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Changing disparity is a possible cue for stereomotion perception. We propose the changing disparity
energy model, a physiologically plausible model for neurons tuned to changing disparity. This model
combines the disparity and motion energy models commonly used to model cortical neuron outputs.
The model outputs are consistent with psychophysical experiments indicating that stereomotion speed
discrimination thresholds for dynamic random dot stereograms are higher than for random dot stereo-
grams. Thus, these experimental results are not necessarily strong evidence for the existence of an
inter-ocular velocity difference cue. The model also predicts a relationship between the speed discrimi-
nation threshold ratio and the dot density.

� 2009 Elsevier Ltd. All rights reserved.
1. Introduction

Stereomotion, also known as motion in depth (MID), refers to
object motion either approaching or receding from the observer.
There are two visual cues that are commonly used to account for
the perception of motion in depth: changing disparity (CD) and In-
ter-Ocular Velocity Difference (IOVD) (Rashbass & Westheimer,
1961a, 1961b). The CD cue assumes that information is first com-
bined between the two eyes to yield a disparity estimate. The tem-
poral evolution of this disparity estimate is then used to estimate
the change in disparity, which in turn leads to the perception of
motion in depth. The IOVD cue assumes that monocular velocity
estimates are first extracted. The difference between the velocity
estimates then leads to a perception of motion in depth. Psycho-
physical evidence suggests that both play a role in stereomotion
perception (Brooks, 2002; Brooks & Stone, 2004). These models of-
ten assume that measurements of velocity and/or disparity are
available, but do not address how they might be computed, repre-
sented, nor combined.

Although the motion and disparity energy models can be com-
bined to yield model neurons that jointly encode disparity and mo-
tion (Qian, 1994), these model neurons are not tuned to motion in
depth, but rather fronto-parallel motion (Chen, Wang, & Qian,
2001). It has been suggested that this joint encoding can explain
the Pulfrich phenomenon, where an inter-ocular time delay leads
to a perception of depth in a stimulus moving in a fronto-parallel
direction (Anzai, Ohzawa, & Freeman, 2001; Pack, Born, & Living-
stone, 2003; Qian & Andersen, 1997). Read and Cumming argue
ll rights reserved.
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that non-directionally selective space–time separable filtering
can also account for the Pulfrich effect (Read & Cumming, 2005a,
2005c), and that neurons that are simultaneously tuned to direc-
tion and disparity are rare in V1 (Read & Cumming, 2005b). How-
ever, recent work has questioned the separable model (Qian &
Freeman, 2009).

Recently, Sabatini et al. have shown that introducing imbal-
ances in ocular dominance into the joint disparity/motion model
results in neurons tuned to motion in depth (Sabatini & Solari,
2004; Sabatini, Solari, Cavalleri, & Bisio, 2003). We consider this
model an example of the IOVD mechanism. In the limit when the
ocular dominance index goes to unity, the model first computes
the opponent motion energy for each eye separately, and then dif-
ferences the left and right eye motion energy in a second stage.

Here, we describe a physiologically plausible model for con-
structing retinotopic arrays of neurons that are selective for chang-
ing disparity. This model has two stages: the first based on the
disparity energy model and the second based on the motion energy
model. Both of these models are commonly used to describe the re-
sponse properties of neurons in the visual cortex (Adelson & Ber-
gen, 1985; Ohzawa, DeAngelis, & Freeman, 1990; Watson &
Ahumada, 1985). This model takes stereo video pairs as input. It
outputs model neuron responses that are tuned to a particular
changing disparity. Due to its close relationship with other energy
models, we refer to our model as the changing disparity (CD) en-
ergy model. An initial description and characterization of this mod-
el has appeared in (Guo & Shi, 2008).

We can characterize our model using the same stimuli used for
psychophysical experiments on motion in depth perception. Two
commonly used stimuli are random dot stereograms (RDS), where
the disparity between the dot pattern varies over time, and
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dynamic random dot stereograms (DRDS), where both the dispar-
ity and the dot pattern changes over time. RDS stimuli contain both
CD and IOVD cues. DRDS stimuli contain only the CD cue, since the
changing dot pattern eliminates coherent monocular motion.

Using these stimuli, we show that our model is consistent with
recent psychophysical experiments. Brooks and Stone (2004)
showed that speed discrimination thresholds are higher for DRDS
stimuli than for RDS stimuli by factors ranging from 1.4 to 2.4.
Intuitively, a neuronal mechanism based on extracting CD should
exhibit no difference in speed discrimination thresholds for the
two inputs. Thus, the improved discriminability for RDS stimuli ap-
pears to support the hypothesis that both CD and IOVD mecha-
nisms are used in stereomotion perception. Surprisingly, when
we replicated these experiments with the CD energy model, we
find a similar difference in speed discrimination thresholds. Thus,
by itself the threshold difference does not necessarily support the
joint use of both CD and IOVD mechanisms for MID perception.
The model is also consistent with other psychophysical experi-
ments. For example, we observe no significant change in speed dis-
crimination threshold for stimuli directly receding or moving
obliquely in depth (Brooks & Stone, 2004, 2006).

The paper is organized as follows. Section 2 reviews the dispar-
ity energy and motion energy models, and shows how they can be
combined into the changing disparity energy model. Section 3 de-
scribes how we simulate the model and our parameter choices.
Section 4 describes the results of running this model on RDS and
DRDS stimuli. It shows that the model is consistent with prior
physical experiments, and generates a testable prediction regard-
ing the dependency of the speed discrimination threshold on the
dot density. Finally, Section 5 concludes with a summary and ex-
panded explanation of these results.
2. Model description

In this section, we start by briefly reviewing the disparity en-
ergy and motion energy models. We then describe how they are
combined to yield the CD energy model.

2.1. Disparity energy model

The disparity energy model was proposed to account for the re-
sponses of disparity selective complex cells in the primary visual
cortex (Ohzawa et al., 1990). As shown in Fig. 1a, monocular inputs
are first combined spatially using receptive field (RF) profiles de-
scribed by Gabor functions. The RF outputs are then combined bin-
ocularly by summing and squaring signals from the left and right
eyes. The preferred disparity of a disparity energy neuron depends
upon both phase and position shifts between the monocular RF
profiles. Here, we consider only phase shifts.

We define Ue(x, y, t) as the 2D image intensity over space (x, y)
and time t. The subscript e 2 fL;Rg indexes the left and right eyes.
We assume that the left and right input images are rectified so that
each pixel in the right image corresponds to a pixel in the left im-
age on the same scan line. We define the disparity d to be the dif-
ference between the locations of corresponding points in the left
and right eyes:

ULðx; y; tÞ ¼ Uðx; y; tÞ
URðx; y; tÞ ¼ Uðxþ d; y; tÞ ¼ ULðxþ d; y; tÞ ð1Þ

A positive disparity indicates that the environmental point is
closer than the fixation point.

At each spatial location and time, two linear monocular cell out-
puts are obtained by convolving the input image with a pair Gabor
functions which are 90� out of phase. Here, we assume vertically
oriented Gabor functions. Mathematically, we express the two
outputs as the real and imaginary parts of a single complex
number:

Veðx; y; tÞ ¼
Z Z

Nðn;gj0;CÞejXxn � Ueðx� n; y� g; tÞdndg ð2Þ

where Nðn;gj0;CÞ is the 2D Gaussian kernel with mean 0 and
covariance matrix C, which we assume to be a diagonal matrix with
elements r2

x and r2
y ¼ ð2rxÞ2 so that it is longer in the vertical than

in the horizontal direction, and Xx is the spatial frequency of the
Gabor filter.

The disparity energy is the squared modulus of the sum of the
left monocular cell output and the right monocular cell output
with a phase shift Dw

Edðx; y; t;DwÞ ¼ jVLðx; y; tÞ þ ejDwVRðx; y; tÞj2 ð3Þ

Qian (1994) has shown that the disparity energy can be approx-
imated by

Edðx; y; t;DwÞ � ð2þ 2 cosðDwþXxdÞÞjVLðx; y; tÞj2 ð4Þ

We define a phase-tuned population of disparity energy neu-
rons as a set of neurons with the same monocular RF centers, but
tuned to different disparities by phase shifts varying between �p
and +p. Fig. 1c shows the construction of five neurons from a
phase-tuned population, and how the population responses vary
as the input stimulus disparity changes. The peak location in the
response varies with the input disparity, and can be approximated
by (Qian, 1994)

Dwpeak � �Xxd ð5Þ

The standard disparity energy model considers only the input at
the current instant in time, neglecting the effect of past inputs
through the temporal dynamics of the neuron. This assumption
is intuitively appealing here, since the changing disparity cue as-
sumes that the visual system estimates the disparity first at each
instant in time, and examines how that estimate changes over
time. Nonetheless, because we are dealing with time varying in-
puts, it is possible that conclusions we draw from using the stan-
dard disparity energy model may be invalid because we have
neglected the temporal dynamics of the neuron. Real disparity
selective neurons in V1 have finite temporal kernels (DeAngelis,
Ghose, Ohzawa, & Freeman, 1999; DeAngelis, Ohzawa, & Freeman,
1993; Ohzawa, DeAngelis, & Freeman, 1996).

To address this concern, we also examine the performance of a
model that includes temporal dynamics by convolving the input
image by a spatio-temporal kernel in computing the linear monoc-
ular cell outputs. Specifically, we replace Eq. (2) with

Veðx; y; tÞ ¼
ZZZ

Nðn;gj0;CÞejX;n � Gðdja1; s1Þ

� Ueðx� n; y� g; t � dÞdndgdd ð6Þ

where Gðtja; sÞ is a low pass temporal envelope whose shape is the
probability density function of the Gamma distribution:

Gðtja; sÞ ¼ 1
CðaÞsa ta�1e�t=suðtÞ ð7Þ

In this equation, a and s are constants determining the skew
and time constant, C(a) is the standard Gamma function for nor-
malization, and u(t) is the unit step function. The subscript ‘‘1”
on the parameters in Eq. (6) indicate that these are associated with
the first stage of the model. This spatio-temporal receptive field
profile is the same as that used by (Chen et al., 2001; Qian, 1994)
to model the responses of disparity tuned neurons to time varying
input, except we have eliminated the sinusoidal modulation in the
temporal receptive field. The sinusoidal modulation is introduced
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Fig. 1. Model architecture. (a) Disparity energy model. The four boxes on the left show the monocular RF weights as a function of spatial position. Each row corresponds to a
different eye. The RFs in different columns differ in phase by 90�. A phase shift between the left-eye and right-eye neurons tunes this disparity energy neuron to negative
disparities. (b) Motion energy model. The two boxes on the left show the receptive field weights as a function of space and time. The upper row refers to the current time
while the lower one the previous time. The RF profiles differ by a 90� phase shift to form a quadrature pair whose outputs are squared and summed to derive the motion
energy. (c) A phase-tuned population of disparity energy neurons. The lower image represents the outputs of the phase-tuned population as the input stimulus disparity
changes. Each horizontal cross-section represents the responses of a phased tuned population of disparity energy neurons to an input stimulus with fixed disparity. Different
cross-sections correspond to different disparities. The image intensity represents the response magnitude (white for higher response and black for lower response).
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to in order to model joint disparity/motion selectivity. We do not
use it here, since the first stage of a changing disparity model
should be purely disparity selective. Intuitively, the temporal filter-
ing we have introduced adds local temporal integration of the in-
put to the response of the disparity energy neuron.

We also examine the effect of normalization, a common compo-
nent of models of cortical neurons (Albrecht & Geisler, 1991;
Carandini, Heeger, & Movshon, 1997; Heeger, 1992). In our exper-
iments that included normalization, we divide the responses of all
disparity energy neurons in the population by the average re-
sponse taken globally across phase disparity and locally across
space and time. The global average across disparity weights all
neurons in the phase population equally. The average across space
weights neural responses by a circularly symmetric Gaussian with
variance r2

n. The average across time weights each neuron in the
past according to the Gamma distribution envelope with parame-
ters an and sn.
2.2. Motion energy model

The motion energy model (Adelson & Bergen, 1985; Watson &
Ahumada, 1985) is based on the observation that a velocity of mo-
tion corresponds to an orientation in space–time. The motion en-
ergy model combines the outputs of two phase quadrature
spatio-temporal filters that are tuned to detect this orientation
by squaring and summing, as shown in Fig. 1b.

As with the disparity energy model, we can represent the filter
outputs as the real and imaginary parts of a single complex num-
ber. The complex valued spatio-temporal convolution kernel is
separable into the product of spatial and temporal functions. The
spatial filter is usually modeled using a spatial Gabor filter. For
simplicity and consistency with Fig. 1c and the following descrip-
tion of the CD energy model, we assume only a single spatial
dimension. Defining U(x, t) as the input image intensity over space
and time, the output of the spatial Gabor filter is
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Vðx; tÞ ¼
Z

Nðnj0;r2
x ÞejðXxnÞUðx� n; tÞdn ð8Þ

where Nðnj0;r2
x Þ is a 1D Gaussian with mean 0 and variance r2

x and
Xx is the spatial frequency of the Gabor filter. The kernel of the tem-
poral can be described by the Gamma probability density function
modulated by a complex exponential (Chen et al., 2001). The output
of the temporal filter is

Wðx; tÞ ¼
Z

hðdja; s;XtÞVðx; t � dÞdd ð9Þ

where

hðtja; s;XtÞ ¼ Gðtja; sÞejXt t ð10Þ

Here, Gðtja; sÞ is the Gamma envelope given in Eq. (7) and Xt is
the center frequency of the temporal filter.

If the image input is a sine wave grating whose spatial fre-
quency matches the center frequency of the spatial Gabor (Xx),
then the motion energy output is maximized when the velocity
of the grating is

vpref � �Xt

Xx
ð11Þ

Since the spatial filter passes mainly frequency components
around Xx, the velocity vpref is often thought of as being the pre-
ferred velocity of the filter. However, strictly speaking the filter is
not velocity tuned. For sine wave gratings, the velocity that leads
to maximum response decreases with the spatial frequency of
the grating. For more general inputs, the velocity that leads to
maximum response changes with the spatial frequency content.

The opponent energy is often used to model tasks involving dis-
crimination between two opposite directions of motion. The oppo-
nent energy is the difference between the outputs of two motion
energy neurons tuned to the same spatial frequency but opposite
directions of motion. The difference in direction tuning can be ob-
tained by using temporal filters with opposite temporal frequen-
cies (Adelson & Bergen, 1985). The opponent energy eliminates
responses due to stationary input.

2.3. Changing disparity energy model

The changing disparity energy model is based on the observa-
tion that a changing disparity causes the location of the peak re-
sponse in a phase-tuned population to change over time. In the
same way that image motion leads to a space time orientation
(Fig. 1b), changing disparity leads to a phase-time orientation
(Fig. 1c). This similarity enables us to develop an energy model
for changing disparity by cascading the disparity energy model
with the motion energy model.

Assume that we have the outputs of a phase tuned disparity en-
ergy neuron population at a particular retinal location (x, y): Ed(-
x, y, t, Dw). We extract an orientation in phase-time by using a
phase-time filter that is the cascade of a phase filter with a tempo-
ral filter. The output of the phase filter is given by

Nðx; y; tÞ ¼ 1
2p

Z p

�p
ejDwEdðx; y; t;DwÞdðDwÞ ð12Þ

This is very similar to Eq. (8) with three key differences. First,
the integration over phase (Dw) replaces the integration over space
(x). Second, we eliminate the Gaussian envelope which was used to
limit the spatial extent of the RF. The envelope is not needed here
because phase is naturally limited between �p and +p. Third, we
replace the spatial frequency Xx by unity to match the natural
phase periodicity in 2p. The temporal filter is exactly the same as
that described previously:
Yðx; y; tÞ ¼
Z

hðdja2; s2;XtÞNðx; y; t � dÞdd ð13Þ

where hðtja; s;XtÞ is given in Eq. (10). By analogy with the motion
energy filter, this filter is tuned to a preferred phase velocity of �Xt.

The changing disparity energy is defined as the squared magni-
tude of the output of the phase-time filter, jYðx; y; tÞj2. As a final
step, we perform a moderate amount of spatial pooling by convolv-
ing the output with a circularly symmetric 2D Gaussian in x and y
with standard deviation 2rx. Spatial pooling is commonly applied
in energy models, in part to account for the larger receptive fields
of complex cells in comparison with simple cells, and in part to im-
prove performance (Fleet, Wagner, & Heeger, 1996; Heeger, 1987;
Zhu & Qian, 1996).

When presented with a stimulus moving in depth, the peak of
the response in the population shifts over time. If the stimulus is
a sinusoidal grating with spatial frequency Xx, the shift is equal
to the change in disparity times the spatial frequency Xx (Eq.
(5)). Since the spatial filter passes frequencies around Xx, we will
refer to

vpref
d � Xt

Xx
ð14Þ

as preferred rate of changing disparity. As with the motion energy
model, we define the opponent energy to be the difference between
the changing disparity energy for two opposite preferred rates of
changing disparity by choosing temporal frequencies of opposite
sign: Xt for a neuron tuned to approaching MID, i.e. increases in dis-
parity, and �Xt for a neuron tuned to receding MID, i.e. decreases in
disparity.

In our experiments, we will examine the performance of three
versions of the CD energy model, which differ according to the
temporal dynamics of the disparity energy stage. Model I, the sim-
plest, assumes that the disparity energy is computed based only
upon the current frame input. This is equivalent to the assumption
that the temporal receptive field profiles of the disparity energy
neurons are Dirac delta functions. Model II assumes that the dis-
parity energy neurons have temporal receptive fields given by
the probability density function of the Gamma distribution in Eq.
(7). Model II reduces to Model I, when the time constant s is zero.
Model III adds the normalization step to Model II.
3. Methods

In our simulations, we discretize space and time into pixels and
frames. One arcmin of visual angle corresponds to one pixel. One
second corresponds to 120 frames.

Unless otherwise noted, we use the following model parame-
ters. For the spatial receptive fields in the disparity energy stage,
we use vertical orientations with center spatial frequency tuning
of 3.75 cycles per degree, consistent with the range of 3–5 cycles
per degree for macaque cortical cells serving the fovea (De Valois,
Albrecht, & Thorell, 1982). We choose the spatial bandwidth to be
1.95 octaves, consistent with the range of 0.5–2.5 octaves for V1
neurons (Dayan & Abbott, 2001). The aspect ratio is two. In discrete
space, this corresponds to Xx ¼ 2p=16 radians per pixel, rx � 5
pixels, and ry � 10 pixels.

For the experiments including the temporal integration into the
disparity energy neurons, we use temporal filter parameters a1 = 1
and values of s1 ranging between 20 and 100 ms. In cases where
the value is fixed, we use s1 = 30 ms. For the experiments including
normalization, the parameters range from rn = rx to rn = 5rx for
the spatial averaging and sn = 20 ms to sn = 100 ms for the tempo-
ral averaging. In cases where these values are fixed, we use nomi-
nal values of rn = 3rx and sn = 80 ms.
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For the temporal filters of the second stage, we choose the
shape parameter a = 1, the time constant s = 51.8 ms, and the cen-
ter temporal frequency Xt = 2p(4 Hz). The resulting filters have a
bandwidth of 2.93 octaves, consistent with the peak frequency
around 4 Hz and attenuation at around 10 Hz found in cortical cells
(Dayan & Abbott, 2001). In discrete time, this corresponds to
Xt ¼ 2p=30 radians per frame and s = 6.22 frames. With these
parameters, the preferred changing disparity rate is 1.067 deg/s
(0.533 pixels per frame). We compute the outputs of two changing
disparity energy models tuned to approaching and receding stim-
uli, as well as their difference (the opponent energy).

We choose the parameters of the random dot stimuli for consis-
tency with the experiments reported in (Brooks & Stone, 2004,
2006). Dot sizes are 3 arcmin in diameter (3 pixels), which is sim-
ilar to the dot size 2.5 � 3.7 arcmin used in the experiments. The
images cover 2.1� by 2.1� of visual space (128 � 128 pixels). To
avoid boundary effects, we do not consider the responses of neu-
rons whose receptive field centers closer than 0.27� (16 � 3rx pix-
els) from the boundary. Dot densities vary between 1% and 50%. For
the DRDS stimuli, the dot pattern changes at 120 Hz (every frame).

In replicating the psychophysical experiments, we use stimuli
with depth trajectories that are both direct with identical but
opposite speeds in the two monocular images or oblique with
non-identical monocular speeds. Rates of change in disparity range
between �2 and 2 deg/s (�1 and 1 pixel/frame) in units of 0.2 deg/
s, which covers the range of stimuli (�1 to 1 deg/s) used in the
experiments.

In order to compute tuning curves, we average the changing
disparity energy over 100 ms (13 � 2s frames) after the binocular
images coincide at fixation. For each changing disparity rate, we
collect the time averaged responses from a 17 � 17 rectangular ar-
ray of 289 neurons whose RF centers are spaced by 5 arcmin
(5 � rx pixels) from each other, and at least 16 arcmin (16 � 3rx

pixels) from the image boundary over 10 trials. We fit the 2890
data points to the Gamma distribution using Maximum Likelihood
Estimation (MLE). We define the tuning curve to be the means of
the estimated distributions as a function of the changing disparity
rate. The opponent energy tuning curve is the difference between
the means of changing disparity energy units tuned to approaching
and receding stimuli.

We compute a putative speed discrimination threshold differ-
ence as the ratio of the slopes of the opponent energy curves near
the origin. This ratio is based upon the assumption that discrimina-
tion is done by determining whether the opponent energy exceeds
a threshold, Eth. For rates of changing disparity near zero, the
opponent energy is approximately linear with the changing dispar-
ity. For a given threshold on the opponent energy, the correspond-
ing changing disparity rate discrimination threshold is inversely
proportional to the slope. Thus, the speed discrimination threshold
ratio is the ratio of the slopes a:

v th
DRDS

v th
RDS

¼ aRDS

aDRDS
ð15Þ

We compute the slopes by applying a linear fit to the opponent
energy curves in the range from � 1

2 vpref
d to 1

2 vpref
d , where the oppo-

nent energy curves are approximately linear.
4. Results

In the first set of experiments described here, we examine the
behavior of Model I, the simplest changing disparity energy model.
This case is the most straightforward extension of the disparity en-
ergy model to changing disparity model, and thus serves to eluci-
date the key characteristics of the model. We examine the tuning
characteristics of a changing disparity energy neuron, as well as
the difference in its responses to RDS and DRDS stimuli. We show
that the properties of the model are robust to changes in the tuning
parameters of the model, as well as the stimulus trajectory.

In the second set of experiments, we examine Model II, which
incorporates local temporal integration into the disparity energy
neurons. This makes the model more physiologically plausible,
since real V1 disparity selective neurons have finite temporal ker-
nels (DeAngelis et al., 1999, 1993; Ohzawa et al., 1996). However,
we find that this simple extension has some drawbacks, which are
ameliorated by the addition of normalization in Model III. In a final
experiment, we examine the effect of varying the dot density in the
stimuli.

4.1. Model I

4.1.1. Tuning characteristics
The tuning characteristic of a Model I CD energy neuron tuned

to approaching motion in response to RDS stimuli is illustrated in
Fig. 2a. The CD energy model exhibits preference to the motion
in depth but is relatively less sensitive to the lateral motion. The
maximum energy response appears along the lines
vd = vL � vR = 1 deg/s, as evident in the cross-sectional plot for the
case vL + vR = 0 deg/s shown in Fig. 2b. On the other hand, cross-
sections in the orthogonal direction (vd = vL � vR = 1 deg/s) are
much flatter, as shown in Fig. 2c.

4.1.2. Comparison between RDS and DRDS stimuli
By applying the Gamma distribution fitting to the 2890 data

points, we estimate the means of the changing disparity energies
at each stimulus changing disparity rate for both RDS and DRDS.
The estimated means are plotted in Fig. 3a and b where the error
bars indicate the upper and lower bound of the 95% confidence
intervals. The opponent energies, which are the difference between
the estimated means of the approaching and receding changing
disparity energies, are plotted in Fig. 3c.

Note that the slope of RDS curve for changing disparity rates
near zero is larger than DRDS curve. The speed discrimination
threshold ratio for DRDS versus RDS stimuli obtained in these
experiments is about 2.0, which is in the ratio range from 1.4 to
2.4 in Brooks’ experiments, although a bit larger than their average
value of 1.7 (Brooks & Stone, 2004).

The difference in speed discrimination thresholds for DRDS and
RDS is maintained for other choices for model parameters that are
consistent with cortical physiology. Plots of the speed discrimina-
tion threshold ratios for different choices of spatial and temporal fre-
quencies in the model, shown in Fig. 4a and b, are relatively constant.
For the data in Fig. 4a, we vary the spatial filter frequency between 3
and 5 cycles per degree ð2p=20;2p=18;2p=16;2p=14 and 2p=12
radians per pixel), the range observed for cortical cells serving the
macaque fovea (De Valois et al., 1982). The spatial bandwidth and
aspect ratio are held constant at 1.95 octaves and 2. The temporal
tuning parameters are unchanged. The threshold ratio varies be-
tween 1.8 and 2.1. For the data in Fig. 4b, we vary the temporal filter
frequency in a range from 3 Hz to 6 Hz (2p=40;2p=38;2p=36,
2p=34;2p=32;2p=30;2p=28, 2p=26; 2p=24;2p=22;2p=20 radians
per frame). The relative temporal bandwidth is held constant. The
spatial tuning parameters are unchanged. The threshold ratio varies
between 2.0 and 2.1, indicating that the ratio presented here is
robust to model parameters. In both cases, the range of threshold
ratios is within the range of 1.4–2.4 reported by Brooks and Stone
(2004).

4.1.3. The effect of varying 3D trajectory
The tuning characteristics of the Model I CD energy neuron

shown in Fig. 2a–c indicate that the changing disparity energy is
relatively insensitive to lateral motion. This suggests that the per-
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Fig. 2. Tuning characteristics of the CD energy neuron. 1st row: Model I; 2nd row: Model II; 3rd row: Model III. (a) Contours of the energy generated by the approaching
changing disparity neuron in response to RDS stimuli by jointly varying vL and vR. Each diagonal cross-section from bottom-left to upper-right corresponds to a set of inputs of
the same changing disparity rate but various lateral motion rates. Each diagonal cross-section from bottom-right to upper-left corresponds to a set of inputs of the same
lateral motion rate but various changing disparity rates. (b) Cross-section of (a) along the line vL + vR = 0 deg/s, versus the changing disparity rate vd. The maximum energy
response appears when vd = vL � vR = 1 deg/s. (c) Cross-section of (a) along the peak line vd = 1 deg/s, versus the lateral motion rate. (d–f) Tuning characteristics of Model II CD
energy neuron, shown in a similar format as in (a–c). All stimuli and model parameters are the same as those for (a–c), except that a temporal dynamic of the disparity energy
neuron is incorporated. The roll off in (f) is much sharper than in (c). (g–i) Tuning characteristics of Model III CD energy neuron, shown in a similar format as in (a–c). All
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to (a–c) than those shown in (d–f). Only one trial of data (289 data points) is used in this figure.
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formance of the model outputs on the stereomotion speed discrim-
ination task for stimuli with oblique trajectories will be similar to
the outputs for stimuli with direct trajectories.

To verify this, we perform simulations where the model param-
eters are exactly the same as the standard settings, but with lateral
motion added to the input images. Five types of stimuli are used, as
Fig. 8 in (Brooks & Stone (2004)). Direct stimuli (D) feature identi-
cal but opposite monocular speeds, while oblique stimuli feature a
ratio of monocular velocities of �1:2 (Hit L), �2:1 (Hit R), 1:2 (Miss
L) or �2:�1 (Miss R). Hit stimuli have opposite monocular direc-
tions. Miss stimuli have the same monocular directions. The differ-
ent trajectories correspond to different 1D cross-sections of the
(vL, vR) space, as illustrated in Fig. 5e.

Fig. 5a and b plots the changing disparity opponent energy for
the different stimulus trajectories as a function of the changing dis-
parity rate, which is the projection of the distance along the cross-
section in Fig. 5e onto the line vL = �vR. We find that the curves for
different trajectories do not vary for either RDS or DRDS stimuli. In
particular, the slope of the curve near the origin, which is used to
determine v th

d , is nearly the same in all cases. Consequently, the
speed discrimination threshold ratios for the five trajectories are
all 2.0. This is consistent with the idea that the changing disparity
energy model is relatively insensitive to fronto-parallel motion.
The result is also consistent with Brooks’ observation that the di-
rect or oblique stimuli show no significant difference in stereomo-
tion speed discrimination thresholds (Brooks & Stone, 2004).

The slight drop in the response for the Miss stimuli at larger in-
put changing disparity rates is due to the fact that the model is not
totally invariant to lateral motion, as shown in Fig. 2c. The cross-
sections for the Miss stimuli pass through the upper-right and low-
er-left regions in Fig. 2a or Fig. 5e.

4.2. Models II and III

4.2.1. Model II: adding temporal integration
Fig. 2d–f shows the tuning characteristics of a Model II CD en-

ergy neuron that has temporal dynamics with time constant
s1 = 30 ms and is tuned to approaching motion. Compared with
Model I neuron (Fig. 2a–c), the Model II neuron exhibits a prefer-
ence to the same motion in depth, but is less selective and has
an increased sensitivity to lateral motion. The cross-sectional plot
for vL + vR = 0 deg/s in Fig. 2e shows that the maximum energy re-
sponse still appears along the line where vd = vL � vR = 1 deg/s.
Fig. 2f plots the cross-section of the tuning characteristic that
passes through the peak line in the orthogonal direction. In
comparison with the Model I neuron (Fig. 2c), the roll off is much
sharper. Stimuli with higher lateral velocities have faster temporal
variations, which are reduced by the temporal integration
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introduced by Model II. The blue curve in Fig. 6a plots the speed
discrimination threshold ratio as a function of the time constant
of the temporal dynamics. The ratio increases rapidly, quickly
exceeding the range of ratios observed in psychophysical experi-
ments (Brooks & Stone, 2004). Because this model exhibits such
high sensitivity and results in predictions at odds with the exper-
imental results, we do not consider it in the remainder of the
experiments.
4.2.2. Model III: adding temporal integration and normalization
The rapid increase in the threshold ratio with time constant can

be offset by including normalization (Model II), where the spatial
and temporal smoothing parameters used in computing the nor-
malization factor are rn = 3rx and sn = 80 ms. Although the thresh-
old ratio still increases, it remains within the range of values
observed in psychophysical experiments (Brooks & Stone, 2004)
for all time constants between 0 and 100 ms, as shown by the
red curve in Fig. 6a. Increasing the amount of temporal and/or spa-
tial averaging of the normalization factor increases the speed dis-
crimination threshold ratio. Fig. 6b plots the threshold ratio as a
function of rn as sn varies, where the amount of temporal integra-
tion by the disparity energy neuron is fixed at s1 = 30 ms. The ra-
tios remain within the range of values observed psychophysically
over a wide range of averaging parameters.

Fig. 2g–i shows the tuning characteristics of the Model III CD
energy neuron that includes both temporal integration and nor-
malization (s1 = 30 ms, rn = 3rx, sn = 80 ms). The tuning character-
istics of the Model III neuron are more similar to those of the Model
I neuron (Fig. 2a–c) than are the tuning characteristics of the Model
II neuron (Fig. 2d–f). In particular, the roll off for lateral motion
(Fig. 2i) is much shallower (compared with Fig. 2f), although not
as shallow as that for Model I (Fig. 2c). Because the tuning curves
are so similar, it should not be surprising that the threshold ratio
of Model III exhibits a similar invariance to changes in spatial
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frequency (Fig. 4c) and temporal frequency (Fig. 4d) as the Model I
neuron (Fig. 4a and b). In addition, the slope of the opponent CD
energy curve near the origin is also unchanged with stimulus tra-
jectory (Fig. 5c and d). For the DRDS stimulus, the opponent CD en-
ergy curves are essentially identical for the different trajectories.
For the RDS stimulus, the positive peak and negative trough in
the opponent CD energy for the Miss trajectories occur at lower
velocities (�0.8 deg/s) and have lower magnitude relative to the
peak/trough for Hit and Direct trajectories than observed in Model
I. This is due to the faster roll off of the tuning characteristic for lat-
eral motions.

4.2.3. The effect of varying dot density
One of the advantages of building an explicit model that oper-

ates directly on binocular image sequences is that we can use the
model to make predictions about the effect of varying other stim-
ulus parameters. In the psychophysical experiments discussed
above (Brooks & Stone, 2004), the dot density was held constant
at 50%. In this final set of experiments, we examine the effect of
changing the dot density on the threshold ratio. Except for dot
density, other settings (e.g., model parameters, stimulus contrast
and velocity) are kept the same as in our previous experiments.
We consider only Model III.

Fig. 7 shows the output of the CD energy neurons tuned to
approaching or receding stimuli as a function of stimulus velocity
for inputs with different temporal coherence (RDS versus DRDS)
and dot density (50% and 1%). At lower dot density, the RDS and
DRDS curves increase in magnitude. The fewer dots in the stimulus
decrease the magnitude of the raw disparity energy, but this ap-
pears to be offset by a relatively larger decrease in the normaliza-
tion factor. Estimating the discrimination threshold by the slope of
the opponent energy, we find that the threshold ratio increases to
3.1 at 1% density compared with 2.0 at 50% density. The relation-
ship between the threshold ratio and the dot density depends upon
the amount of spatial and temporal averaging used in computing
the normalization factor, with more dependency upon the amount
of spatial averaging. Fig. 6c shows the variation of the threshold ra-
tio as the dot density varies from 1% to 50% for differing values of
the spatial averaging parameter rn. For rn > 2rx, the threshold ratio
increases with dot density. For smaller rn, the threshold ratio de-
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creases with dot density. On the other hand, the qualitative depen-
dency of the threshold ratio on dot density does not vary much
with the amount of temporal averaging sn. As shown in Fig. 6d,
increasing sn does not change the shape, but simply results in an
upward shift in the ratio.

5. Discussion

We have presented a biologically plausible changing disparity
energy model whose outputs are consistent with prior psycho-
physical experiments showing higher stereomotion speed discrim-
ination thresholds for DRDS than for RDS stimuli (Brooks & Stone,
2004). Threshold ratios obtained by varying the model parameters
over ranges consistent with cortical physiology are all within the
range of threshold ratios reported experimentally. Previously, this
higher speed discrimination threshold for DRDS than for RDS has
been taken as support for the use of an IOVD mechanism in the bio-
logical perception of stereomotion. Our finding that this threshold
ratio is higher even in our changing disparity energy model sug-
gests that the higher threshold by itself does not necessarily pro-
vide strong support for the use of an IOVD mechanism. Adding
local temporal integration into the receptive field profiles of the
disparity energy neuron stage increases the threshold ratios be-
yond those observed psychophysically. However, incorporating
normalization keeps the threshold ratios within the psychophysi-
cal range. A testable prediction generated by our model is that
threshold ratios may vary as the dot density used in the RDS and
DRDS stimuli decreases. In our model, the variation in the thresh-
old indicates the extent of the spatio-temporal window used in
computing the normalizing factor.

5.1. Higher speed discrimination threshold

We can give an intuitive explanation for the higher threshold
observed in our model by examining the complex-valued output
of the phase filter, N(x, y, t), which is the input to the temporal fil-
ter. This output rotates in the complex plane as the image disparity
changes over time. The temporal filter in the second stage is selec-
tive to a particular direction and speed of rotation. Since the RDS
stimulus is temporally coherent, the magnitude of N(x, y, t) re-
mains fairly constant as it rotates, providing a consistent input to
the temporal filter. On the other hand, since DRDS is temporally
incoherent, dots may appear, disappear, and reappear frequently
within the spatial receptive field. This causes the magnitude of
N(x, y, t) to change much more rapidly and unpredictably.

The average energy in the phase filter output for both the RDS
and DRDS stimuli is approximately the same. However, the ampli-
tude modulation for the DRDS stimuli means that this energy is
spread over a much wider frequency range than for the RDS stim-
uli. Fig. 8a–d compares the power spectral density of N(x, y, t) for
RDS and DRDS inputs at four different rates of changing disparity.
We estimate the power spectral density using maximum likelihood
estimation assuming a Gamma distribution. The data is calculated
by applying a 32-point FFT with zero padding to 13 frames ob-



DRDSRDS

50%

1%

-2 -1 0 1 2
0

0.2

0.4

0.6

0.8

1

changing disparity rate (deg/sec)

C
D

 e
ne

rg
y

RDS (pos)
RDS (neg)

-2 -1 0 1 2
0

0.2

0.4

0.6

0.8

1

changing disparity rate (deg/sec)
C

D
 e

ne
rg

y

DRDS (pos)
DRDS (neg)

-2 -1 0 1 2
0

0.2

0.4

0.6

0.8

1

changing disparity rate (deg/sec)

C
D

 e
ne

rg
y

DRDS (pos)
DRDS (neg)

-2 -1 0 1 2
0

0.2

0.4

0.6

0.8

1

changing disparity rate (deg/sec)

C
D

 e
ne

rg
y

RDS (pos)
RDS (neg)

Fig. 7. Responses of Model III CD energy neurons tuned to approaching MID (blue curves) and receding MID (red curves) for different combinations of stimulus type: RDS/
DRDS (left/right column), and dot density: 50%/1% (upper/lower panel). Error bars indicate the upper and lower bound of the 95% confidence intervals obtained by Gamma
distribution fitting. (For interpretation of the references to colour in this figure legend, the reader is referred to the web version of this article.)

0.5

1

1.5

2

PS
D

RDS
DRDS

0.5

1

1.5

2

PS
D

RDS
DRDS

190 Q. Peng, B.E. Shi / Vision Research 50 (2010) 181–192
tained at each of the neurons on the 17 � 17 pixel grid used in our
other experiments over 10 trials. The spread in power spectral den-
sity reduces the changing disparity energy output for DRDS stimuli,
since much of the energy in N(x, y, t) is blocked by the bandpass
temporal filter of the second stage, whose frequency response
magnitude is shown in Fig. 8e.
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5.2. Temporal integration

At first glance, we might expect that the threshold differences
between the RDS and DRDS stimuli to be reduced by the addition
of the temporal integration. Intuitively, by smoothing out the rapid
temporal variations in the DRDS stimulus, the temporal integration
makes it appear more like an RDS stimulus. In fact, our experi-
ments reveal that the opposite is true. Adding temporal integration
increases the threshold ratio, and even a moderate amount of inte-
gration increases the threshold ratio beyond those observed exper-
imentally. While it is true that local temporal integration smoothes
out the rapid temporal variations in the DRDS stimulus, this also
decreases the energy in the signal being passed to the second stage.
This reduces the CD energy, which in turn reduces the slope of the
opponent CD energy, thus leading to dramatically increased
threshold ratios.
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Fig. 8. Explanation of the higher threshold ratio. (a–d) Power spectrum analysis of
the phase filter output N(x, y, t), by simulating Model III CD energy neuron. Results
of four stimuli moving at changing disparity rate of (a) �1, (b) 0, (c) 1, (d) 2 deg/s
are shown here as examples. Error bars indicate the upper and lower bound of the
95% confidence intervals obtained by Gamma distribution fitting. (e) The frequency
response magnitude of the temporal filter in the second stage shows that the filter
blocks all but a narrow range of frequencies.
5.3. Normalization

Our results with Model III show that including normalization
dramatically reduces the increase in the threshold ratio, keeping
it within the bounds observed psychophysically over a range of
biologically plausible time constants (0–100 ms) in the disparity
energy stage. Normalization is a common component of models
of cortical neurons (Albrecht & Geisler, 1991; Carandini et al.,
1997; Heeger, 1992). The normalization factor we use pools
information not only over disparity, but also over a spatial neigh-
borhood of the cell, consistent with evidence that surround
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suppression is divisive (Muller, Metha, Krauskopf, & Lennie, 2003).
Functionally, it has also been shown to improve estimation and
validation of disparity estimates (Tsang & Shi, 2007, 2008).
Intuitively, the dramatic reduction in response to the DRDS stimu-
lus due to temporal averaging described above will be experienced
by all neurons in a population of neurons tuned to different dispar-
ities and different neighboring spatial locations. Thus, we can
compensate for this overall reduction in a consistent way by
normalizing by the local time average across these neurons.

5.4. Changing dot density

A testable prediction suggested by our model is the relationship
between the speed discrimination threshold ratio and the dot den-
sity, and its strong qualitative dependence upon the size of the spa-
tial neighborhood used in computing the normalization factor. It
has been reported that the diameter of the suppressive surround
in V1 neurons typically varies from about twice the size over which
they summate to about 13 times that (Levitt & Lund, 2002). In our
model, when the size of the normalization neighborhood is twice
that of the surround (rn = 2rx), there is no variation in the thresh-
old ratio with dot density. However, for larger normalization
neighborhoods, the threshold ratio increases as dot density de-
creases. Thus, if our model is representative of the actual computa-
tions being performed by the brain, then the dependency is
indicative of the size of the spatial surrounds of the disparity selec-
tive neurons involved in the computation of the changing disparity
cue.

5.5. Cascade model structure

The cascade of a disparity selective stage and a subsequent mo-
tion-like processing stage and more importantly, the detailed con-
nectivity between them is another strong prediction of our model.
Although we cannot yet find evidence in the literature for the pro-
posed pattern of connectivity, there is evidence that stereomotion
processing is performed in a cascade structure as suggested by our
model. Although areas V1 and MT do contain neurons selective for
disparity or motion, electrophysiological studies have not found
strong evidence for stereomotion selective cells in these areas
(Maunsell & Van Essen, 1983b). However, electrophysiological
studies of higher areas have found neurons that appear to be selec-
tive for stereomotion in both cat (Akase, Inokawa, & Toyama, 1998;
Cynader & Regan, 1978, 1982; Toyama, Komatsu, Kasai, Fujii, &
Umetani, 1985) and monkey (Poggio & Talbot, 1981; Zeki, 1974).
Recent fMRI studies have found evidence for stereomotion selec-
tivity in human MT+ (Rokers, Cormack, & Huk, 2009) and areas
anterior to it (Likova & Tyler, 2007). The area MT+ in human is of-
ten thought of as being analogous to both areas MT and MST in ma-
caque, suggesting that perhaps area MST or an area anterior to it
may be involved in stereomotion processing. Area MT has strong
projections to area MST (Desimone & Ungerleider, 1986; Maunsell
& Van Essen, 1983a), suggesting that plausible locations for the
first disparity selective processing stage of our model would be
in areas V1 or MT, and plausible locations for the second stage of
processing would be in area MST or further anterior. Consistent
with this idea, Likova and Tyler (2007) suggest that ‘‘the stereomo-
tion effect is ‘computed’ from the temporal modulations of dispar-
ity specific signals” from disparity selective populations in the
primate motion area. Rokers et al. (2009) suggest that area ‘‘V1
likely serves to extract the building blocks for three-dimensional
motion computations that are ultimately performed in extrastriate
areas.” Evidence from a study using event related potentials also
supports the idea of a bottom-up computation for motion in depth
(Lamberty, Gobbelé, Schoth, Buchner, & Waberski, 2008).
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