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Abstract

This paper is concerned with a macroscopic constitutive law for domain switching effects, which occur in ferroelectric
ceramics. The three-dimensional model is thermodynamically consistent and is determined by two scalar valued functions:
the Helmholtz free energy and a switching surface. In a kinematic hardening process the movement of the center of the
switching surface is controlled by internal variables. In common usage, the remanent polarization and the irreversible
strain are employed as internal variables. The novel aspect of the present work is to introduce an irreversible electric field,
which serves instead of the remanent polarization as internal variable. The irreversible electric field has only theoretical
meaning, but it makes the formulation very suitable for a finite element implementation, where displacements and the elec-
tric potential are the nodal degrees of freedom. The paper presents an appropriate implementation into a hexahedral finite
brick element. The uni-axial constitutive model successfully reproduces the ferroelastic and the ferroelectric hysteresis as
well as the butterfly hysteresis for ferroelectric ceramics. Furthermore it accounts for the mechanical depolarization effect,
which occurs if the polarized ferroelectric ceramic is subjected to a compression stress.
� 2006 Published by Elsevier Ltd.
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1. Introduction

Piezoelectric devices are found in a wide range of applications, for a detailed discussion see Tani et al.
(1998), Niezrecki et al. (2001) and Jendritza (2005). The variety of applications include also micro electro
mechanical systems, see e.g. Maluf and Williams (2004). A reliability analysis necessitates a calculation of
the stress state in piezoelectric ceramics as precisely as possible. This motivates the present work to deal with
the constitutive law. A phenomenological fully coupled macroscopic constitutive relation including hysteresis
effects and its consistent finite element implementation is proposed.

In this paper it is distinguished between a piezoelectric ceramic and ferroelectric ceramic, where a piezoelec-
tric ceramic is defined as a poled ferroelectric material. Typical materials for the utilization of the piezoelectric
0020-7683/$ - see front matter � 2006 Published by Elsevier Ltd.

doi:10.1016/j.ijsolstr.2006.03.008

* Tel.: +49 721 608 2280; fax: +49 721 608 6015.
E-mail address: sk@bs.uni-karlsruhe.de

https://core.ac.uk/display/82160873?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1
mailto:sk@bs.uni-karlsruhe.de


7198 S. Klinkel / International Journal of Solids and Structures 43 (2006) 7197–7222
effect are barium titanate (BaTiO3) and lead zirconate titanate (PbZrTiO3) abbreviated as PZT, see e.g.
Moulson and Herbert (2003). The material nonlinear behavior occurs due to switching effects of the single
crystals, where atoms change from one possible position to another. Microscopically motivated material
models are presented by e.g. Chen and Lynch (1998), Hwang et al. (1998), Huber et al. (1999) and Huber
and Fleck (2001). These models are concerned with the constitutive behavior of single crystals and employ
an energy argument as switching criterion. The over all material behavior of a ceramic polycrystal is obtained
by averaging over a large number of oriented crystallites. The consideration of switching for each crystal leads
to a large number of internal variables.

The reduction of the number of internal variables motivates phenomenological macroscopical models. A
very simple model to capture arbitrary hysteresis effects is the so-called Preisach-model, introduced in Preisach
(1935). The model needs only a few material parameters and was originally developed to describe effects aris-
ing in magnetization processes. In recent years the model is successfully adopted to model ferroelectric ceram-
ics, see e.g. Hwang et al. (1995), Simkovics et al. (2000), Pasco and Berry (2004), Yu et al. (2002) and Butz
et al. (2005). Hwang et al. (1995) employed the Preisach model to predict the remanent polarization and
the remanent strain from an imposed electric field and a stress. They introduced a simple fully coupled
one-dimensional model with uni-axial loading. In Simkovics et al. (2000), Yu et al. (2002) and Pasco and Berry
(2004) the Preisach model is utilized to account only for the dielectric hysteresis. With this model Simkovics
et al. (2000) are able to simulate higher order harmonics produced by piezoelectric transducers correctly. The
work of Pasco and Berry (2004) focuses on minor loops around the initial state of polarization. In Butz et al.
(2005) the Preisach approach is implemented in a three-dimensional beam finite element to model the dielectric
and the butterfly hysteresis.

Another approach for a phenomenological model based on a macroscopic theory is suggested in Chen and
Montgomery (1980), Chen (1980) and Chen and Tucker (1981). The key idea is that the remanent polarization
is a function of aligned dipoles. The number of the aligned dipoles is used as an internal state variable. The
model is able to represent the uni-axial dielectric and the butterfly hysteresis. Similarly to Preisach the model is
not thermodynamically motivated.

A thermodynamically sound phenomenological model is presented in Bassiouny et al. (1988a,b) and
Bassiouny and Maugin (1989a,b). A free energy function per unit volume depending on temperature, strain
and the polarization is introduced. The polarization is additively decomposed into a reversible and an irrevers-
ible part, which serves as internal state variable. According to thermodynamic arguments the constitutive
relations are derived within the Clausius–Duhem inequality. For rate independent effects an electric loading
function (switching criterion) is suggested to determine the evolution of the internal state variable.

On the basis of this concept several models for domain switching effects have been developed, see Cocks
and McMeeking (1999), Kamlah and Tsakmakis (1999), Kamlah (2001), Kamlah and Böhle (2001), McMee-
king and Landis (2002), Landis (2002), Schröder and Romanowski (2004, 2005) and Elhadrouz et al. (2004,
2005). In all these contributions the irreversible polarization and irreversible strains serve as internal variables
to control the kinematic hardening process.

Cocks and McMeeking (1999) and Kamlah and Tsakmakis (1999) introduced uni-axial models. In Kamlah
and Tsakmakis (1999) and Kamlah (2001) the irreversible strain is additively decomposed into two parts. One
irreversible strain appears due to the alignment of the domains in a certain direction by applying an electrical
loading. For this strain a one-to-one relationship to the irreversible polarization is assumed. The other irre-
versible strain arises due to mechanical stresses and is determined by an evolution equation. In Kamlah
(2001) four switching criteria are described, which characterize the onset and the saturation of domain switch-
ing. A three dimensional extension of the model is presented in Kamlah and Böhle (2001). It is capable to sim-
ulate all hysteresis and butterfly loops including mechanical depolarization effects, which arise in ferroelectric
ceramics. A model which makes use of only one switching criterium is suggested by Schröder and Romanow-
ski (2004, 2005). The co-ordinate invariant thermodynamic consistent model is based on the work of Schröder
and Gross (2004) and accounts for two hysteresis effects: the ferroelectric hysteresis and the butterfly hyster-
esis. In the uni-axial model the polarization direction is assumed to be constant. Furthermore the model makes
use of the simplifying one-to-one relation discussed above. The uni-axial model of Elhadrouz et al. (2004,
2005) considers the additive split of the irreversible strains proposed by Kamlah and Tsakmakis (1999).
For one part the discussed one-to-one relationship is assumed. Furthermore Elhadrouz et al. introduced an
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additive decomposition of the irreversible depolarization, where it is distinguished between a polarization
caused by an electric field and a polarization caused by stress. Two switching criteria are used to control
the different ferroelastic and ferroelectric hysteresis and butterfly loops. The model is also able to predict
mechanical depolarization.

Multi-axial constitutive laws are introduced in McMeeking and Landis (2002) and Landis (2002). Multi-
axial models are necessary to fit the polarization rotation behavior of ferroelectric ceramics. In McMeeking
and Landis (2002) the one-to-one relationship between the irreversible polarization and the irreversible strains
is used. As a result, only three internal variables are needed to control the movement of the center of the
switching surface in a kinematic hardening process. The model without that simplifying assumption is pre-
sented in Landis (2002). It is capable to simulate all hysteresis and butterfly loops including mechanical depo-
larization effects, which arise in ferroelectric ceramics.

Typical piezoelectric finite element models use displacements and the electric potential as nodal degrees of
freedom, see Gaudenzi and Bathe (1995), Benjeddou (2000) and Klinkel and Wagner (2006) and the references
therein. Accordingly the electric field and the strains are calculated from the gradients of the nodal degrees of
freedom. With respect to the hysteresis effects the constitutive relations are highly nonlinear. Nonlinear prob-
lems are solved efficiently by applying the Newton–Raphson iteration scheme, which leads to a quadratic con-
vergence. Therefore a consistent linearization of the weak form with respect to the unknown nodal degrees of
freedom is necessary. This procedure is standard to solve problems with inelastic material behavior, see e.g.
Simo and Hughes (1998). Due to the fact that the ferroelectric material models discussed above employ the
irreversible polarization and the irreversible strain as internal variables a change of variables is necessary.
Referring to Ghandi and Hagood (1997), it is very difficult to find a closed form for switching the variables,
especially for non-linear material behavior including hysteretic response of the material. To circumvent a
transformation of the variables Ghandi and Hagood (1997) suggested a hybrid finite element formulation,
which incorporates electric displacement degrees of freedom as well as the conventional displacement and elec-
tric potential degrees of freedom. In Kamlah and Böhle (2001) the finite element analysis is carried out in a
two-step scheme to avoid a switch of variables. In the first step a purely dielectric boundary problem is solved
to obtain the electric potential. Secondly the electro-mechanical problem for the mechanical boundary condi-
tions is analyzed with the prescribed electric potential. Zeng et al. (2003) use also a staggered scheme to solve
the problem. For the finite element equations they employed Newton’s method, for the analysis of the domain
switching process an incremental approach is used. However, no convergence rates which could prove the
quality of the proposed iteration scheme are shown in their paper.

In the present paper a thermodynamic consistent constitutive model which employs irreversible strains
and irreversible electric field as internal variables is developed. The model fits perfectly in the finite ele-
ment solution strategies for inelastic materials. A change of variables is not necessary. A consistent lineari-
zation is possible and the coupled electro mechanical boundary value problem is solved within one iterative
solution procedure. The main features and the novel aspects of the present paper may be summarized as
follows:

• A phenomenological macroscopic constitutive law based on a thermodynamically framework is derived.
The formulation is based on the Helmholtz free energy and a scalar valued switching surface, which con-
trols domain switching. In the framework of a kinematic hardening process the movement of the center of
the switching surface is determined by internal variables.

• For the internal variables the irreversible strain is used and an irreversible electric field is introduced. This
makes the formulation very useful for finite element implementation, where displacement and electric
potential are the nodal degree of freedoms. From a computational view the formulation is very similar
to plasticity theory, where the strains are additively split into a reversible and an irreversible part.

• No one-to-one relation between the irreversible strain and the polarization is employed. The domain
switching process, which occurs due to an applied electric field, leads to an irreversible strain. The irrevers-
ible strains are additively split to accomplish ‘‘enough space’’ for the current level of polarization. It is dis-
tinguished between irreversible strains which occur due to stress application and irreversible strains which
arise from a polarization process, see Kamlah and Tsakmakis (1999). For the latter one and for the
irreversible electric field a special hardening function is introduced. The hardening function implies that



7200 S. Klinkel / International Journal of Solids and Structures 43 (2006) 7197–7222
the irreversible strain is proportional to the deviatoric part of the dyadic product of the irreversible electric
field.

• In the paper a consistent finite element implementation in a hexahedral eight-noded brick finite element is
provided. Therefore the evolution equations for the internal variables are integrated by an implicit integra-
tion algorithm which leads to a local iteration. The iteration provides the stress and dielectric displacement
for the residual vector. Furthermore an algorithmic consistent tangent modulus has to be considered to
obtain quadratic convergence within the finite element calculation. In the present paper a numerical differ-
entiation to evaluate the consistent tangent modulus is employed.

• The formulation accounts for the ferroelastic, the ferroelectric and the butterfly hysteresis as well as for
mechanical depolarization effect.

The outline of the paper is as follows: In Section 2 the gradient fields are defined and the basic assumptions
for the irreversible quantities are introduced. Section 3 represents the thermodynamical frame work and an
implicit time integration algorithm of the evolution equations. In Section 4 the variational formulation and
in Section 5 the finite element implementation are provided. The numerical examples in Section 6 show the
capabilities and the main characteristics of the proposed model.

2. Gradient fields

In this section the electric field and the mechanical strains are defined. In the framework of a geometrically
linear theory the strain tensor is given as
E ¼ 1

2
ðr � uþ u�rÞ; ð1Þ
where u is the displacement vector and $ = o/oX is the Nabla-operator where X = [X1,X2,X3]T is the position
vector of the undeformed configuration. The total strain is additively decomposed as
E ¼ Er þ Ei. ð2Þ

Here Er represents the reversible part and Ei is the irreversible strain, which occurs due to domain switching.
The additive decomposition is exemplarily illustrated for the X1-direction in Fig. 1. For S11 = 0 and E11 = 0 an
unpolarized ceramic is assumed. At this state the material consists out of subregions of equal spontaneous
polarization, the so called domains. Macroscopically an isotropic state with no resultant polarization and
no piezoelectricity is observed. Increasing the stress up to the coercive stress Sc domain switching starts,
see Fig. 1 point A. During the switching process the domains are aligned in tension direction, which results
in an irreversible strain Ei

11 The process stops when all domains are switched, in Fig. 1 point B is reached.
At this point the total strain E11 consists of a reversible strain and of the maximum irreversible strain
Ei

11 ¼ Ei
s. The saturation strain Ei

s for tension is twice as large as for compression, see e.g. Hwang and
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Fig. 1. Idealized ferroelastic hysteresis.
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McMeeking (1999). It is noted that this state has no resultant polarization. In the absence of an electric field
the stress tensor is obtained as
S ¼ C : ðE � EiÞ; ð3Þ

where C denotes the elasticity tensor.

The Maxwell–Faraday theory of electrostatics postulates that the electric field ~E is lamellar. In other words
the postulate says that r� ~E ¼ 0. This requirement is always fulfilled if the electric field is defined as
~E ¼ �ru; ð4Þ

where u denotes the electric potential. An irreversible electric field is introduced with similar arguments as dis-
cussed for the ferroelastic hysteresis. In Fig. 2 an idealized dielectric hysteresis is shown, here the dielectric

displacement in X1-direction is denoted as ~D1. At the point of origin an unpolarized ceramic is assumed where
the domains are arbitrarily arranged. On a macroscopic level no resultant polarization appears. As long as the
applied electric field is smaller than the coercive field ~Ec the material behaves reversible and is characterized by
the dielectric constant �. Alternatively a coercive polarization ~P c ¼ �~Ec is introduced. The domain switching
and therefore the polarization process starts at point A and ends at point B, see Fig. 2. The maximum irre-
versible polarization ~P 1 is the saturation polarization ~P s. Alternatively to ~P s an irreversible saturation field
is defined as ~Ei

s :¼ ~P s=�. This implies the idea of an irreversible electric field ~Ei.
In the absence of strain E = 0 the difference of the applied electric field and the irreversible electric field

multiplied with �, a matrix containing dielectric constants, yields the dielectric displacement
~D ¼ �ð~E � ~EiÞ. ð5Þ

Accordingly the polarization vector is defined as
~P ¼ ��~Ei. ð6Þ
This holds for an arbitrary point in the dielectric hysteresis. Within this formulation the irreversible electric
field controls the polarization state. The evolution of the irreversible electric field is derived in Section 3 in
a thermodynamically consistent framework. It is noted that ~Ei is introduced as a theoretically quantity with-
out a physical meaning. Nevertheless we try to motivate this quantity form a physical point of view.

Therefore the polarization state of the ferroelectric ceramic at points A and B of Fig. 2 is analyzed in detail.
Applying an increasing electric field ~E1 one obtains from the hysteresis loop that ~Ei

1 equals to zero at point A
and increases up to ~Ei

1 ¼ �~Ei
s at point B. Which means that in general the direction of ~Ei is contrary to the

electric field ~E. To motivate the irreversible electric field physically Fig. 3 shows the piezoelectric ceramic
before the polarization and after polarization. The points A and B refer to the dielectric hysteresis in
Fig. 2. Due to domain switching positive and negative charges are obtained beneath the surface of the ceramic.
The material is now polarized and an internal electric field ~Ei arises. In the literature the internal electric field
~Ei

1 ¼ �~P 1=� is also denoted as depolarizing field, see e.g. Ikeda (1990). It is obvious that it has a contrary direc-
tion to ~E; ~D and ~P .
D1
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Fig. 2. Idealized dielectric hysteresis.



D1E1

+

-

+ +

- -

D1E1

+

-

+ +

- -

P1

+ + +
- - - Ei

1

- -

- -
+ +

+ +

Point A Point B

ferroelectric ceramic

Fig. 3. Ferroelectric ceramic with positive and negative charges.

7202 S. Klinkel / International Journal of Solids and Structures 43 (2006) 7197–7222
In the present contribution a uni-axial model embedded in a three-dimensional formulation is presented. It
is assumed that polarization arise only along a given direction ep, where the vector ep, is normalized. The struc-
tural tensor
M ¼ ep � ep ð7Þ

characterizes the polarization direction in the underlying constitutive equation.
3. Thermodynamic framework

In this section the constitutive law is developed for non magnetizable polycrystalline ferroelectric ceramics
under isothermal conditions for rate independent deformation and polarization processes. Electric induced
contributions to the balance of momentum and angular momentum are not considered in the present work,
which means that ponderomotoric forces are neglected and the stress tensor is assumed to be symmetric; for
detailed discussion see Maugin (1988) and Eringen and Maugin (1990). Similar to Bassiouny et al. (1988a) a
thermodynamic potential which acts as an enthalpy function is defined as free energy per unit volume and is
introduced as
w ¼ 1

2
ðE � E iÞ : C : ðE � E iÞ þ

~Ei � ep

~Ei
s

~E � e : ðE � EiÞ � 1

2
ð~E � ~EiÞ � �ð~E � ~EiÞ þ �wðEi; ~EiÞ. ð8Þ
Here, C is the elasticity tensor of rank four, e denotes the piezoelectric modulus of rank three and e is the
second order tensor of dielectric permittivity. The tensors are given within matrix representation in Appendix
A. The free energy which is taken under consideration is restricted to be of second order, which means that it is
quadratic in E and ~E. The initial reference configuration is assumed to be free of stress and dielectric displace-
ment. The part �w represents the free energy which is stored by the internal variables and may be interpreted as
a hardening function. It depends only on the internal state variables of the material and is defined below.
According to the second law of thermodynamics in the form of the Clausius–Duhem inequality neglecting
thermal effects the dissipation inequality reads
D ¼ S : _E � ~D � _~E � _w P 0. ð9Þ
Here, S is the second order stress tensor and ~D is the vector of dielectric displacements. The dot denotes the
material time derivative. Applying standard arguments of rational continuum thermodynamics the following
expressions for the stress and dielectric displacement are defined as
S :¼ ow
oE
¼ C : ðE � E iÞ þ

~Ei � ep

~Ei
s

eT~E;

� ~D :¼ ow

o~E
¼
~Ei � ep

~Ei
s

e : ðE � E iÞ � �ð~E � ~E iÞ.
ð10Þ
With respect to this definitions the inequality (9) reduces to
D ¼ � ow

oEi
: _Ei � ow

o~Ei
� _~Ei P 0. ð11Þ
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This inequality can be considered as a thermodynamical constraint imposed on the constitutive equations.
Due to the fact that it depends not on the associated velocities _E;

_~E it represents instantaneous or rate inde-
pendent dissipative processes. Eq. (11) motivates the definition of the work conjugate variables of the internal
state variables as
bS :¼ � ow

oEi
¼ C : ðE � E iÞ þ

~Ei � ep

~Ei
s

eT~E � o�w

oEi
¼ S � o�w

oEi
; ð12Þ

bD :¼ � ow

o~Ei
¼ �

~E � e : ðE � EiÞ
Ei

s

ep � �ð~E � ~E iÞ � o�w

o~Ei
¼ �

~E � e : ðE � EiÞ
~Ei

s

ep � �~E þ bP � o�w

o~Ei
. ð13Þ
The vector bP is defined as bP ¼ �~E i which is the negative polarization vector ~P. Rewriting the dissipation
inequality (11) yields
D ¼ bS : _Ei þ bD � _~Ei P 0. ð14Þ

The postulate of the maximum dissipation with a switching surface as constraint is used to derive the evolution
equations of the internal variables. The switching criterion / controls domain switching and it holds / < 0 for
reversible processes and / = 0 for irreversible processes. The switching criterion is defined as
/ :¼ 3bS : P : bS
2S2

c

þ ð
bD � epÞ2
~P 2

c

þ n
f ðbP � bPÞ

S2
c
~P 2

s

� 1 6 0 ð15Þ
with the fourth order deviatoric projection tensor P ¼ I� 1
3
1� 1 and the fourth and second order identities I,

1 respectively. The coercive values Sc; ~P c and the saturation polarization ~P s are material parameters, see also
the discussion in Section 2. The first term in the switching criterion is formulated similarly to Landis (2002)
and determines the ferroelastic hysteresis. Due to the fact that for ferroelectric ceramics the domain switching
is volume preserving it is formulated in deviatoric quantities. The second term in Eq. (15) controls the ferro-
electric and the butterfly hysteresis and the third term accounts for the mechanical depolarization effects. For
the latter one the material parameter n is introduced to fit the mechanical depolarization behavior. With re-
spect that mechanical depolarization occurs only in polarized ceramics which are subjected to a compression
stress the function f is defined as
f ¼ 3
2
S : P : M

� �2
if S : P : M < 0;

f ¼ 0 if S : P : M P 0:
ð16Þ
Eq. (16) states that the function f is greater than zero if there exists a compression stress, which is aligned to
the polarization direction ep. It is noted that the mechanical depolarization process is volume preserving,
hence the deviatoric projection is employed for the function f. For the switching criterion the quantitiesbS :

b~D, S and bP are employed. Considering the relations (12) and (13) the stress S and the vector bP may be
seen as functions of the variables bS and bD. A mathematical description of the optimization problem with con-
straint is given with the Lagrange function
L ¼ �DðbS ; bDÞ þ k/ðbS ; bDÞ; ð17Þ
where k is the Lagrange multiplier. For an optimization with an inequality as constraint the Kuhn–Tucker
conditions require that
oL

obS ¼ 0;
oL

obD ¼ 0;
oL

ok
¼ / ¼ 0 ð18Þ
along with the loading conditions
k P 0; / 6 0; k/ ¼ 0. ð19Þ

The clear meaning of the postulate of maximum dissipation is that for an irreversible state which is charac-
terized by a given strain E and a given electric field ~E that state of internal variables Ei, ~Ei has to be reached,
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which maximizes the dissipation. From Eqs. (18), the evolution equations for the internal variables are derived
as
_E i ¼ k
o/

obS ¼ k
3

S2
c

P : bS þ kn
1

S2
c
~P 2

s

ðbP � epÞ2
of

obS ; ð20Þ

_~E i ¼ k
o/

obD ¼ k
2
~P 2

c

ðbD � epÞep þ kn
2

S2
c
~P 2

s

f ð~P � epÞep. ð21Þ
For the derivative of f holds
of

obS ¼ 3
3

2
S : P : M

� �
P : M if S : P : M < 0;

of

obS ¼ 0 if S : P : M P 0:

ð22Þ
With respect to Eqs. (20) and (22) it is obvious that only deviatoric irreversible strain occur during domain
switching. It is distinguished between the strain which arises due to mechanical depolarization _ESi and irrevers-
ible strains which occur because of dielectric or ferroelastic domain switching effects _EPi. This implies the addi-
tive decomposition
_E i ¼ _EPi þ _ESi; ð23Þ

with
_EPi ¼ k
3

S2
c

P : bS ; ð24Þ

_ESi ¼ kn
1

S2
c
~P 2

s

ðbP � epÞ2
of

obS . ð25Þ
An irreversible strain ESi occurs only if a compression stress is aligned to the polarization direction and thus
of =obS 6¼ 0. It is remarked that ESi represents only the mechanical depolarization effect and has nothing to do
with the ferroelastic hysteresis.

With respect to Eq. (21) one obtains that the irreversible electric field evolves in the direction of ep. Con-
sidering b :¼ ~Ei � ep results in a scalar valued function
_b ¼ k
2

~P 2
c

ðbD � epÞ þ kn
2

S2
c
~P 2

s

f ðbP � epÞ. ð26Þ
3.1. Integration algorithm

The constitutive model is purely local and has to be integrated in time. Here, a time integration for the evo-
lution equations is used which is in accordance with the a numerical solution of the irreversible boundary
value problem by the finite element method employing displacements and electric potential as nodal degrees
of freedom. The time integration schemes for rate independent plasticity in the context of finite element pro-
cedures are extensively discussed in the literature, see Simo and Hughes (1998) and Simo (1998) and the ref-
erences therein. Here, it is assumed that the local state of the body at the time tn is completely known. For a
given displacement increment Du and an increment of the electric potential Du the state of the body at the time
tn+1 = tn + Dt has to be determined. The basic problem is the update of the internal variables to time tn+1 for a
prescribed total strain and total electric field. The problem is illustrated in Fig. 4.

The three evolution Eqs. (21), (24) and (25) are integrated by employing the backward Euler implicit inte-
gration scheme, which is unconditionally stable. For the integration we consider the time interval [tn+1, tn]; all
quantities at the time tn, tn+1 are denoted with the index n and n + 1, respectively. The discrete forms of the
evolution equations read



Return Mapping AlgorithmEn ,

En+1 ,

E i
n+1E i

n , E i
n+1 ,E i

nEn ,

En+1

Δu , Δϕ

Fig. 4. Local return mapping algorithm, see also Simo and Hughes (1998).
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EPi
nþ1 ¼ EPi

n þ c
3

S2
c

P : bS nþ1;

ESi
nþ1 ¼ ESi

n þ cn
1

S2
c
~P 2

s

ðbPnþ1 � epÞ2
ofnþ1

obS nþ1

;

bnþ1 ¼ bn þ c
2

~P 2
c

ðbDnþ1 � epÞ þ cn
2

S2
c
~P 2

s

fnþ1ðbPnþ1 � epÞ;

ð27Þ
here c is given by c = (tn+1 � tn)k. For irreversible processes the switching surface has to fulfill /n+1 = 0. The

switching surface and Eqs. (27) depend on bS nþ1;
b~Dnþ1, Sn+1, bPnþ1 and therefore they are functions of the irre-

versible quantities Ei
nþ1;

~Ei
nþ1, which are unknown at the step tn+1. For the first predictor step trial values are

assumed, see Fig. 5. If the switching criterion based on the trial state is satisfied, the actual irreversible vari-
ables are the trail values. If not, a corrector step has to be performed by the return mapping algorithm. In the
framework of a general mapping algorithm the following four residua are defined as
Ra ¼ EPi
nþ1 � EPi

n � c
3

S2
c

bSD
nþ1 ¼ 0;

Rb ¼ ESi
nþ1 � ESi

n � cn
1

S2
c
~P 2

s

ðbPnþ1 � epÞ2
ofnþ1

obS nþ1

¼ 0;

Rc ¼ bnþ1 � bn � c
2
~P 2

c

ðbDnþ1 � epÞ � cn
2

S2
c
~P 2

s

fnþ1ðbPnþ1 � epÞ ¼ 0;

Rd ¼
3bSD

nþ1 : bSD
nþ1

2S2
c

þ ð
bDnþ1 � epÞ2

~P 2
c

þ n
fnþ1ðbPnþ1 � bPnþ1Þ

S2
c
~P 2

s

� 1 ¼ 0.

ð28Þ
These equations are solved iteratively within a local Newton-iteration
oRðkÞa

oEPi
nþ1

: DEPi þ oRðkÞa

oESi
nþ1

: DESi þ oRðkÞa

obnþ1

Dbþ oRðkÞa

oc
Dc ¼ �RðkÞa ;

oR
ðkÞ
b

oEPi
nþ1

: DEPi þ oR
ðkÞ
b

oESi
nþ1

: DESi þ oR
ðkÞ
b

obnþ1

Dbþ oR
ðkÞ
b

oc
Dc ¼ �R

ðkÞ
b ;

oRðkÞc

oEPi
nþ1

: DEPi þ oRðkÞc

oESi
nþ1

: DESi þ oRðkÞc

obnþ1

Dbþ oRðkÞc

oc
Dc ¼ �RðkÞc ;

oRðkÞd

oEPi
nþ1

: DEPi þ oRðkÞd

oESi
nþ1

: DESi þ oRðkÞd

obnþ1

Dbþ oRðkÞd

oc
Dc ¼ �RðkÞd ;

ð29Þ
with
E
Piðkþ1Þ
nþ1 ¼ E

PiðkÞ
nþ1 þ DEPi; E

Siðkþ1Þ
nþ1 ¼ E

SiðkÞ
nþ1 þ DESi;

~E
iðkþ1Þ
nþ1 ¼ ~EiðkÞ

nþ1 þ Dbep; cðkþ1Þ ¼ cðkÞ þ Dc;
ð30Þ



Fig. 5. Return mapping algorithm for rate independent domain switching in ferroelectric ceramics.
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where the superscript (k) denotes the iteration step. The derivatives in Eqs. (29) are given in Appendix B. The
irreversible electric field at the time step tn+1 is obtained by ~Ei

nþ1 ¼ bnþ1ep. A summary of the return mapping
algorithm is presented in Fig. 5.
3.2. Hardening functions

The last part of the free energy �w acts as hardening function. With respect to the different hysteresis types it
is split in three parts
�w ¼ w
1

ðEiÞ þ w
2

ð~EiÞ þ w
3

ðEPi; ~E iÞ. ð31Þ
The first part is a function of the total irreversible strain Ei = EPi + ESi and describes the ferroelastic hysteresis
loop. The second part characterizes the dielectric hysteresis and is a function of the irreversible electric field.
The third part considers coupling of irreversible electric field and strains and is responsible for the butterfly
loop.
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3.2.1. Ferroelastic hardening

The hardening function is formulated in principal strains, which is necessary to account for different irre-
versible deformation states. The following eigenvalue problem:
ðEi � Ei
A1ÞNA ¼ 0 ð32Þ
provides the principal irreversible strains Ei
A along with the principal directions NA, where A runs from 1 to 3.

For the eigenvectors hold NA Æ NB = dAB with A,B = 1,2,3 and where dAB represents the Kronecker delta.
With respect to Eqs. (12) and (24) the derivative of the hardening function is needed for the evolution equa-
tion. With the abbreviation aA ¼ Ei

A=Ei
s and Ei

s is the irreversible saturation strain along with the material
parameters h, mc, mt the following function is defined as
o w
1

oEi
¼
X3

A¼1

hEi
saA

ð1þ 2aAÞmcð1� aAÞmt|fflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl}
gA

NA �NA ð33Þ
and was proposed in Landis (2002). The function restricts the value for aA between �0.5 < aA < 1.0. This leads
to a maximum irreversible compression strain Ei

A ¼ �Ei
s=2 and a maximal irreversible tension strain Ei

A ¼ Ei
s,

which coincides with experimental data, see Fett et al. (1998). For the local iteration Eq. (29) the second deriv-
ative of the hardening function, see Appendix B, is necessary. Following Chadwick and Ogden (1971) it is pro-
vided as
oo w
1

oEi oEi
¼
X3

A¼1

ogA

oaA
NA �NA �NA �NA

þ
X3

A6¼B¼1

1

2

gA � gB

aA � aB
ðNA �NB �NA �NB þNA �NB �NB �NAÞ; ð34Þ
with
ogA

oaA
¼ h
ð1þ 2aAÞð1� aAÞ � 2aAð1� aAÞmcþ aAð1þ 2aAÞmt

ð1þ 2aAÞmcþ1ð1� aAÞmtþ1
. ð35Þ
3.2.2. Ferroelectric hardening

The second function in Eq. (31) determines only the dielectric hysteresis loop and not the butterfly loop.
With the saturation electric field ~Ei

s and the material parameters k, a and b it is introduced as follows:
w
2

¼ 1

2
kb2 � abarctanh

b

b~Ei
s

 !
þ 1

2
ab~Ei

s ln 1� b2

b2~Ei
s2

 !
. ð36Þ
The first and the second derivative of Eq. (36) read
ow
2

o~E i
¼ kbþ aarctanh

b

b~Ei
s

 ! !
ep;

oo w
2

o~E i o~Ei
¼ k þ a

1� b
b~Ei

s

� �2

1

b~Ei
s

0B@
1CAM .

ð37Þ
3.2.3. Coupled ferroelectric hardening

To capture remanent straining effects and the mechanical depolarization the third hardening function is
introduced. The task is to accomplish enough space in terms of irreversible strains during domain switching.
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Ceramics like PZT undergo an increase in irreversible strain during the polarization by an applied electric
field. A common assumption is the one-to-one relation between the polarization and the irreversible strains,
see e.g. Kamlah (2001). In terms of the irreversible electric field this relation reads
3

2

1
~Ei

s
2
ð~Ei � ~E iÞ : P� 1

Ei
s

Ei ¼ 0. ð38Þ
Applying this relation only to the irreversible electric field Epi which arise due to polarization and considering
a projection on the polarization direction ~Ei ¼ bep leads to
b
~Ei

s

 !2

� 1

Ei
s

Epi : M ¼ 0. ð39Þ
This scalar valued relation is used as an argument for the following coupled hardening function:
w
3

¼ f
b
~Ei

s

 !2

cosh
b
~Ei

s

 !2

� 1

Ei
s

Epi : M

0@ 1A� 1

0@ 1A; ð40Þ
here, f represents another material parameter. The derivatives of the hardening function are given as
ow
3

o~Ei
¼ f 2

b
~Ei2

s

ðcoshðqÞ � 1Þ þ 2
b3

~Ei4
s

sinhðqÞ
 !

ep;

ow
2

oEi
¼ �f

b2

Ei
s
~Ei2

s

sinhðqÞM;

ð41Þ
with q ¼ b
~Ei

s

� �2

� 1
Ei

s
Epi : M.

For the local iteration the second derivatives are provided as
oo w
3

o~Ei o~Ei
¼ f 2

1
~Ei2

s

ðcoshðqÞ � 1Þ þ 10
b2

~Ei4
s

sinhðqÞ þ 4
b4

~Ei6
s

coshðqÞ
 !

M ;

oo w
3

o~Ei oEpi
¼ �f 2

b

Ei
s
~Ei2

s

sinhðqÞ þ 2
b3

Ei
s
~Ei4

s

coshðqÞ
 !

ep �M ;

oo w
3

oEpi oEpi
¼ f

b2

Ei2
s
~Ei2

s

coshðqÞ
 !

M �M .

ð42Þ
4. Variational formulation

In this section the weak form of the governing equations for the coupled mixed field problem is provided. A
mechanical force t or a displacement u may be applied to the boundary of a body B0, which is denoted with
oB0u and oB0t, respectively. It holds oB0 ¼ oB0u

S
oB0t and ; ¼ oB0u

T
oB0t. With r is the free electric

surface charge one may distinguish between the boundary with given r and with a given u. Accordingly it
holds oB0 ¼ oB0u

S
oB0r and ; ¼ oB0u

T
oB0r. Furthermore it is assumed that the free charge density is

given with j; the body force is defined with bq0, where q0 denotes the mass density. The governing field equa-
tions read
Srþ q0b ¼ 0 in B0; ð43Þ
~D � r � j ¼ 0 in B0 ð44Þ
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and the corresponding boundary conditions are given as
Sn� t ¼ 0 on oB0t; ð45Þ
~D � n� r ¼ 0 on oB0r; ð46Þ
where n denotes the normal outward vector on oB0. In particular Eq. (43) represents the local form of the
balance of momentum and Eq. (44) is known as the local form of the Gauss’ law. The stress tensor is in general
not symmetric for non-linear materials. With respect to Voigt’s piezoelectricity theory (Voigt, 1928) no pon-
deromotive forces are considered; therefore the stress tensor is symmetric by default and the balance law of
moment of momentum is fulfilled. The boundary condition (45) defines the mechanical surface traction and
Eq. (46) is a jump condition, where r describes the external applied electric surface charge.

Let U :¼ fdu 2 ½H 1ðB0Þ�dujoB0u
¼ 0g be the space of admissible virtual displacements and V :¼

fdu 2 ½H 1ðB0Þ�dujoB0u
¼ 0g be the space of the admissible virtual electric potential. The weak form is

obtained, by multiplying Eqs. (43) and (44) with the test functions du and du, respectively. Integration by parts
and the use of the divergence theorem leads to
dp ¼
Z
B0

ow
oE

: dE þ ow

o~E
� d~E

� �
dV �

Z
B0

q0b � dudV �
Z

oB0

t � dudAþ
Z
B0

jdudV �
Z

oB0

rdudA ¼ 0.

ð47Þ
The virtual gradient fields are given with dE ¼ 1
2
ðr � duþ du�rÞ and d~E ¼ �rdu.

It is remarked that within the weak form (47) the boundary conditions (45) and (46) are fulfilled. The
remaining boundary condition for a prescribed displacement u0 and a prescribed electric potential u0
u� u0 ¼ 0 on oB0u ð48Þ
u� u0 ¼ 0 on oB0u; ð49Þ
have to be satisfied explicitly. Furthermore it is noted that the Clausius–Duhem inequality is enforced locally
at each material point, see Section 3.

5. Finite element approximation

The finite element approximation is constructed by dividing the whole domain in element domains with
B0 ¼

Snelm
e¼1 ;Be where nelm is the total number of elements. For a hexahedral element with eight nodes the

trilinear shape function at the node I is given as
NI ¼
1

8
ð1þ n1

I n
1Þð1þ n2

I n
2Þð1þ n3

I n
3Þ with � 1 6 ni

6 þ1 ð50Þ
and
n1
I 2 f�1; 1; 1; �1; �1; 1; 1; �1 g;

n2
I 2 f�1; �1; 1; 1; �1; �1; 1; 1 g;

n3
I 2 f�1; �1; �1; �1; 1; 1; 1; 1 g.

ð51Þ
The approximation of the geometry on element level (index e) reads
Xh
e ¼

X8

I¼1

NI X I . ð52Þ
The superscript h is the characteristic size of the finite element discretization and indicates the finite element
approximation. The vector XI contains the nodal co-ordinates. The interpolation functions NI are arranged in
the matrix N = [N1,N2,N3,N4,N5,N6,N7,N8] with NI = diag[NI,NI,NI,NI]. By means of the isoparametric
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concept the geometry, the displacements and the electric potential are approximated with the same interpola-
tion functions as
dh
e ¼

uh
e

uh
e

" #
¼ Nve. ð53Þ
The vector ve is defined as ve ¼ ½uT
1 ;u1; u

T
2 ;u2; u

T
3 ;u3; u

T
4 ;u4; u

T
5 ;u5; u

T
6 ;u6; u

T
7 ;u7; u

T
8 ;u8�

T. Considering the vec-
tor notation given in the appendix equation (A.1) the approximations of the gradient fields read
Eh
e

~Eh
e

 !
¼ Bve with B ¼ ½B1;B2;B3;B4;B5;B6;B7;B8�. ð54Þ
The B-matrix at the node I is given as
BI ¼
Bu

I 0

0 Bu
I

	 

ð55Þ
and
Bu
I ¼

N I;X 1
0 0

0 N I;X 2
0

0 0 N I;X 3

N I;X 2
N I;X 1

0

N I;X 3
0 N I;X 1

0 N I;X 3
N I;X 2

266666666664

377777777775
; Bu

I ¼
NI ;X 1

NI ;X 2

NI ;X 3

2664
3775. ð56Þ
The derivative of the shape functions with respect to X is obtained with the Jacobian
J ¼ rn � Xh
e with rn ¼

o

on1

o

on2

o

on3

	 
T

ð57Þ
as
rN I ¼ J�1rnNI . ð58Þ

The interpolations (53) and (54) hold also for the variations. Taken into account the vector and matrix nota-
tion in Appendix A the approximation of the weak form equation (47) is observed on element level as
dph
e ¼ dvT

e

Z
Be

BT

ow
oE

ow
o~E

 !
�NT q0b

j

� � !
dV �

Z
oBe

NT t

r

� �
dA

" #
|fflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl}

Rh
e

.
ð59Þ
After assembly over all elements one obtains dph ¼ Anelm
e¼1 dph

e , the residual vector Rh ¼ Anelm
e¼1 Rh

e and
vh ¼ Anelm

e¼1 vh
e . Due to the fact that w is a nonlinear function of u and u the equation dph = 0 is solved iteratively.

5.1. Algorithmic consistent tangent modulus

Quadratic convergence is obtained by employing the Newton–Raphson scheme to solve the problem iter-
atively within the finite element method. During the load step [tn+1, tn] the residual vector (59) at tn+1 is
expanded in a Taylor series, which is truncated after the linear element
R
hðkÞ
nþ1 þ

oR
hðkÞ
nþ1

odnþ1

Dd
ðkÞ
nþ1 ¼ 0. ð60Þ
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The nodal degrees of freedom are determined by d
ðkþ1Þ
nþ1 ¼ d

ðkÞ
nþ1 þ Dd

ðkþ1Þ
nþ1 , where the superscript (k) denotes the

iteration step. The last equilibrium state is considered as start value for the first iteration and reads d
ð1Þ
nþ1 ¼ dn.

Applying the chain rule Eq. (60) yields the tangent stiff matrix
1 Ta
K eT :¼ oR
hðkÞ
enþ1

odnþ1

¼
Z
Le

BTDTBdX ; DT ¼

oow
oE oE

oow

oE o~E
oow

o~E oE

oow

o~E o~E

2664
3775
ðkÞ

nþ1

; ð61Þ
where DT is the algorithmic consistent tangent modulus. Here a numerical differentiation for the evaluation of
the tangent modulus is employed, see e.g. Wriggers (2001).

6. Numerical examples

The finite element formulation is implemented in a modified version of the finite element analysis program
FEAP developed by Taylor.1 One aspect which is discussed within the numerical examples is the numerical
behavior of the proposed formulation. Regarding to the local and global Newton iteration schemes a qua-
dratic convergence is expected. Another focus is the numerical simulation of experimental data, which con-
firms the capability of the present model.

In the first example the overall behavior of ferroelectric ceramics is analyzed. This includes the prediction of
the ferroelastic hysteresis as well as the dielectric hysteresis along with the butterfly loop. Furthermore it is
shown that the model accounts also for mechanical depolarization of an initially polarized piezoelectric sam-
ple. The numerical behavior of a representative load step is investigated with respect to the convergence rate of
the different residua.

In the second example experimental data of lead lanthanum zirconate titanate is simulated with the pro-
posed model. A proper choice of the different material parameters, which are included in the hardening func-
tions and the switching criteria, is provided. The example shows that an appropriate choice of the material
parameters is possible.

The third examples is concerned with non-remanent straining ferroelectric ceramics. For this materials no
remanent strain is obtained for a polarized ceramic when the electric field is removed. Consequently the polar-
ization is not coupled with the irreversible strain. In the present constitutive formulation the coupling between
the irreversible electric field and the irreversible strains can be weakened by deactivating the third hardening
function (40). A simulation of the corresponding dielectric hysteresis and butterfly loop is presented.

In the last example a cantilever beam is polarized in the direction of the beam axis afterwards it is subjected
to a transverse tip force. The force leads to a mechanical depolarization of particular regions in the cantilever.
Within the example the location in the beam and the intensity of the arising mechanical depolarization are
discussed. The non-linear impact on the deflection of the beam is illustrated.

6.1. Hysteresis loops in ferroelectric ceramics

In the first example the approximations of the different hysteresis loops by the proposed model are dis-
cussed. The convergence behavior of the global and local iterations are presented.

A cube with an edge length of L = 10 mm is subjected to either an mechanical force F or an electric poten-
tial u. The boundary conditions are shown in Fig. 6. The material parameters are chosen as a rough approx-
imation of soft PZT and are summarized in Table 1.

In the first load case a force F is applied to the free end of the rod. The force is increased up to F = 2.5 kN;
afterwards decreased to the minimum of F = �2.5 kN and then again increased to the value F = 1.25 kN. The
result is a ferroelastic hysteresis curve, which is depicted in Fig. 7. The strain at the x-axis is normalized by the
irreversible saturation strain. It is observed that the irreversible strain E33, which results from tension, is equal
to the saturation strain, whereas a compression stress leads to a maximum irreversible strain which is half as
ylor, R.L., Feap-manual. http://www.ce.berkeley/~rlt/feap/manual.pdf.

http://www.ce.berkeley/~rlt/feap/manual.pdf


Table 1
Applied material parameters

PZT ceramic

E1 = E2 = E3 = 80 · 106 kN/m2

m12 = m13 = m23 = 0
G12 = G13 = G23 = 40 · 106 kN/m2

e13 ¼ �12:0 C=m2; e33 ¼ 25:5802 C=m2; e15 ¼ �12:0 C=m2

� = 15 · 10�6 C2/kN m2

Ei
s ¼ 0:002

~Ei
s ¼ 20� 103 kV=m

~P c ¼ 1:5� 10�2 C=m2

Sc = 50 · 103 GN/m2

n = 0.27
h = 1 · 106 kN/m2, mt = 1, mc = 1
k = � Æ 0.999, a = 0.02/arctanh(1/b) C/m2, b = 1.00005
f = 0.1 · 106 kN/m2

u =u =u =1 2 3 0

u =u =1 3 0
u =u =2 3 0

u3=0

F

F

ϕ=0

X1 X2

X3

F

F

L

L L

ϕ

Fig. 6. Boundary and loading conditions of the piezoelectric specimen.
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Fig. 7. Ferroelastic hysteresis.
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large as the saturation strain. This effect coincides with experimental data and is discussed in Kamlah (2001)
and Landis (2002). It is remarked that during the loading domain switching due to the stress application is
observed but no polarization occurs. Furthermore the strains E11, E22, which are perpendicular to the loading
direction, along with the trace of E are depicted in Fig. 7. It is observe that no volumetric change occurs during
the polarization process only deviatoric deformations are obtained. The results confirm Eq. (27)1 and are in
accordance with experimental investigations.
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For the second load case a zero stress state (F = 0) is assumed, instead an electric potential u is applied to
the free end. The value is increased up to u = 10 kV then decreased to u = �10 kV and again increased to
u = 5 kV. During the loading the electric field is increased up to 2 · 103 kV/m. When the coercive electric field
is reached domain switching starts and it stops when the polarization is equal to the saturation value. This
situation is illustrated with the dielectric hysteresis in Fig. 8. Due to the domain switching irreversible strains
occur, which lead to the butterfly loop shown in Fig. 9. It is remarked that all quantities on the x- and y-axis
are normalized by the coercive and saturation values. Accordingly correct results are obtained if the graphs
intersect the x- and y-axis at +1 and �1, which is the case in Figs. 8 and 9. In addition the strains E11, E22

perpendicular to the load direction are depicted in Fig. 9. It is observed that the trace of E is equal to zero.
This confirms that no volumetric change during polarization arises.

The convergence rates of the proposed algorithms are discussed by analyzing the different residua for a typ-
ical load step. The load is increased from u = 10.1 kV to u = 10.5 kV and is marked with two dots in Figs. 8
and 9. For the global iteration the norm of the residuum vector R is listed in Table 2. A typical local iteration
within this load step is analyzed in Table 2 on the right hand side. Here, the four residua equations (28) are
shown. It is noted that for all residua a quadratic convergence is obtained.

At the polarized piezoceramic a compression load is applied to obtain mechanical depolarization. The
polarized ceramic is characterized by an irreversible strain, which is equal the saturation strain, and an irre-
versible electric field, which is also equal to the saturation value. The compression load is increased from
F = 0 kN up to F = �30 kN afterwards decreased to F = 0, where / is assumed to be zero and therefore
no electric field occurs. A typical mechanical depolarization curve is shown in Fig. 10. During the mechanical
depolarization domain switching arises, which influences the dielectric displacement response. Furthermore
irreversible strains may be obtained resulting from domain switching.
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Fig. 8. Dielectric hysteresis.
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Fig. 9. Butterfly loop.



Table 2
The convergence behavior of the proposed algorithms

Iter Global iteration Local iteration

kRk kRak kRbk Rc Rd

1 2.0 · 10�01 0.1 · 10+00 0.2 · 10�03 0.1 · 10�02 0.1 · 10+00

2 1.8 · 10�01 0.2 · 10�01 0.1 · 10�03 0.3 · 10�03 0.5 · 10�01

3 1.2 · 10�02 0.9 · 10�01 0.8 · 10�04 0.4 · 10�02 0.1 · 10�01

4 1.1 · 10�04 0.3 · 10�01 0.6 · 10�04 0.2 · 10�02 0.2 · 10�01

5 9.1 · 10�09 0.1 · 10�01 0.3 · 10�04 0.1 · 10�03 0.1 · 10�01

6 1.9 · 10�14 0.2 · 10�02 0.5 · 10�05 0.1 · 10�03 0.1 · 10�03

7 0.1 · 10�04 0.2 · 10�07 0.1 · 10�06 0.3 · 10�04

8 0.1 · 10�07 0.8 · 10�10 0.1 · 10�08 0.4 · 10�08

9 0.5 · 10�14 0.4 · 10�19 0.6 · 10�16 0.1 · 10�15
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Fig. 10. Mechanical depolarization curve.
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Experimental investigations, see e.g. Lynch (1996), lead exactly to the type of curves, which are presented in
Figs. 7–10, which confirms that the proposed phenomenological model is able to capture the main character-
istics of domain switching effect in piezoelectric ceramics.

6.2. Simulation of PLZT

The intention of this example is a comparison between the developed constitutive model with experimental
data. In particular the electrical polarization and the mechanical depolarization of lead lanthanum zirconate
titanate (PLZT) is simulated. The experimental data are presented in the work of Hwang et al. (1995). Con-
sidering the measured material data in Hwang et al. (1995) the coercive electric field ~Ec ¼ 0:36� 106 V=m, the
coercive stress Sc = 7 · 106 N/m2, the saturation polarization ~P s ¼ 0:25 C=m2 and the saturation irreversible
strain Ei

s ¼ 0:00144 are given. With respect to the proposed material model the irreversible saturation strain

and the coercive polarization are obtained as~Ei
s ¼ ~P s=� and ~P c ¼ ~Es�, where � denotes the electric permittivity.

For the one-dimensional model of Hwang et al. the Young’s modulus is given as E3 = 86 · 109 N/m2. Due to
the fact that for the introduced three-dimensional constitutive model much more parameters are necessary,
some of these are assumed and summarized in Table 3. The notation of the material tensors in matrix form
is provided in Appendix A.

The specimen of cubic form has an edge length of L = 10 mm. It is subjected to an electric field for polar-
ization and a stress for the mechanical depolarization process. According to the experimental setup, which is
explained in detail in Hwang et al. (1995), the assumed boundary conditions for the calculation are shown in
Fig. 6.

For the first load case the sample is subjected to an electric field; therefore the electric potential of the upper
surface is increased, whereas the lower surface is grounded. With respect to Hwang et al. the voltage of 8 kV is



Table 3
Applied material parameters for lead lanthanum zirconate titanate (PLZT)

PLZT ceramic

E1 = E2 = E3 = 68 GN/m2

m12 = m13 = m23 = 0.35
G12 = G13 = G23 = 25.186 GN/m2

e13 ¼ �14:96 C=m2; e33 ¼ 50:116 C=m2; e15 ¼ 38:148 C=m2

� = 1.125 C2/GN m2

Ei
s ¼ 0:00144

~Ei
s ¼ 0:22222 GV=m

~P c ¼ 0:405� 10�3 C=m2

Sc = 7 · 10�3 GN/m2

n = 0.032
h = 1.0 GN/m2, mt = 1, mc = 1.2
k = � Æ 0.9999, a = 0.0003/arctanh(1/b) C/m2, b = 1.001
f = 0.01 GN/m2
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applied in a triangle wave with an operating frequency of 0.02 Hz. Due to the small frequency it is assumed
that no time effects occur, in other words a quasi static loading and unloading is applied. The resulting dielec-
tric hysteresis and butterfly loops at zero stress state are shown in Figs. 11 and 12.

In the second load case the fully polarized ceramic is subjected to a compression stress. The example is ini-
tially at zero stress with the maximum remanent strain and the maximum remanent polarization. The load F is
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Fig. 11. Comparison of the simulation and the measured experimental data in Hwang et al. (1995) of a PLZT sample; dielectric hysteresis.

-0.05

 0

 0.05

 0.1

 0.15

 0.2

 0.25

-0.8 -0.6 -0.4 -0.2  0  0.2  0.4  0.6  0.8

Fig. 12. Comparison of the simulation and the measured experimental data in Hwang et al. (1995) of a PLZT sample; butterfly loop.
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Fig. 13. Comparison of the simulation and the measured experimental data in Hwang et al. (1995) of a PLZT sample; left: compression
stress vs. dielectric displacement; right: compression stress vs. polarization.
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increased form F = 0 N up to F = �2125 N, which leads to a compression stress S33 = �85 · 106 N. After-
wards the sample is unloaded again. The resulting depolarization curves are depicted in Fig. 13.

The polarization which is shown in Fig. 13 on the left hand side is calculated form the irreversible electric
field as ~P 3 ¼ ��~Ei

3. It is obtained that after polarization the resulting ~P 3 is close to zero.
Figs. 11–13 show a good agreement of the simulation and the measured experimental data, which confirms

that the proposed constitutive model is able to approximate the realistic material behavior.

6.3. Non-remanent straining ferroelectrics

This example is concerned with the simulation of non-remanent straining ferroelectric ceramics. It demon-
strates the manifold applicability of the proposed formulation. Non-remanent straining ferroelectrics were
experimentally observed by e.g. Schneider and Heyer (1999). A constitutive model considering this effect
was suggested by Landis (2002). In contrast to the present formulation Landis employed the irreversible strain
and the polarization vector as internal variables.

For the simulation of the dielectric hysteresis and the butterfly loops the system illustrated in Fig. 6
with L = 10 mm is used. The material data is summarized in Table 4. It is noted that the influence of the third
Table 4
Applied material parameters

PLZT ceramic

E1 = E2 = E3 = 80 · 106 kN/m2

m12 = m13 = m23 = 0
G12 = G13 = G23 = 40 · 106 kN/m2

e13 ¼ �4:8 C=m2; e33 ¼ 10:232 C=m2; e15 ¼ �4:8 C=m2

� = 15 · 10�6 C2/kN m2

Ei
s ¼ 0:002

~Ei
s ¼ 20� 103 kV=m

~P c ¼ 1:5� 10�2 C=m�2

Sc = 50 · 103 GN/m2

n = 0.25
h = 1 · 106 kN/m2, mt = 1, mc = 1
k = � Æ 0.999, a = 0.04/arctanh(1/b) C/m2, b = 1.1
f = 0.1 kN/m2
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Fig. 14. Constitutive response of non-remanent straining ferroelectrics; dielectric hysteresis.
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Fig. 15. Constitutive response of non-remanent straining ferroelectrics; butterfly loop.
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hardening function is significantly reduced with f = 0.1 kN/m2, which means that an irreversible electric field
has no influence on the irreversible strain.

The system is loaded by increasing the electric potential up to u = 60 kV afterwards decreasing the load to
u = �60 kV and finally the electric potential is increased again up to u = 10 kV. The resulting dielectric dis-
placements and the irreversible strains are depicted in Figs. 14 and 15 and a comparison to the normalized
values obtained by Landis (2002) is provided. A good agreement of both models is observed. It is noted that,
when the electric field after polarization is decreased to zero no irreversible strain remains.

6.4. Cantilever beam problem

In this example the non-linear effects which arise due to mechanical depolarization are illustrated by apply-
ing a tip force to a polarized cantilever beam. The cantilever beam is modeled with 20 · 16 · 2 finite brick ele-
ments, see Fig. 16. The material data is the same as for the first example and is summarized in Table 1.

The system is loaded by applying an electric potential u to the tip of the cantilever, which is increased up to
u = �2 · 10�5 GV and afterwards decreased to u = 0. As result one gets a polarized ferroelectric ceramic. It is
characterized by the saturation strain Ei

s and by an remanent saturation polarization ~P s or in other words by

the irreversible saturation electric field ~Ei
s. The polarized ceramic is considered as an initial state for the second

load case, in which the transverse force is subjected to the tip of the cantilever. It is increased up to
F = 122.9 N. The load deflection curve is depicted in Fig. 17. The bending of the beam which is caused by
the transverse force leads to a compression stress. If the compression stress reaches the coercive value, domain
switching occurs. The mechanical depolarization is responsible for the non-linear behavior of the load



Fig. 16. Cantilever beam: system, boundary conditions and geometry data.

 0

 20

 40

 60

 80

 100

 120

 0  0.005  0.01  0.015  0.02  0.025  0.03  0.035  0.04  0.045

Fig. 17. The force F vs. the deflection w of the cantilever tip.
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Fig. 18. The deformed cantilever amplified by factor 10 with a plot of the normalized polarization.

7218 S. Klinkel / International Journal of Solids and Structures 43 (2006) 7197–7222
deflection curve. For comparison the behavior of a model for which no mechanical depolarization is allowed is
given in Fig. 17.

The deformed mesh with a plot of the normalized polarization vector in x3-direction ~P 3=~P s is shown in
Fig. 18. The zones in which domain switching occurs are clearly visible.

7. Concluding remarks

In this paper a thermodynamic consistent phenomenological model for ferroelastic and ferroelectric switch-
ing is presented. The main idea is to introduce an irreversible electric field, which serves beside the irreversible
strain as internal variables. The evolution equations are derived by the principle of maximum dissipation and
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are integrated with implicit time integration algorithm. The model is in full accordance with the numerical
solution of the irreversible boundary value problem by the finite element method employing displacements
and electric potential as nodal degrees of freedom. The constitutive relationship is not simplified by a one-
to-one relationship between the polarization and the irreversible strain. Instead an additive split of the irre-
versible strains is suggest. A special hardening function is introduced to accomplish enough space in terms
of irreversible strain for the ferroelectric switching process. A consistent finite element implementation is pre-
sented. The examples demonstrate the superior numerical behavior of the formulation and show that the
model accounts for the ferroelastic and ferroelectric hysteresis effects as well as for the mechanical
depolarization.
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Appendix A. Linear material properties

For the sake of simplicity we assume that all material properties referring to a Cartesian co-ordinate sys-
tem. The stress tensor and the strain tensor are represented in vector notation as
S ¼ ½S11; S22; S33; S12; S13; S23�T;
E ¼ ½E11;E22;E33; 2E12; 2E13; 2E23�T.

ðA:1Þ
The elasticity tensor in matrix representation is given by
C�1 ¼

1

E1

� m12

E2

� m13

E3

0 0 0

� m12

E2

1

E2

� m23

E3

0 0 0

� m13

E3

� m23

E3

1

E3

0 0 0

0 0 0
1

G12

0 0

0 0 0 0
1

G13

0

0 0 0 0 0
1

G23

2666666666666666666664

3777777777777777777775

. ðA:2Þ
Here, the Young’s moduli E1, E2, E3, the Poisson’s ratios m12, m13, m23 and the shear moduli G12, G13, G23 are
independent material parameters. The piezoelectric matrix e and the permittivity matrix � read
e ¼
0 0 0 0 e15 0

0 0 0 0 0 e15

e13 e13 e33 0 0 0

264
375; � ¼ �

1 0 0

0 1 0

0 0 1

264
375; ðA:3Þ
where e13; e33; e15 and � represent independent material parameters. All parameters are given within the
numerical examples in Section 6.
Appendix B. Derivatives for local Newton-iteration

For the local iteration scheme given in Section 3.1 the following derivatives are necessary to evaluate Eqs.
(29):
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