black line. U� is the dimensionless value referring to
u� (cf. Section 2.7, Table 1). Notice that VW will cross only once the energy level E
for too high or too low E values. (For interpretation of the references to colour in
this figure legend, the reader is referred to the web version of this article.)
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position of the particle (as u;w;/ and t). As previously demon-
strated, H ¼ E and p/ are constants. Thus,

@S

@/
¼ p/

@S

@t
¼ �E

ð12Þ

and leads to:

S ¼ �Eðt � t0Þ þ p/ð/� /0Þ þ Ŝ½u0;w0;u;w; E;p/� ð13Þ

with Ŝ the part of the action independent from t0; t;/0 and /.
Moreover, the action Ŝ can be separated into two parts: one

written as a function of u and pu coordinates, the other one with
w and pw. By definition, according to the Hamilton–Jacobi equa-
tions, we have:

@S

@u
¼ @Ŝ

@u
¼ pu

@S

@t
¼ @Ŝ

@w
¼ pw

ð14Þ

with pu (resp. pw) a function only of u (resp.w), assuming E;A and p/

values already fixed by initial conditions. Then, we can separate
again the action, leading to:

Ŝ½u;w;u0;w0; E;p/� ¼ Su½u; E;A;p/� þ Sw½w; E;A;p/� ð15Þ

@Su

@u
¼ pu

@Sw

@w
¼ pw

ð16Þ

According to the Eq. (9), we have the following relations:

dSu

du

� �2

¼ m
2

E� p2
/

2mu2 þ
GMm
u

� A
2mu

�mau
2

 !

¼ m
2
ðE� VuðuÞÞ > 0

dSw

dw

� �2

¼ m
2

E� p2
/

2mw2 þ
GMm
w

þ A
2mw

þmaw
2

 !

¼ m
2
ðE� VwðwÞÞ > 0

ð17Þ

with

VuðuÞ ¼
p2
/

2mu2 �
GMm
u

þ A
2mu

þmau
2

VwðwÞ ¼ p2
/

2mw2 �
GMm
w

� A
2mw

�maw
2

ð18Þ

Vu and Vw are effective potentials applied in u and w directions
(represented in the Fig. 2). These potentials play key roles for the
motion because they constrained the motion in u and w directions
independently. For the motion of the particle, we must respect two
conditions: E > VuðuÞ and E > VwðwÞ. These conditions are analo-
gous to:

P3ðuÞ < 0 and Q3ðwÞ > 0 ð19Þ
These both conditions are more restrictive than the usual E > Ep

where Ep is the potential energy.

2.3. Study of P3

P3 is a polynomial of degree 3 with limu!þ1P3ðuÞ ¼ þ1.
This polynomial possesses three roots, whose one is real at least.
As P3ð0Þ ¼ p2

/ > 0, one of these roots is real negative, according
to intermediate value theorem since limu!�1P3ðuÞ ¼ �1.
Nevertheless, the motion occurs for positive u values, and we know
this motion exists. It implies there is an interval in Rþ such as
P3 < 0 (otherwise, there is no motion in u-direction, not possible
physically, cf. Eq. (19)). To comply with this last condition, both
other roots are real and positive. In summary, P3 has three real
roots: one negative and two positive.

We call each root u0;u� and uþ such as u0 < 0 < u� < uþ and the
u-motion is restricted to u 2 ½u�;uþ� (U 2 ½U�;Uþ� in terms of
dimensionless quantities, as can be seen in the Fig. 2).

2.4. Study of Q3

Q3 is a polynomial of degree 3 with limw!þ1Q3ðwÞ ¼ þ1. This
polynomial possesses three roots, whose one is real at least. As
Q3ð0Þ ¼ �p2

/ < 0, one of these roots is real positive, according to
intermediate value theorem since limw!þ1Q3ðwÞ ¼ þ1. Neverthe-
less, the motion occurs for positive w values. We have restrictions
on both other roots: they must be both real positive, both real neg-
ative or both complex conjugates.

In the case where the three roots are real positive, we call each
root w0;w� and wþ such as 0 < w� < wþ < w0 and the motion is
restricted to w 2 ½w�;wþ� [ ½w0;þ1½ (as can be seen in the Fig. 2
with the dimensionless quantities, cf. Section 2.6).

In the case with one positive root and both other complex or
real negative, we call each root w0 (the positive one), w� and wþ
(keep the same order as previously defined if they are real) such
as the motion is restricted to w 2 ½w0;þ1½ only (½W0;þ1½ in terms
of dimensionless quantities).

2.5. Restriction on the motion

Each constant value of u or w defines a paraboloid in three
dimensions. For each interval, constrained by fixed values of u
and w, the motion will be contained between the paraboloids
defined by these limit values as shown in the Fig. 3.

For the u-motion, this is always limited by two paraboloids
defined by u ¼ u� and u ¼ uþ as shown by the blue area in the
Fig. 3 (left panel). Similarly, for the w-motion, there are two cases:
the motion is constrained between one paraboloid (w ¼ w0) and
infinity or between two paraboloids (w ¼ w� and w ¼ wþ). Both
cases are represented by the red area in the Fig. 3 (right panel).



Fig. 3. Representation of the available space for the motion. Left panel: the blue area corresponds to the allowed region for the u-motion. Right panel: the red area
corresponds to the allowed region for thew-motion. The regions are limited by paraboloids (parabolas here by projection). The Sun location is shown with a yellow circle. (For
interpretation of the references to colour in this figure legend, the reader is referred to the web version of this article.)
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2.6. Summary of restrictions

As previously demonstrated, the motion is constrained in speci-
fic areas of the 3D space. The motion is always between two para-
boloids due to restrictions on u but it can be constrained between
two other paraboloids or only one regarding w. Thus, the motion is
constrained by four paraboloids or three, opened to infinity as
shown on the Fig. 4 by the green area.

Nevertheless, there is at this point no other information on the
exact motion of the particle. As shown in the Fig. 4 (right panel),
the particle seems to explore all the area when its motion is
restricted by four paraboloids. This is simply an observation.
How can we prove that without any information on the exact
motion of the particle? According to the Poincaré recurrence theo-
rem (Poincaré, 1890), if the dynamical trajectory of the autono-
mous system evolves in a finite volume of the phase space, then
in any domain, as small as it could be, there are at least two points
which belong to the same trajectory. Here, the motion is con-
strained in space with the four paraboloids but also in velocity
because pu and pw are finite values and p/ is constant. All the posi-
tions in this part of the phase space can belong to the same trajec-
tory. This is also linked to the Kolmogorov–Arnold–Moser theorem
(Kolmogorov, 1954; Moser, 1962; Arnol’d, 1963): here, the pertur-
bation (the radiation pressure) affects the periodic motion (the
ellipse, bounded trajectories) but it can remain quasi-periodic. As
we will see, the global motion is not periodic but u and w motions
possess their own period according to another parameter. The glo-
bal motion can be periodic only if all periods are commensurable.
As an interesting fact, the solution for the u-motion and w-motion
are the exactly the same for governing the motion of the simple
gravity pendulum.
Fig. 4. Left panel: Combination of both panels in the Fig. 3. The final allowed region is in
frame at Earth. (For interpretation of the references to colour in this figure legend, the r
This is an important result because if the particle belongs to an
area crossing the exobase and if this area is closed in the phase
space, along a finite time, the particle will again cross the exobase.
We can now extend the definition of the ballistic and satellite par-
ticles as presented in the introduction 1: both populations have no
elliptic trajectories due to the radiation pressure, but they evolve in
a closed domain. Depending on their constants of the motion, we
can easily determine whether they cross (i.e. the domain crosses)
the exobase or not, corresponding to ballistic and satellite particles
respectively. Escaping particles are in the case where the initial
value of w is higher than the highest real root of Q3 and their avail-
able area is opened to the infinity. Thus, the theorem cannot be
applied here. Even if the restriction area crosses the exobase, the
particle may come from infinity, come close to the exobase and
go away without crossing the exobase. We need, in order to iden-
tify escaping particles (that cross the exobase and go to the infin-
ity), to track along the time the particle to know if these particles
come from the exobase or not. Thus, it is necessary to solve their
trajectory along the time.

2.7. Dimensionless expressions

For convenience, as usual in fluid mechanics, we define charac-
teristic quantities. We decide to write all equations with dimen-
sionless parameters. First, for distance, we define:

Rpressure ¼
ffiffiffiffiffiffiffiffi
GM
a

r
ð20Þ

This characteristic value was introduced by Bishop (1991) and
defines the limit distance where the radiation pressure overwhelms
the gravitation of the planet. Then, we rewrite:
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green. Right panel: representation in green of the trajectory in the Fig. 1 in the ðx;qÞ
eader is referred to the web version of this article.)
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u ¼ URpressure

w ¼ WRpressure
ð21Þ

where U andW are the dimensionless quantities associated to u and
w. The energy E is a dimensionless quantity with the use of the
characteristic energy kBTexo. For pu and pw, we express them in units

of
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
mkBTexo

p
, whereas p/ is expressed in units of

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
mkBTexo

p
Rpressure.

Finally, we choose mkBTexo

ffiffiffiffiffiffiffiffiffiffiffiffiffi
GM=a

p
as the unit for A and the unit

for the a dimensionless time s is derived from the units of u=w
and pu=pw. We summarise these changes in Table 1.

We express all the previous equations as a function of these
new quantities:

� the constants of the motion
Table 1
Compila

Dime

u an

pu an

p/
E
A

Vu a
t

Table 2
Summa
function
mean th
were di
The fun

Case

Traje

u-mo
w-m
Time
/-m
T ran
Evalu
E ¼ 2UP2
U þ 2WP2

W

U þW
þ P2

/

2UW
� 2ka
U þW

þ ka
2
ðU �WÞ ð22Þ
A ¼ 2EU � 4UP2
U � P2

/

U
þ 2ka � kaU

2

¼ �2EW þ 4WP2
W þ P2

/

W
� 2ka � kaW

2

ð23Þ
� the polynomials P3 and Q3:
P3ðUÞ ¼ kaU
3 � 2EU2 þ ðA� 2kaÞU þ P2

/

¼ kaðU � U0ÞðU � U�ÞðU � UþÞ
Q3ðWÞ ¼ kaW

3 þ 2EW2 þ ðAþ 2kaÞW � P2
/

¼ kaðW �W�ÞðW �WþÞðW �W0Þ

ð24Þ
� the effective potentials
VUðUÞ ¼
P2
/

2U2 �
2ka �A

2U
þ kaU

2

VWðWÞ ¼ P2
/

2W2 �
2ka þA

2W
� kaW

2

ð25Þ
with ka:
tion of the transformations of the parameters into dimensionless ones.

nsional parameters Unit Dimensionless parameters

d w
ffiffiffiffiffiffiffiffiffiffiffiffiffi
GM=a

p ¼ Rpressure U and W

d pw
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
mkBTexo

p
PU and PWffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

mkBTexoGM=a
p

P/

kBTexo E

mkBTexo
ffiffiffiffiffiffiffiffiffiffiffiffiffi
GM=a

p
A

nd Vw kBTexo VU and VWffiffiffiffiffiffiffiffiffiffiffiffi
GMm
akBTexo

q s

ry of the different solutions for each kind of motion. The lack of notations means
. The symbol ðsÞ corresponds to an example of formula with a less complex expres
e solutions were explicitly given by Lantoine and Russell (2011) in the 2D case and
rectly derived by Lantoine and Russell (2011) for the 3D case. We specify for each c
ction giving the sign is noted sg.

s Three real roots for P3 (always) Three real ro

ctory Bounded Bounded

tion (31) (L2D3D)
otion (36) (L2D3D
equation (48) (L2D3D) (49) (L2D3D

otion (53) (L3D) (54) (L3D)
ge T 2 R T 2 R

ated functions amð1Þ; Eð1Þ;Pð1Þ amð1Þ; Eð1Þ;P
ka ¼
ffiffiffiffiffiffiffiffiffiffi
GMa

p
m

kBT
¼ GMm

kBTRpressure
¼ kðRpressureÞ ð26Þ

the Jeans parameter at the distance Rpressure.
We can also reduce the equations of the motion. We introduce

the dimensionless time s.

dU
ds

� �2 ¼ � 4P3ðUÞ
ðUþWÞ2

dW
ds

� �2 ¼ 4Q3ðWÞ
ðUþWÞ2

d/
ds ¼

P/
UW

8>>><
>>>: ð27Þ
3. Dynamical trajectories

In this part, we give implicit expressions for the dynamical tra-
jectories of the particles, under the influence of both gravity and
radiation pressure. Such expressions were already given for the
2D case with P/ ¼ 0 and generalised by mathematical transforma-
tions to the 3D case in Lantoine and Russell (2011) with Jacobi
elliptic functions (Jacobi, 1829). The analytical expression for the
/-motion is missing in Lantoine and Russell (2011) for unbounded
trajectories in 3D, although a computational precision comparison
was performed between analytical and numerical approximated
solutions (cf. Lantoine and Russell (2011), Table 2). Furthermore,
the trajectories were completely solved by Biscani and Izzo
(2014) with the Weierstrass functions for bounded and unbounded
trajectories. These last works dealt with the dynamical trajectories
of artificial satellites but they can apply to exospheric species sub-
ject to the radiation pressure. We propose here corrections as well
as a better way to give ‘‘simple” expressions for dynamical trajec-
tories. We also provide expressions for unbounded trajectories that
are missing in the literature. In the same way, we introduce our
notations for the next papers to be published, where the influence
of the radiation pressure on the density profiles and escape flux
will be investigated.

According to the previous part, we have different restrictions on
the motion and thus, we must distinguish the cases, that will cor-
respond to the different types of possible trajectories. We may thus
define the ballistic/satellite/escaping populations based on the
roots of the P3 and Q3 polynomials. As presented in the introduc-
tion of this paper and detailed by Chamberlain (1963), in planetary
exospheres with the collisionless hypothesis and only the gravity
as external force, the trajectories of atoms and molecules can be
divided into three kinds (cf. Fig. 5). First, the escaping particles
come from the exobase and go to infinity, these are unbounded
particles describing an hyperbola. Then, the ballistic particles are
bounded coming from the exobase and describing an ellipse in
order to cross twice the exobase. The trajectories are not elliptic
or hyperbolic at all when the radiation pressure is included, but
one can keep their basic definitions: crossing twice the exobase
the equation are not explicitly derived in previous works in terms of Jacobi elliptic
sion than the one proposed by Lantoine and Russell (2011). L2D3D labelled solutions
can be used in the 3D case by some transformations, whereas L3D labelled solutions

ase the most time consuming functions and the number of evaluations at each T step.

ots for Q3 One real root for Q3

Unbounded Unbounded

) (39) (L2D3D) (44) (L2D3D,s)
) (50) (L2D3D) (51) (L2D3D,s)

(55) (56)
T 2 ½0; ð1� sgðT W ÞÞ2KðkW Þ þ T W ½ T 2 ½0;2KðkW0 Þ þ T W ½

ð1Þ amð1Þ; Eð1Þ;Pð1Þ amð1Þ; Eð1Þ;Pð1Þ



planet

exobase

Fig. 5. Definition of the three kinds of particle trajectories in a collisionless
exosphere and without radiation pressure: ballistic (dot), satellite (cross) and
escaping (dash) particles (from Beth et al. (2014)).
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for ballistic particles, orbiting but not crossing the exobase for
satellite particles (see Fig. 1), coming from the exobase and escap-
ing to the infinity for escaping particles.

The number of real roots is a key parameter for the analytical
resolution of the trajectories. The previous equations of the motion,
expressed as a function of time, must be rewritten as a function of
a new variable T defined as:

ðU þWÞdT ¼ ds ð28Þ
Until we know the expression of UðTÞ and WðTÞ, we cannot

express solutions as a function of time. The system of equations
leads now to:

dU
dT

� �2 ¼ �4P3ðUÞ
dW
dT

� �2 ¼ 4Q3ðWÞ
d/
dT ¼ P/

1
U
þ 1
W

� �
ds
dT ¼ U þW

8>>>>>>><
>>>>>>>:

ð29Þ

All solutions, trajectories and time, are parametrized according
to the variable T without physical sense.

3.1. The u-motion

We solve the differential equation describing the u-motion:

dU
dT

� �2

¼ �4P3ðUÞ ¼ �4kaðU � U0ÞðU � U�ÞðU � UþÞ ð30Þ

with U0; U� and Uþ being real roots.
The solution for U is (cf. Appendix C):

UðTÞ ¼ Uþ � ðUþ � U�Þsn2 aðT � T UÞ; kU½ �

kU ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
Uþ � U�
Uþ � U0

s

a ¼
ffiffiffiffiffi
ka

p ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
Uþ � U0

p
ð31Þ
with cn and sn other Jacobi elliptic functions (cf. Appendix B). These
functions are 4KðkUÞ-periodic (see Appendix A, Eq. (A.1)).

The initial conditions give us Uð0Þ, then:

�arcsn

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
Uþ � Uð0Þ
Uþ � U�

s
; kU

 !
¼ aT U ð32Þ

where arcsn is defined as the reciprocal function of sn:

arcsnðx; kÞ ¼
Z x

0

1ffiffiffiffiffiffiffiffiffiffiffiffiffi
1� t2

p ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1� k2t2

p dt ¼ FðarcsinðxÞ; kÞ ð33Þ

with F the incomplete elliptic integral of the first kind (see Appen-
dix A, Eq. (A.1)).

The sign depends on PU:

dU
dT

� �
¼ 4UPU ð34Þ

If PU is positive (resp. negative), U increases (resp. decreases) and
�sn2 increases (resp. decreases) too. Then, T U is positive (resp. neg-
ative). This solution corresponds to the solution g given by Lantoine
and Russell (2011). The u-motion is always constrained. The charac-
teristics of the motion/particle (ballistic, satellite or escaping) is
thus determined by conditions on Q3ðWÞ.

3.2. The w-motion

For the w-motion, we need to solve the differential equation:

dW
dT

� �2

¼ 4Q3ðWÞ ¼ 4kaðW �W0ÞðW �W�ÞðW �WþÞ ð35Þ

W0 is a positive real root but we must distinguish between various
cases for the other roots: Wþ and W� may be real or complex con-
jugate roots.

3.2.1. Three real roots
We must consider two cases: W > W0 and Wþ > W > W�. The

second one occurs mathematically and not only physically when
W� and Wþ are positive.

3.2.1.1. For W� < W < Wþ. This case occurs for bounded trajecto-
ries (ballistic or satellite trajectory). Here, this is the same treat-
ment as for the u-motion.

The solution for W is (cf. Appendix C):

WðTÞ ¼ W� þ ðWþ �W�Þsn2 bðT � T W Þ; kW½ �

kW ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
Wþ �W�
W0 �W�

s

b ¼
ffiffiffiffiffi
ka

p ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
W0 �W�

p
ð36Þ

The initial conditions giving us Wð0Þ and then leads to:

�arcsn

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
Wð0Þ �W�
Wþ �W�

s
; kW

 !
¼ bT W ð37Þ

The sign depends on PW :

dW
dT

� �
¼ 4WPW ð38Þ

If PW is positive (resp. negative), W increases (resp. decreases)
and sn2 increases (resp. decreases) too. Then, T W is negative (resp.
positive). This solution corresponds to the solution nI given by
Lantoine and Russell (2011).

3.2.1.2. For W > W0. First, the motion occurs only for
W 2 ½W0;þ1½ (corresponding to escaping particles).
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The final expression for W is (cf. Appendix C):

WðTÞ ¼ W0 þ ðW0 �W�Þcs2 bðT � T WÞ; kW½ � ð39Þ
These functions are 4KðkW Þ-periodic and are defined on

T � T W 2 R=f4mKðkWÞjm 2 Zg. These functions diverge at
4mKðkWÞ but this is not an issue: the motion can diverge with
respect to T, but, according to the time s and the integration (see
Section 4), the w-motion remains continuous for s 2 R as

T � T W 2�0;4KðkWÞ½ () s 2 R

Let us assume the initial conditions provide Wð0Þ, then:

�arccs

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
Wð0Þ �W0

W0 �W�

s
; kW

 !
¼ bT W ð40Þ

with

arccsðx; kÞ ¼
Z x

0

1ffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ t2

p ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
t2 � 1þ k2

p dt ¼ F arctan
1
x

� �
; k

� �
ð41Þ

The sign depends on PW :

dW
dT

� �
¼ 4WPW ð42Þ

If PW is positive (resp. negative), W increases (resp. decreases)
and cs2 increases (resp. decreases) too. Then, T W is positive (resp.
negative). This solution corresponds to the solution nII given by
Lantoine and Russell (2011). These expressions are useful only
for three real roots. A last case remains: only one real positive root.

3.2.2. Only one real positive root
For any initial conditions, the particle will be escaping if Q3 has

only one real root W0. The solution for this case is more complex
compared with the previous solutions. As done by Lantoine and
Russell (2011), we could apply some transformations and obtain
a new expression, that would be a combination of cn and sn. Nev-
ertheless, we propose a more direct way to determine the expres-
sion with the knowledge of all roots, even imaginaries. We provide
the demonstration in Appendix C.

The final solution is:

WðTÞ ¼ W0 þ k2
1� cn 2cðT � T W0 Þ; kW0

� �
1þ cn 2cðT � T W0 Þ; kW0

� �
c ¼ k

ffiffiffiffiffi
ka

p
k2 ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðW0 �WþÞðW0 �W�Þ

p
kW0 ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1
2
� 1
4
W0 �Wþ þW0 �W�

k2

s ð43Þ

Finally, one can simplify the expression based on Olver et al.
(2010) (Eq. (22.6.18)):

WðTÞ ¼ W0 þ k2
dn2 cðT � T W0Þ; kW0

� �
cs2 cðT � T W0Þ; kW0

� � ð44Þ

This function is 4KðkW0 Þ-periodic and is defined on
T � T W 2 R=f2KðkW0 Þ þ 4mKðkW0 Þjm 2 Zg. This function diverges
at 2KðkW0 Þ þ 4mKðkW0 Þ but this does not impact our result: the
motion can diverge with respect to T, but, according to the time
s and the integration (see Section 4), thew-motion remains contin-
uous for s 2 R as

T � T W0 2� � 2KðkW0 Þ;2KðkW0 Þ½ () s 2 R

As usual, according to the initial conditions, we define T W0 as
�arccn
k2 � ðWð0Þ �W0Þ
k2 þ ðWð0Þ �W0Þ

; kW0

 !
¼ 2cT W0 ð45Þ

with

arccnðx; kÞ ¼
Z 1

x

1ffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ t2

p ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1� k2 þ k2t2

p dt

¼ FðarccosðxÞ; kÞ ð46Þ
If PW is positive (resp. negative) then T W0 is negative (resp. pos-

itive). This solution corresponds to the solution nIII given by
Lantoine and Russell (2011) but our derived solution is less com-
plex to use. We notice here that to derive the phi-motion equation
with the help of MAPLE, the form (43) was used as input rather
than the form (44).
4. Time equation

We gave analytical formulations for the different kinds of tra-
jectories, expressed implicitly. Now, since we have all expressions
of the trajectories as a function of T, we can express the real time s
(or t):

t ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
GMm
akBTexo

s
s

sðTÞ ¼
Z T

0
UðT 0Þ þWðT 0ÞdT 0

ð47Þ

Here, we use MATHEMATICA and MAPLE to derive the primi-
tives. It is necessary to be very careful since these different pro-
grams can have different definitions of the elliptic functions for
example. To avoid these issues, we remind at each use the defini-
tion employed. The first part of the integral gives:Z T

0
UðT 0ÞdT 0 ¼U0Tþ a

ka
½Eðam½aðT�T UÞ;kU �;kUÞ�Eðam½�aTU ;kU �;kUÞ�

ð48Þ
The second part of the integral is more complex because we

have different expressions according to the number of roots and
the initial conditions. In the case of three real roots, if
Wþ > Wð0Þ > W� thenZ T

0
WðT 0ÞdT 0 ¼ W0T � b

ka
½Eðam½bðT � T W Þ; kW �; kWÞ

� Eðam½�bTW ; kW �; kW � ð49Þ
If Wð0Þ > W0 with three real roots thenZ T

0
WðT 0ÞdT 0 ¼ W0T � b

ka
½Eðam½bðT � T W Þ; kW �; kWÞ

� Eðam½�bTW ; kW �; kWÞ�

� b
ka

cn½bðT � T WÞ; kW �
sd½bðT � T WÞ; kW � �

cn½�bTW ; kW �
sd½�bTW ; kW �

	 

ð50Þ

Finally, in the case of only one real root, the time equation is
given by:Z T

0
WðT 0ÞdT 0 ¼ ðW0 þ k2ÞT � c

ka
½Eðam½2cðT � T W0Þ; kW0 �; kW0 Þ

� Eðam½�2cTW0 ; kW0 �; kW0Þ�

þ c
ka

sn½2cðT � T W0 Þ; kW0 �dn½2cðT � T W0 Þ; kW0 �
1þ cn½2cðT � T W0 Þ; kW0 �

	

� sn½�2cTW0 ; kW0 �dn½�2cTW0 ; kW0 �
1þ cn½�2cTW0 ; kW0 �



ð51Þ
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This equation should be exactly the same as the Eq. (77) from
Lantoine and Russell (2011) in a shorter form.

For the Eq. (50),

T � T W 2 �0;4KðkWÞ½
and for the Eq. (51),

T � T W0 2 � � 2KðkW0 Þ;2KðkW0 Þ½
Nevertheless, when T � T W tends to 4KðkW0 Þ (resp. 2KðkW0 Þ),

the integration diverges and s too. The w-motion occurs on an sub-
set of R with respect to T but on R entirely with respect to s. The
transformation of s into T is bijective, i.e. only one s can be associ-
ated to each T, because the integrand U þW is strictly positive.

5. /-equation

To complete the description of the motion as a function of time,
it is also necessary to solve the evolution of the angle /, obeying:

d/
dT

¼ P/
1

UðTÞ þ
1

WðTÞ
� �

/ðTÞ � /ð0Þ ¼
Z T

0
P/

1
UðT 0Þ þ

1
WðT 0Þ

� �
dT 0

ð52Þ

As already done in the previous part, we separate into two inte-
grals. The first part still gives:

Z T

0

1
UðT 0Þ dT

0 ¼
P 1� U�

Uþ
; am½aðT � T UÞ; kU �; kU

� �
aUþ

�
P 1� U�

Uþ
; am½�aTU ; kU �; kU

� �
aUþ

ð53Þ

with P the incomplete elliptic integral of the third kind (see Appen-
dix, Eq. (A.1)).

In the three real roots case for Q3, if initially we have
Wþ > Wð0Þ > W�:

Z T

0

1
WðT 0Þ dT

0 ¼
P 1� Wþ

W�
; am½bðT � T W Þ; kW �; kW

� �
bW�

�
P 1� Wþ

W�
; am½�bTW ; kW �; kW

� �
bW�

ð54Þ

or if initially Wð0Þ > W0:

Z T

0

1
WðT 0Þ dT

0 ¼
bT �P � W�

W0�W�
; am½bðT � T WÞ; kW �; kW

� �
bW�

þ
P � W�

W0�W�
; am½�bTW ; kW �; kW

� �
bW�

ð55Þ

and for the last case with one real root:

Z T

0

1
WðT 0ÞdT

0 ¼ T

W0�k2

� ðW0þk2Þ
4W0cðW0�k2ÞP �ðW0�k2Þ2

4k2W0
;am½2cðT�T W0 Þ;kW0 �;kW0

 !

þ 1
2P/

arctan
P/

2cW0

sn½2cðT�T W0 Þ;kW0 �
dn½2cðT�T W0 Þ;kW0 �

� �

þ ðW0þk2Þ
4W0cðW0�k2ÞP �ðW0�k2Þ2

4k2W0
;am½�2cTW0 ;kW0 �;kW0

 !

� 1
2P/

arctan
P/

2cW0

sn½�2cTW0 ;kW0 �
dn½�2cTW0 ;kW0 �

� �
ð56Þ
This last formula is only available for T � T W0 2� � 2KðkW0 Þ;
2KðkW0 Þ½, range where it is continuous. The Eqs. (55) and (56) are
not provided in Lantoine and Russell (2011) because it cannot be
derived from the 2D case where / is constant (modulo p). However,
a computational comparison is performed between numerical and
analytical approaches in Lantoine and Russell (2011), then we can
supposed they derived the formula but the current authors of this
paper do not know why this is not written explicitly mentioned.

6. Circular orbits

With the solutions previously derived, we can know the exact
motion of a bounded or unbounded particle as a function of the
time such as given in Fig. 6. It is clear that even a bounded trajec-
tory the motion has no periodicity at all (especially for the /
motion). Nevertheless, it could be interesting to focus on stable
bounded orbits and search for periodic motions (as in Biscani
and Izzo (2014)), and thus investigate in particular the circular
stable orbits for spacecraft (Namouni and Guzzo, 2007) or the pos-
sible positions for satellite particles produced by collisions in the
exosphere (Beth et al., 2014). Thus, we dedicate this section to
the conditions to obtain such orbits.

For a specific set of initial conditions, it can be possible to obtain
circular orbits. This orbit occurs when, on the one hand, the attrac-
tion of the planet projected along the x-axis is equal to acceleration
due to the radiation pressure:

�GMmx
r3

�ma ¼ 0 ð57Þ

In dimensionless quantity, this will be expressed by:

R2 þ cos h ¼ 0 ð58Þ
On the other hand, it is also necessary that the centrifugal force

induced by the rotation around the x-axis is equal to the accelera-
tion around the planet in the perpendicular plane to the x-axis.
Thus, we obtain the secondary equality:

�GMmq
r3

þmv2
/

q2 ¼ 0 ð59Þ

In dimensionless quantity, this will be expressed by:

kaR sin
4 h� P2

/ ¼ 0 ð60Þ
Combining these two equations, we obtain:

ðsin2 hÞ9 � ðsin2 hÞ8 þ P2
/

ka
¼ 0 ð61Þ

We need to study the polynom

PðXÞ ¼ X9 � X8 þ P2
/

ka
ð62Þ

with X ¼ sin2 h 2 ½0;1�. Depending on the P2
/ values, we have zero,

one or two solutions for PðXÞ ¼ 0. Indeed, Pð0Þ ¼ Pð1Þ > 0 so that
according to the Rolle theorem, there is a 2�0;1½ with P0ðaÞ ¼ 0.
Here, a is equal to 8/9. Nevertheless, if PðaÞ is positive then
PðXÞ ¼ 0 does not have solutions and alternatively, if PðaÞ is nega-
tive then we have two solutions. This value is:

P
8
9

� �
¼ P8

/

k4a
� 1
9

8
9

� �8

ð63Þ

A critical maximum value of P/ thus exists to allow for circular
orbits and is

jPc/j ¼ 8
ffiffiffiffiffi
ka

p

9
ffiffiffi
34

p ð64Þ
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Fig. 6. Plots of a bounded particle (or spacecraft) motion in the ðX;qÞ plane (upper left panel), of the time as a function of T (upper right panel), of the motion in polar
coordinates ð/;qÞ (lower left panel) and the U—W coordinates as a function of the time (red for U, blue for W, green for R, lower right panel). U and W do not show any
periodicity because their periods are not commensurable (i.e. the ratio is a rational number) with T and thus with the time s. (For interpretation of the references to colour in
this figure legend, the reader is referred to the web version of this article.)
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Above this value, we cannot find any bounded trajectories:
there is no equilibrium point (i.e. the Eqs. (58) and (60) do not have
real solutions) and thus no circular orbits (stable or not). For lower
values of jP/j, we have two solutions for PðXÞ ¼ 0: one stable and
one unstable as shown by Namouni and Guzzo (2007). These two
solutions correspond respectively to the stable point around which
the equipotentials are closed and to the saddle point, which is the
last limit where one can find closed equipotentials, and is the only
point where two equipotentials can cross. As long as jP/j < jPc/j,
both these specific points exist: they have the same U. Physically,
the potential VW has two extrema as plotted in Fig. 2. When jP/j
reaches jPc/j, the local minimum goes to the right and the local
maximum goes to the left at the same location Wcrit . For higher
jP/j values, VW has no extremum any more: the potential is strictly
decreasing and the particles are unbounded (escaping). Thus, the
bounded particles, satellite and ballistic particles, have
jP/j 6 jPc/j. The distinction between them thus depend on if they
cross or not the exobase.

The critical values are given in ðz;qÞ coordinates (z is�x for us, in
comparison with Namouni and Guzzo (2007)). In dimensionless
unities and in ðR; hÞ using the Eqs. (60) then (58), the critical orbit is:

ðRcrit; hcritÞ ¼ 1ffiffiffi
3

p ;p� arcsin
2
ffiffiffi
2

p

3

 ! !
ð65Þ

or in ðU;WÞ coordinates:

ðUcrit;WcritÞ ¼ 2
3
ffiffiffi
3

p ;
4

3
ffiffiffi
3

p
� �

ð66Þ

The real positive roots of the polynomial (62) combined with
the equality (58) give the positions of the circular orbits (two coor-
dinates are necessary) allowed to spacecraft or particles under the
influence of both gravity and radiation pressure.
7. Summary

The knowledge of the exact trajectories of particles or satellites
under the influence of gravity and radiation pressure needs the cal-
culation of the spatial coordinates, i.e. the u=w=/ motions, as well
as the time evolution. We summarise all needed equations in
Table 2.

The u-motion is provided by the Eq. (31). The w-motion is pro-
vided by the Eqs. (36), (39) or (44). The /-motion is provided by
P/ � ½ð53Þ þ ðð54Þ or ð55Þ or ð56ÞÞ�. The time equation is provided
by ½ð48Þ þ ðð49Þ or ð50Þ or ð51ÞÞ�. All the expressions are functions
of T that is not the real time. We thus have implicit expressions as a
function of time. The function sðTÞ is bijective but cannot be
reversed analytically, a numerical inversion is needed to derive
the real time. The problem is similar for the Keplerian case: the
time equation E� e sin E ¼ 2p

T ðt � t0Þ where E is the true anomaly,
T is the orbital period, e the eccentricity and t the time cannot
allow to pass from t to E without a numerical approach.

According to the initial conditions, we can reconstruct the
motion of the particle according to:

XðTÞ ¼ ðUðTÞ �WðTÞÞ=2
YðTÞ ¼ ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

UðTÞWðTÞp
cos/ðTÞ

ZðTÞ ¼ ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
UðTÞWðTÞp

sin/ðTÞ
sðTÞ the true time

8>>><
>>>: ð67Þ

Besides, our 3D solutions can be easily applied to the 2D case.
Indeed, in the 2D case, P/ ¼ 0 and thus, one of the roots for each
polynomial P3 and Q3 is null: it could be U0 or U� for P3 (if
Uþ ¼ 0, there is no possible motion) and any roots of Q3. We note
that in this case the /-motion is not important because the motion
is planar. Compared with Lantoine and Russell (2011), our
formulations are first developed for the 3D case and can be easily
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transposed to the 2D case, whereas Lantoine and Russell (2011)
provided first the equations for 2D case and then gave the neces-
sary transformations to pass to the 3D case for u and w-motions.
The time equation in the 3D case does not present any significant
difference with the 2D case (addition of term depending linearly on
T). However, the /-motion expression for unbounded trajectories is
missing from their paper. Biscani and Izzo (2014) provided also the
exact formulas for bounded and unbounded trajectories using the
Weierstrass functions but this formulation is also difficult particu-
larly because of the need to use the Inverse Weierstrass function of
which the complexity prevent its implementation in all computer
software and the need to work with complex values (e.g. the com-
plex logarithm function). In this paper, we present the motion for
the bounded and unbounded trajectories in the 3D case; we pro-
vide the exact formulas for all cases, as well as the definitions used
in Appendix A. We highlight in Table 2 which solutions are already
derived by Lantoine and Russell (2011), in which case we propose
less complex formulations to implement (e.g. Eq. (44) and (51))
and finally which solutions are not explicitly provided (e.g. Eq.
(55) and (56)).

Moreover, beyond the new exact solutions given in this paper,
the derivation of our solutions based on Jacobi elliptic functions
allows a good computing time and accuracy. Hatten and Russell
(2015) compared three types of solutions for the Stark effect:
two exact ones, proposed by Lantoine and Russell (2011) (Jacobi
elliptic functions) and Biscani and Izzo (2014) (Weierstrass elliptic
functions), and a numerical one by Pellegrini et al. (2014) (based on
Taylor series). They compared the CPU time, the number of calls for
each analytic elliptic function and the accuracy between Biscani
and Izzo (2014) and Lantoine and Russell (2011) in Python lan-
guage. Even if we do not agree with the number of evaluations of
each Jacobi elliptic function mentioned by Hatten and Russell
(2015) (e.g. as amðx; kÞ is repeated between the different compo-
nents of the motion, for each T step, only two different evaluations
of amðx; kÞ are required, cf. Table 2), the use of these functions is
always more valuable: the solutions expressed in terms of Jacobi
elliptic functions (such as in this paper or by Lantoine and
Russell (2011)) are more efficient than Weierstrass elliptic func-
tions (used by Biscani and Izzo (2014)). Also, the analytical formu-
lations are preferable for long duration motions.
8. Conclusions

We determined analytically the trajectories of the particles or
spacecraft under the influence of both planetary gravity and stellar
radiation pressure. This work may be used as an alternative
method to previous works by Lantoine and Russell (2011),
Biscani and Izzo (2014) and Pellegrini et al. (2014). We provide
the complete exact solutions ðt; x; y; zÞ of the well-known Stark
effect (effect of a constant electric field on the atomic Hydrogen’s
electron) with Jacobi elliptic functions, for both bounded and
unbounded orbits. These expressions may be implemented for
modelling spacecraft or particles trajectories: instead of solving
the equation of the motion, based on differential equations, with
numerical methods such as the Runge–Kutta method where one
cumulates errors along the time, it is here possible to obtain pre-
cise expressions of the motion with only periodic errors, due to
the precision on the evaluation of the elliptic functions used. In
particular, we provide the analytical conditions for stable circular
orbits and critical value for the existence of bounded motions as
well. Moreover, we discuss about the possible issues inherent to
the formalism used and the importance of being extremely careful
with the routines implemented.

Finally, we want to mention that this work is motivated by fur-
ther purposes (Beth et al., 2016) to determine the distribution
function for exospheric particles subject to gravity and radiation
pressure in the quasi-collisionless case. In the stationary case and
if we assume the trajectory of particles is mainly determined by
external forces, the Boltzmann equation can be reduced to:

df
dt

¼ vs
df s
ds

¼ P � L ð68Þ

with s the curvilinear abscissa of the particle along its trajectory, v s

the velocity along, P the production term and L the loss term. Know-
ing the exact trajectory of the particles, the production and loss
terms, one can then derive the distribution at any place according
to initial or boundaries conditions. We thus focused on this efficient
way to implement the follow-up of each particle for any initial con-
ditions. Considering now the radiation pressure, the Eq. (68)
becomes:

df
dt

¼ 1
UðTÞ þWðTÞ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
kBTexoa
GMm

r
df
dT

¼ P � L ð69Þ

so that the integration along the trajectory can be performed
according to the variable T.

The formalism used here will allow us in a next paper to
generalize the work by Bishop and Chamberlain (1989) to derive
the exact neutral densities (Beth et al., 2016) and later the escape
flux in planetary exospheres, under the influence of both gravity
and stellar radiation pressure. This is important for understanding
the atmospheric structure and escape of planets in the inner Solar
System, as well as the atmospheric erosion during the early ages
where the radiation pressure (and UV flux) of the Sun was extreme.
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Appendix A. Elliptic integrals

In this paper, we use the three incomplete elliptic integrals F; E
and P:

Fð/; kÞ ¼
Z /

0

1ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1� k2 sin2 h

p dh

Eð/; kÞ ¼
Z /

0

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1� k2 sin2 h

q
dh

Pðn;/; kÞ ¼
Z /

0

1

ð1� n sin2 hÞ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1� k2 sin2 h

p dh

ðA:1Þ

Sometimes, other formulas (shown below) are proposed with
the change sin h ¼ t but one needs to be very careful: this change
is bijective only for h 2 ½�p=2;p=2�
Z x¼sin/

0

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1� k2t2

p
ffiffiffiffiffiffiffiffiffiffiffiffiffi
1� t2

p dt ¼
Z /

0

cos h
j cos hj

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1� k2 sin2 h

q
dhZ x¼sin/

0

1ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1� k2t2

p ffiffiffiffiffiffiffiffiffiffiffiffiffi
1� t2

p dt ¼
Z /

0

cos h
j cos hj

1ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1� k2 sin2 h

p dh

Z x¼sin/

0

1

ð1� nt2Þ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1� k2t2

p ffiffiffiffiffiffiffiffiffiffiffiffiffi
1� t2

p dt

¼
Z /

0

cos h
j cos hj

1

ð1� n sin2 hÞ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1� k2 sin2 h

p dh

ðA:2Þ
These expressions are not exactly E; F and P. They agree with the
previous formulas (A.1) in the range / 2 � � p=2;p=2½. Lantoine
and Russell (2011) did not state which formulations they used.
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According to their formulas and results, they used the left-hand side
of the Eq. (A.2). This may be a problem for bounded trajectories: for
/ ¼ amðTÞ ) x ¼ snðTÞ, the integrals (A.2) are not continuous con-
trary to (A.1). Depending on the computer software, the routines
and the definitions used for these functions, the results can show
some issues (e.g. no continuous motion).

Appendix B. Jacobi elliptic functions

Most of the readers of this paper are not familiar with the so-
called Jacobi elliptic functions (Jacobi, 1829). We proposed here
to give a quick overview of these functions and their utility.

In Appendix A, we have already introduced the incomplete
elliptic functions E; F and K.

B.1. Jacobi amplitude function amðx; kÞ

By definition, this function is defined as the inverse function of F
on R for 0 < k < 1 as:

Fðamðx; kÞ; kÞ ¼ amðFðamðx; kÞÞÞ ¼ x ðB:1Þ
The Jacobi amplitude function am is used in the case of the sim-

ple gravity pendulum: the evolution of the angle according to the
time can be expressed with this function for any initial conditions.

B.2. Jacobi elliptic functions cnðx; kÞ; snðx; kÞ and dnðx; kÞ

By definition, these functions are derived from the previous
ones by the relations:

snðx; kÞ ¼ sinðamðx; kÞÞ
cnðx; kÞ ¼ cosðamðx; kÞÞ

dnðx; kÞ ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1� sn2ðx; kÞ

q ðB:2Þ

and any fractions of two of them define another one by the rules:

pqðx; kÞ ¼ prðx; kÞ
qrðx; kÞ ¼

1
qpðx; kÞ ðB:3Þ

and ppðx; kÞ ¼ 1 with p, q or r being one of these four letters s, c, d or
n. From the Eq. (B.1), the derivative of am is linked to dn by:

d amðx; kÞ
d x

¼ dnðx; kÞ ðB:4Þ
Appendix C. Demonstrations

We propose in this appendix the demonstrations of specific sec-
tions of the paper for interested readers.

C.1. Section 3.1

First, we set Y2 ¼ U � U0. The motion occurs always with U > 0
and U0 < 0 to justify this change. We obtain:

dU
dT

� �2

¼ �4kaðU � U0ÞðU � U�ÞðU � UþÞ

4Y2 dY
dT

� �2

¼ �4kaY
2 Y2 �U� þ U0|fflfflfflfflfflfflffl{zfflfflfflfflfflfflffl}

<0

0
@

1
A Y2 �Uþ þ U0|fflfflfflfflfflfflffl{zfflfflfflfflfflfflffl}

<0

0
@

1
A

dY
dT

� �2

¼ �kaðY2 � U� þ U0ÞðY2 � Uþ þ U0Þ

dYffiffiffiffiffi
ka

p
dT

� �2

¼ �ðY2 � U� þ U0ÞðY2 � Uþ þ U0Þ

ðC:1Þ
Now, we set Z ¼ Yffiffiffiffiffiffiffiffiffiffiffi
Uþ�U0

p .

dZffiffiffiffiffi
ka

p
dT

� �2

¼ ð1� Z2ÞðZ2ðUþ � U0Þ � U� þ U0Þ ðC:2Þ

Finally, we have:

dZffiffiffiffiffi
ka

p ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
Uþ � U0

p
dT

 !2

¼ ð1� Z2Þ Z2 � U� � U0

Uþ � U0|fflfflfflfflffl{zfflfflfflfflffl}
<1 and >0

0
BBB@

1
CCCA ðC:3Þ

We define kU as:

U� � U0

Uþ � U0
¼ 1� Uþ � U�

Uþ � U0|fflfflfflfflffl{zfflfflfflfflffl}
<1 and >0

¼ 1� k2U ðC:4Þ

kU ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
Uþ � U�
Uþ � U0

s
ðC:5Þ

The final equation is:

dZffiffiffiffiffi
ka

p ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
Uþ � U0

p
dT

 !2

¼ ð1� Z2Þ Z2 � ð1� k2UÞ
� �

ðC:6Þ

The solution of this equation is:

Z ¼ dn
ffiffiffiffiffi
ka

p ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
Uþ � U0

p
T � T Uð Þ; kU

h i
ðC:7Þ

dn is a Jacobi elliptic function and T U depends on initial conditions.

C.2. Section 3.2.1

After setting the two following substitutions Y2 ¼ W0 �W and
Z ¼ Yffiffiffiffiffiffiffiffiffiffiffiffiffi

W0�W�
p , we obtain:

Z ¼ dn
ffiffiffiffiffi
ka

p ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
W0 �W�

p
ðT � T WÞ; kW

h i
ðC:8Þ

with

kW ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
Wþ �W�
W0 �W�

s
ðC:9Þ
C.3. Section 3.2.1

We set Y2 ¼ W �W0. We obtain:

dW
dT

� �2

¼ 4kaðW �W0ÞðW �W�ÞðW �WþÞ

4Y2 dY
dT

� �2

¼ 4kaY
2 Y2 �W� þW0|fflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflffl}

>0

0
@

1
A Y2 �Wþ þW0|fflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflffl}

>0

0
@

1
A

dY
dT

� �2

¼ kaðY2 �W� þW0ÞðY2 �Wþ þW0Þ

dYffiffiffiffiffi
ka

p
dT

� �2

¼ ðY2 �W� þW0ÞðY2 �Wþ þW0Þ

ðC:10Þ

Now, we set Z ¼ Yffiffiffiffiffiffiffiffiffiffiffiffiffi
W0�W�

p .

Finally, we have:

dZffiffiffiffiffi
ka

p ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
W0 �W�

p
dT

� �2

¼ ðZ2 þ 1Þ Z2 þW0 �Wþ
W0 �W�|fflfflfflfflfflfflffl{zfflfflfflfflfflfflffl}
<1 and >0

0
BB@

1
CCA ðC:11Þ
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W0 �Wþ
W0 �W�

¼ 1�Wþ �W�
W0 �W�|fflfflfflfflfflfflffl{zfflfflfflfflfflfflffl}
<1 and >0

¼ 1� k2W ðC:12Þ

The solution of this equation is

Z ¼ cs
ffiffiffiffiffi
ka

p ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
W0 �W�

p
T � T Wð Þ; kW

h i
ðC:13Þ

cs is a Jacobi elliptic function and T W depends on the initial
conditions.

C.4. Section 3.2.2

We start from the Eq. (C.14) with Wþ and W� not real:

dW
dT

� �2

¼ 4kaðW �W0ÞðW �WþÞðW �W�Þ ðC:14Þ

After the separation of variables, we obtain:Z W dW 0ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðW 0 �W0ÞðW 0 �WþÞðW 0 �W�Þ

p ¼ 2
ffiffiffiffiffi
ka

p
T � T Wð Þ ðC:15Þ

Now, we apply the procedure proposed in Abramowitz and
Stegun (1964, p. 597) in the case where we have only one real root.
First, we define:

k2 ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðW0 �WþÞðW0 �W�Þ

p
¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðW0 � ReðWþÞÞ2 þ ImðWþÞ2

q
¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
Q 0

3ðW0Þ
ka

s
ðC:16Þ

and also

kW0 ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1
2
� 1
4
W0 �Wþ þW0 �W�

k2

s
¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1
2
� 1
2
W0 � ReðWþÞ

k2

s

ðC:17Þ
According to Abramowitz and Stegun (1964, p. 597), the left

hand side corresponds to:Z W

W0

dW 0ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðW 0 �W0ÞðW 0 �WþÞðW 0 �W�Þ

p ¼ Fðh; kW0 Þ
k

ðC:18Þ

with F the Elliptic function of first kind (defined in Appendix A) and

cos h ¼ k2 � ðW �W0Þ
k2 þ ðW �W0Þ

) W ¼ W0 þ k2
1� cos h
1þ cos h

ðC:19Þ

According to the Eq. (C.15):

h ¼ am 2k
ffiffiffiffiffi
ka

p
T � T W0

� �
; kW0

h i
ðC:20Þ
Thus,

WðTÞ ¼ W0 þ k2
1� cn 2k

ffiffiffiffiffi
ka

p ðT � T W0 Þ; kW0

� �
1þ cn 2k

ffiffiffiffiffi
ka

p ðT � T W0 Þ; kW0

� � ðC:21Þ
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