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spRap1 and spRif1, recruited to telomeres by Taz1, are essential
for telomere function in fission yeast
Junko Kanoh and Fuyuki Ishikawa

Telomeres are essential for genome integrity. Results and discussion
To investigate how Taz1 executes its role at telomeresscRap1 (S. cerevisiae Rap1) directly binds to

telomeric DNA [1–3] and regulates telomere length in fission yeast, we identified two novel genes, rap1� and
rif1�, in the Schizosaccharomyces pombe genome sequenceand telomere position effect (TPE) [4–6] by

recruiting two different groups of proteins to its RCT database as homologs of scRap1 (SPBC1778.02) and
scRif1 (SPAC6F6.17 and SPAPJ736.01), respectively.(Rap1 C-terminal) domain [7]. The first group, Rif1

and Rif2, regulates telomere length [8, 9]. The second spRap1 has a BRCA1 C-terminal (BRCT) domain and a
Myb motif (Figures 1a and 1b). The Myb motifs ofgroup, Sir3 and Sir4 [10], is involved in

heterochromatin formation [11–13]. On the other spRap1, scRap1, and hRap1 constitute a subfamily with
respect to the residues at the hydrophobic core of the 3hand, human TRF1 and TRF2, as well as their

fission yeast homolog, Taz1, directly bind to helix bundle [22, 23] and in the length of turns connecting
the first and second helices. We also found a region oftelomeric DNA [14–16] and negatively regulate

telomere length [16–20]. Taz1 also plays important spRap1 showing similarity to the second Myb domain of
scRap1 (spRap1 Myb-like and scRap1 Myb-2 in Figureroles in TPE and meiosis [16, 20, 21]. Human Rap1,

the ortholog of scRap1, negatively regulates 1b). The PREDATOR program [24] predicted that this
region has a helix-turn-helix motif. However, the region’stelomere length and appears to be recruited to

telomeres by interacting with TRF2 [7]. Here, we significance is not known at present. Although scRap1
and hRap1 have the Rap1 C-terminal (RCT) domain atdescribe two novel fission yeast proteins, spRap1

(S. pombe Rap1) and spRif1 (S. pombe Rif1), which their C termini [7], we could not find any in spRap1,
suggesting that protein-protein interactions are mediatedare orthologous to scRap1 and scRif1, respectively.

spRap1 and spRif1 are independently recruited to in a different manner in fission yeast. The predicted prod-
uct of the rif1� gene shows a significant similarity totelomeres by interacting with Taz1. The rap1

mutant is severely defective in telomere length scRif1 throughout the entire sequence (20% identity; E
value � 5 � e�4; see Supplementary material). We alsocontrol, TPE, and telomere clustering toward the

spindle pole body (SPB) at the premeiotic horsetail identified the Drosophila and human expressed-sequence
tag (EST) sequences, the predicted peptide sequencesstage, indicating that spRap1 has critical roles in

these telomere functions. The rif1 mutant also shows of which showed significant similarities to the limited
N-terminal region of spRif1 (Figure 1c).some defects in telomere length control and

meiosis. Our results indicate that Taz1 provides
binding sites for telomere regulators, spRap1 and To analyze the functions of spRap1 and spRif1 in telo-
spRif1, which perform the essential telomere mere maintenance, we first examined the telomeric DNA
functions. This study establishes the similarity of length (Figure 2a). The rif1 strain had telomeric DNA
telomere organization in fission yeast and humans. that was approximately 200 bp longer than that of the

wild-type strain (lane 2). It is known that telomeric DNA
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elongation (lane 4). The taz1 rif1 and taz1 rap1 strains
had telomere length similar to that of the taz1 strain (lanes
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We next examined TPE by using the strain that has
Current Biology 2001, 11:1624–1630 the ura4� gene inserted within the telomeric region [20]

(Figure 2b). The wild-type and rif1 cells had efficient
0960-9822/01/$ – see front matter TPE and hardly grew on a selective medium lacking
 2001 Elsevier Science Ltd. All rights reserved.

uracil. The taz1 cells grew well on the same medium,
which confirms that Taz1 is essential for an efficient TPE,
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Figure 1

Structures of spRap1 and spRif1. (a) Overall
structural similarities among spRap1,
scRap1, and hRap1. Abbreviations are as
follows: BRCT, BRCA1 C terminus; Myb,
Myb-related HLH motif; TA, transactivation
domain; RCT, Rap1 C terminus; Coil,
putative coiled-coil motif. Percentage
identities of amino acid sequences are
shown for each domain. (b) Alignment of the
Myb domains of Rap1 proteins and other
proteins. The position of three � helices in
human c-Myb are shown at the top [30]. The
highly conserved residues forming
hydrophobic cores are in green. Amino acids
conserved in spRap1 are in red, and those
conserved in other proteins but not in
spRap1 are in pink. Abbreviations are as
follows: c-Myb R2, the second Myb motif of
human c-Myb; scRap1 Myb-1 and Myb-2, the
first and second Myb motifs of scRap1;
spRap1 Myb and Myb-like, the first and second
Myb(-like) domains of spRap1. (c) Alignment
of the N-terminal conserved sequences of
scRif1, spRif1, the candidate D.
melanogaster homolog (Dm, GenBank
AAD34780), and the candidate H. sapiens
homolog (Hs, GenBank BAB14313). Amino
acids conserved in spRif1 are in red, and
those conserved in other proteins but not in
spRif1 are in pink.

as previously reported [16, 20]. The rap1 cells also grew of spRif1, and spRif1 did so in the absence of spRap1,
indicating that spRap1 and spRif1 associate with telo-well on the selective medium, indicating that spRap1 is

required for an efficient TPE. Both the rap1 and rif1 cells meres independently.
showed normal position effects on the ade6� gene inserted
within the centromere (data not shown). Therefore,
spRap1 has a role specifically in TPE. Localization of Taz1-HA, spRap1-HA, and spRif1-Myc

to telomeres was also examined by indirect immunofluo-
rescence (IF) and fluorescence in situ hybridizationWe next examined the localization of spRap1 and spRif1
(FISH) methods (Figure 3b). Taz1-HA was colocalizedby the chromatin immunoprecipitation method (Figure
with telomeres in the wild-type, rap1, and rif1 cells. In3a). Precipitated DNA was amplified by PCR with the
contrast, spRap1-HA was colocalized with telomeres inprimers for the telomeric region, the K-region, or ade6�.
the wild-type and rif1 cells but did not appear as discreteThe K-region is a heterochromatin present between the
spots in most of the taz1 cells, indicating that spRap1 issilent mating-type loci. Telomeric DNA was detected in
bound to telomeres in a Taz1-dependent manner. spRif1-the Taz1-HA precipitates, and the Taz1-telomere associa-
Myc was localized heterogeneously throughout the nu-tion was not significantly reduced in the rif1 and rap1
cleus in the wild-type and taz1 cells, but it appeared asstrains, indicating that Taz1 does not require spRap1 or
discrete spots that were colocalized with telomeres in thespRif1 for its association with telomeres. Telomeric DNA,
rap1 cells. These observations suggest that only a smallbut neither the K-region nor ade6� DNA, was present in
fraction of the spRif1-Myc molecules may be bound tothe spRap1-HA and spRif1-Myc precipitates. However,
telomeres in the wild-type cells. spRif1 may have sometelomeric DNA was hardly detected in the taz1 strain,
function that is not related to telomere maintenance, orindicating that spRap1 and spRif1 are specifically bound
the nucleoplasmic spRif1 may indirectly regulate telo-to telomeres in a Taz1-dependent manner. Furthermore,

spRap1 associated with telomeric DNA in the absence meres.
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Figure 2

Phenotypes of �rap1 and �rif1 strains. (a) Telomere length in �rap1 here did not change after extensive subculturing. (b) Telomere position
and �rif1 strains. Genomic DNA of each strain was digested with effects in �rap1 and �rif1 strains. Wild-type (FY1862), �taz1
EcoRI and subjected to Southern blotting. Approximately 300 bp of (JK703), �rif1 (JK706), and �rap1 (JK807) strains carrying the ura4�

fission yeast telomeric repeats was used as a probe. Lane 1, wild- marker gene between the telomeric repeats and TAS (telomere-
type (JK320); lane 2, �rif1 (JK690); lane 3, �taz1 (JK702); lane 4, associated sequence) at the left arm of chromosome II were grown
�rap1 (JK774); lane 5, �taz1�rif1 (JK737); lane 6, �taz1�rap1 on a YES plate (complete) and an SD plate lacking uracil. Serial
(JK782); lane 7 �rap1�rif1 (JK786). Note that telomere lengths shown dilutions of the cells were spotted on each plate.

spRap1 and spRif1 are localized at telomeres by interacting with Taz1. HA proteins were detected with anti-HA antibodies, and spRif1-Myc
(a) ChIP assay of Taz1, spRap1, and spRif1 bound to telomeric was detected with anti-Myc antibodies. The telomeres of
DNA. (Left) Wild-type strain (JK800, control) and Taz1-HA-integrated chromosomes I and II were detected by hybridization with a Cy3-
strains in a wild-type background (TN327), in �rif1 (JK764), and in labeled cos212 probe. DNA was stained with DAPI. Wild-type strain
�rap1 (JK801) were used. “IP” lanes are the PCR products after (JK800) was used for the negative control for the indirect IF. (c)
immunoprecipitation. “WCE” lanes are the PCR products from the spRap1 and spRif1 interact with Taz1 in a yeast two-hybrid system.
whole-cell extracts. (Middle) Wild-type strain (JK800) and spRap1- Saccharomyces cerevisiae Y190 strain was transformed with pACT2-
HA-integrated strains in a wild-type background (JK768), in �rif1 taz1�, pACT2-rap1�, or pACT2 (GAL4-AD), together with pGBKT7-
(JK772), and in �taz1 (JK770) were used. (Right) Wild-type strain rif1�, pGBKT7-rap1�, or pGBKT7 (GAL4-DBD). Transformants were
(JK800) and spRif1-Myc-integrated strains in a wild-type background assayed for �-galactosidase activity. A hyphen (-) indicates no
(JK710), in �taz1 (JK713), and in �rap1 (JK805) were used. (b) activity; a plus sign (�) indicates weak activity (the pale blue color of
Localization of Taz1-HA, spRap1-HA, and spRif1-Myc proteins. the cells could be observed after the long incubation); and three
Strains used in panel (a) were grown in the EMM medium, fixed, and plus signs (���) indicate strong activity (the intense blue color could
subjected to indirect IF and FISH analyses. Taz1-HA and spRap1- be observed in 1 hr).
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Figure 3
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To examine the physical interactions among spRap1, cells produced four spores with an equal amount of DNA
per zygote (spore viability, 60%). As reported previously,spRif1, and Taz1, we carried out the two-hybrid assay in

budding yeast (Figure 3c). Taz1 interacted with both the taz1 cells produced spores in abnormal numbers and/
or shapes with variable amounts of DNA (spore viability,spRap1 and spRif1. Importantly, spRif1 did not interact

with spRap1, which is significantly different from the 22%) [16, 20, 21]. Some rif1 cells produced aberrant spores
(spore viability, 30%). In the rap1 cells, the number ofcase of scRif1, which interacts with the RCT domain of

scRap1. Furthermore, spRap1 appears to weakly interact spores per zygote was greatly reduced, and most of the
rap1 spores showed unevenly segregated DNA (sporewith itself.
viability, 9%). Therefore, we conclude that both spRif1
and spRap1 are involved in productive spore formation.In fission yeast, telomeres cluster toward the spindle pole

body (SPB) at the premeiotic horsetail stage [25, 26].
In summary, three telomere functions, namely, telomereTelomere clustering facilitates the pairing of homologous
length control, TPE and premeiotic telomere clusteringchromosomes in meiosis I [27, 28]. We examined the
toward SPB, were severely impaired in the rap1 cells, inrelative localization of SPB and telomeres in the horsetail
whichTaz1was still associatedwith telomeres. Therefore,stage cells (Figure 4a). In all examined wild-type and rif1
it is suggested that telomere-associated Taz1 by itselfcells, all the telomere signals clustered adjacent to SPB.
cannot fulfill the telomere functions and that these telo-As previously reported, telomere clustering was impaired
mere functions are accomplished for the most part byin the taz1 cells [20, 21]. However, approximately 50% of
spRap1. Therefore, the primary role of Taz1 is to providethe taz1 cells showed at least one telomere signal localized
binding sites for telomere regulators. However, there stillnear the SPB. In contrast, in most (90%) of the rap1 cells,
remains a possibility that spRap1 associates with telo-all the telomere signals were localized apart from the SPB.
meres in a Taz1-independent manner, as suggested fromIt is known that telomeres cluster at the nuclear periphery
our observation (Figure 4b). This bindingmechanismmayin mitotically growing cells [29]. Telomere clustering was
function as a backup system only when the major spRap1-apparently normal in the mitotic rap1 and rif1 cells (data
Taz1-telomere interaction is impaired. In fact, we foundnot shown), indicating that spRap1 has a critical role in
that the recombinant spRap1 protein did not show anypositioning telomeres near the SPB specifically at the
activity of binding to telomeric DNA in the gel-shift assaypremeiotic horsetail stage.
(data not shown). spRap1 may have an intrinsic affinity
for the SPB, and the SPB-telomere association at theWe next investigated the localization of Taz1 and spRap1
horsetail stage may be mediated by an unidentified mole-at the horsetail stage (Figure 4b). In the wild-type cells,
cule(s) that is closely associated with the SPB. From theTaz1-HA and spRap1-HA were colocalized with telo-
analogy of Rif and Sir proteins in budding yeast, it ismeres (rows 1 and 3). Taz1-HA was also colocalized with
speculated that spRap1 has associating molecules that aretelomeres even in the rap1 cells (row 2). In contrast, in
more directly involved in telomere length control andapproximately 70% of the taz1 cells, the spRap1-HA signal
TPE (Figure 4e).was diffused (row 4). In the rest of the taz1 cells, spot

signals of spRap1-HA that colocalized with one of the
GenBank accession numberstelomeres could be observed (row 5). Notably, these telo-
The GenBank accession numbers for the rap1� and rif1�

mere-spRap1-HA spot signals in the taz1 cells were fre-
cDNAs are AY034032 and AY034033, respectively.quently colocalized with SPB (row 5). These results have

two implications. First, spRap1 may have an intrinsic ten-
Supplementary materialdency to be localized near SPB. Second, spRap1may bind Supplementary materials and methods plus a supplementary figure can

to telomeres, although inefficiently, in a Taz1-indepen- be found with this article on the internet at http://images.cellpress.com/
supmat/supmatin.htm.dent manner.
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Figure 4

(continued from page 1628) specific roles at telomeres. Additional interactions not shown here
to telomeric DNA. In fission yeast, spRap1 and spRif1 are bound to would be required to explain why spRap1 deletion has more severe
telomeres by interacting with Taz1. In this model, hypothetical effects than Taz1 deletion in several assays. In humans, hRap1 is
spRap1-interacting proteins (X, Y, and Z) are assumed to play their bound to telomeres by interacting with hTRF2.
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