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Suppose that a relational system 3 can be exhausted (in an obvious sense) by 
a family &, w E S2, of subrelational systems, each of which can be mapped 
by a homomorphism onto a subrelational system PW of a second relational 
system 9. We show that, under suitable finiteness conditions, there is a homo- 
morphism from 8 into 5” which finitely agrees with the homomorphisms 
mapping ZU onto yZ ~ A similar result holds for isomorphisms. 

1. INTRODUCTION 

‘This note has its origin in nonstandard proofs of the Rado Selection 
Lemma, the ErdGs-De Bruijn coloring theorem and the infinite analog 
of the marriage lemma by Luxemburg [a]. Usually the Selection Lemma 
is used to prove the coloring theorem but Luxemburg showed how they 
can both be proved in essentially the same way using nonstandard methods~ 
It became clear that many results of “finite character” type could be 
established by uniformly simple nonstandard arguments. Such results are 
usually proved using some variant of the Axiom of Choice (as in the many 
different proofs of the infinite analog of the marriage lemma or the 
selection Lemma). In particular it was immediately evident that using 
no~sta~~a~d techniques one could generalize the ~e~ect~o~ emma to 
relations systems which answered a question of 

The main theorem of the paper collects these and other Jesuits under 
one forn~~t~ It says, roughly speaking, that under s~i~b$e ~~~te~ess 
conditions, if a given re~~~~o~a? system 32 can be ex~~a~~~te~ by a family of 
subrelatiol~al systems (.@J and each snbre~at~onal system gO is mapped 
~omornor~hica~l~ into another relational system Y, then there is a 
homomorphism from 92 into 2’ which finitely agrees with the sub- 
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homomorphisms mapping 9w into Y (we call this property synergy). 
A similar result holds for isomorphisms. 

An application of the theorem yields Whitney type theorems for 
homomorphisms of families of sets, generalizing results of Berge and 
Rado [l]. We are also able to make some applications to graph theory. 
These corollaries could, of course, be proved directly using the same 
nonstandard technique which establishes our main theorem. 

One might well ask what has taken the place of the Axiom of Choice 
in the nonstandard proofs. The answer is that something very close to the 
Axiom of Choice (to be precise, the Boolean Prime Ideal Theorem, which 
is slightly weaker than the Axiom of Choice) is used in demonstrating the 
existence of nonstandard models, but is not further used in the nonstandard 
arguments themselves. Our results could in fact be established using 
compactness arguments such as Tychonoff’s Theorem. The advantage of 
nonstandard methods is that they are almost invariably simpler and allow 
an intuitive grasp of the problem which often leads to the discovery of 
new results. 

2. THE THEOREM 

An n-ary relation on a set Xis a set of n-tuples in the n-fold product of X. 
Some n-ary relations R come from n-ary operations; this will be the 
case if the n-tuples in R have the property that (x1 , x2 ,..., x,-~ , a) = 

(x1 > x2 1..‘, x,-~ , b) implies that a = b. Similarly, mappingsf: X -+ X can 
be identified with pairs (x, y) such that y = f(x). Sets are defined by 
unary relations. 

A relational system 92 = (X, (R&) consists of a set X and a family 
(R&, of mi-ary relations on X. If 8 C X and f _C I the relational system 
92 = <x GQiEI) is called a subrelational system of W if for i E: 1 the m,-ary 
relation 2& on x is the restriction of Ri to 2, i.e., consists of precisely 
those m,-tuples in Ri all of whose components are in 2. With this under- 
standing we will usually write $ as Ri . 

Let 92 = (X, (R&) and Y = (Y, (,QjeJ) be two relational systems. 
A map TTT: I+ J is 93 - 9 admissible if whenever Ri is as n-ary relation 
then &ci) is also n-ary, and if Ri corresponds to an operation or mapping 
then S&) also corresponds to an operation or mapping. A homomorphism 
is a pair (j”, r) of maps where f: X -+ Yandr:I-+ Jis9 - Yadmissible 
and if (x1 ,..., x,i) E Ri then (f(x&...,f(x,,)) ES,(~) . We write (f, r): 
52 +- 9. (f, T) is a monomorphism (epimorphism, isomorphism) if both f 
and v are monomorphisms (epimorphisms, isomorphisms). If I = Jand Z- 
is the identity map then (f, 7r) is called a strong homomorphism (or 
monomorphism, epimorphism, or isomorphism). 



SLI~~OX that 3, = (X, , (IQi,, ) and x, = (Y, , (5’j)j,gw), w  E Q, are 
families of subrelational systems of% = (X, (I&> and 9 = (Y, (SJjeJ], 
and (fw . 72-J: w, ----f Pw , w  E Q, is a family of homomorphisms of these 
subrelational systems. Question: When does there exist a homomorphism 
(.f; 7~): 3 -+ ..4” which is somehow consistently related to the homo- 
morphisms (fw , TJ? To be precise we ask for the following .finitistic form 
of consistency: To each pair of finite subsets F and G of X and I respec- 
tively there exists an w  E Q so that domain .pI, 3 F, domain v”, 3 G, 
.f / F ~7 Jli j F and r 1 G = ?T, j 6. We then say that f’ is synergistically 
reluted to the (fw ) T,) (synergy means working together). The existence of 
such an .f will rest on a certain type of finiteness condition which the 
(fw , v,) must satisfy. A family {ZU , CD E Q> of subsets of a set Z exhaust Z 
if given any finite set PC 2 there is an o E Q such that PC Z, . Let Z, , 
o E Q exhaust Z and let rj w: w  E 8 be a family of not necessarily single- 
valued maps +w: Z, -+ W. The family (&, , w  E S> is called orbit jinite 
if to each x E Z there is associated a finite set F, C W which contains the 
images &(x) for all w  E Q whenever they are defined. Our main theorem is 

THEOREM 1. Let 92 = (X, (IQ,,) and Y = (Y, (Sj)jEJ) be relational 
systems and{B’, = (X, , (I&t~), w G G’} and{yU = (Y, , (§‘j)jEJ,), w E Q) 
be families of subrelational systems with (X, U I, , w E Q} exhausting 
X v I. Suppose that (fw , n,,): 92, ,+ 9, are homomorphisms such that 
{.fw , (0 E Q> cm? fro, , w E .Q} are orbit$nite. Then there is a homomorphism 
(j; 7i-1: w + .cP which is synergi.~tically related to the (,fw , T,,), w E $2. If 
the (fUJ , T,,) are monomorphisms, then (j; rr) is a monomorphism. If the 
(J$ , T,) m’e epimorphisms or isomor~hisms, { f ;19 w E G> and jv;l, (n) E !Z?> 
are orbit jrrite, and {X0, U Y, U 1, U .3,, w E G} exhausts X U Y U I U J, 
then (f, TI-) is an e~i~~or~hi~~rn or i.somorphi~sm. If I = J, I(,, = J, and 

VI, 2 v,,), w E Q, is strong (i.e., nCfi = identity) then (f, T) is strong. 

nly the most eleme ry aspects of nonstandard analysis will be used 
oving the theorem ere is a t~~~~~bna~[ sketch ---for details see [4& 

A higher order mat icaii structure i/81 =: (A, (I$)&-) is a set k 
together with a collectj~ In contrast to re~a~io~a~ 
systems (or first order structu an be of higher “type.” 
For example a subset of A can be defined by a unary relation such as we 
have already encountered in relational systems (technically such a relation 
is of type (o)), whereas a collection of subsets of A can be defined by a 
unary relation of higher type (indeed of type ((0))). The types are defined 
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inductively [4, Sect. 61. The notion of type only makes formal the familiar 
distinction between the various kinds of entities which can occur in the 
mathematical structure over a basic set A. 

Given a mathematical structure &?’ = (A, (&&) Robinson establishes 
the existence of a nonstandard model *J&’ = (*A, (*&)7B*T) of &’ which 
is related to J?’ in the following way: 

A. A is a subset of *A. 

B. To every relation B, in &Y there corresponds the relation “B, in *& 
which is of the same type as B, . For example, to a subset Kof A corresponds 
a subset *K of *A, to a collection of subsets (K, , w  E a> of A corresponds 
a collection of subsets {*K, , w  E *L?} of *A, to a mapping f: &? -+ Y 
corresponds a mapping *$ W -+ *sP, etc. 

C. Transfer principle: If a given mathematical statement is true in A, 
and we replace all of the relations B, occurring in this statement by the 
corresponding relations *B, in *A, we obtain a true statement in *A. 
Conversely, if a statement involving relations *B, is true in *JS then the 
corresponding statement involving relations B, in &L is also true. 

For example, if (f, VT): 3 -+ Sp is a homomorphism then (*f, *n): 
*W --f *Y is a homomorphism. 

From the transfer principle we immediately obtain the following 
finiteness principle. 

D. If F is ajinite set in A then *F = F. For let the elements of F be 
Xl 2 x2 ,...) x, . Then the statement “x E F implies x = x1 or x = xp or . . . . 
or x = x, ” is true in 4% and hence in *J&‘. 

The following deeper result is true if *J&’ is chosen to be a special type 
of nonstandard model, namely an enlargement [4, Sect. 2.91. 

E. If CL, o E Q) exhausts Z C A then in *&’ there is an w  E *Q 
such that *Z, 3 2. 

Proof of Theorem 1. We take JZ = (A, (BT)7ET) where A = X u Y U 

I u J (disjoint union), and the relations B, include all of the relations 
necessary to discuss the problem (e.g., unary relations for the sets X, X, , 
etc., the relations in ,!33! and L%& , relations for the mappings fw , etc.). 
In *A we have *X I) X, *Y 3 Y, *I 3 I, *J 3 J. Using E and the fact that 
(Xw u 1, , w  EL?} exhausts X u I we have an & E *Q for which *X, 3 X 
and *1,3 I. For this 6 there is a corresponding homomorphism (*f, , *n-J 
with *f,: *X, -+ *Y, and *z-~: *I, -+ *Ja . We intend to restrict *f& and 
*7~~ to X and I. If x is a fixed point in X then by the orbit finiteness there 
is a finite set F, C Y so that&,(x) E F, for all w  E S. By transfer we see that 
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“f,(x) E “F, , but by ) *F, = FZ and so *f,(x) E Y, Thus the mapping 
f = *fG, 1 Xmaps Xinto Y. Similarly rr = *7ro ( Imaps lint0 J. From the 
transfer principle we see irn~l~d~ately that (f, 7r): 92 + 3’ is a homo- 
morphism. 

Let F and G be finite subsets of X and 1. Then the statement “there 
exists an w  E .!2 for which domain fw 3 F, domain n, 3 G, f 1 F = fj / F 
and 7~ j G = Z, / 6” is true in *A? (take w  = 6). By transfer back to A 
we see that (f, r) is synergistically related to the (,fU , rr,). Again, if the 
C./i;0 9 n,,) are monomorphisms then (f, 7~) is a monomorphism by transfer. 
Suppose that the (f. , VJ are epimor~hisms and that (X, u I&, u 1, u J, , 
w ~93 exhausts XU YU IU J. By E we can find an 6 E *&? so that 
*X0 3 X, *Y, 3 Y, *I, 3 I, and *J33 J. Then *f,: *X --t *Y, is an 
epimorphism so range *f, 3 Y. To show that rangef3 Y take y E Y. Then 
f;‘(y) C I$ C X for some finite set F, and all w  E “8. Thus :&,I( y) C F, 
and so *f&(x) = y for some x E X, i.e., y E range f and f is an epimorphism. 
Similarly x is an epimorphism. Finally it is easy to see that (5 r) is strong 
if the (JIU , v,) are strong. 

4. APPLICATIONS 

Using the theorem we can generalize results of Berge and Rado on 
~somor~hisms of hypergraphs [lJ In the notation of [l], let N = (X, (E&J 
and N’ = (Y, (F&,,) be two hy~ergraphs. H and 15’ are natural relational 
systems since the Ei and I?f define unary relations on X and Y. If (J; T): 
PI + H’ is a homomorphism then f: X--f Y satisfies f(&) C Fm(,‘n(i) . If 
(f, Z) is an isomorph~sm (strong isomorphism) then J’ is a bijection 
satisfying f(&) = F,ci) (f(&) = FJ i.e., H and K’ are isomorphic 
(strongly isomorphic) in the sense of [I]. Let .Q be an exhausting family of 
finite subsets of Iv J. If w  E Q let HO, = (X, 1 (E7&J and H,’ = 
(I(*“,, , (I?JjsJ,) where I, - w n I, J, = w  n .I, X, = (j (i E 1,) Ed , and 
Y, =--: (j (j ~j,,) Fi . A~~~~i~~ Theorem 1 we obtain 
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ProoJ: We could immediately apply Theorem 1 if the family {fw , w  ES> 
were orbit finite but this need not be true so we proceed as follows. Well 
order I and construct the sets l$ = E1 , I?2 = E, - E1 ,..., -& = 
Ei - (Jjcl: Ef by transfinite induction. Let I? = (X, (&.,} and H, = 
cJcu 2 &i)iEIJ where xU = lJ (i E I,) l?, . If w  E Q we define (J”; , 7rU): 
H, -+ H,’ by fm = fw / za . Now (fU, nw) is a homomorphism since 
.$ C Ei and so ~&!&) C FWW(,) for i E I, . To show that {f”, , w  E 12) is orbit 
finite let +, E X. Since the Ei are disjoint, x,, lies in some unique Z?~O . For 
any w  E ~,~Jx,J E FVu(~,) . Since the family (7rU , w  E J2} is orbit finite there 
are only finitely many sets FV,(~,) for w  E !Z’, each of which is finite so 
lJ (w E G)f^,(x,) is finite. By Theorem 1 there exists a homomorphism 
(f, r): & -+ H’ which is synergistically related to the (J”w , rr,). We want 
to show that (f, OJ) also defines a homomorphism from H to H’ which is 
synergistically related to the (fw , rw). Let F and G be finite subsets of X 
and I respectively. Then there exists an w  ED so that F C domainfw , 
G C domain 71; , fl F = fU j F and ?T / G = r, ) G. But by the definition 
of f”w , fU j F = fw / F. In particular if F = (x0), G = (iO] where x,, E Ei, , 
theni = fw(xO) E FV,(~,) = F,,(Q so (f, 7): H -+ H’ is a homomorphism 
which is synergistically related to the (SW , rJ. If the (fw, rU) are iso- 
morphisms we construct isomorphisms (J’w , rJ: &, + E-i;’ where &,’ 
is constructed from disjoint sets pi as above. The rest of the proof is clear. 

!J is usually taken to be the family of all finite subsets of I u J. In the case 
of strong isomorphisms this yields [l, Theorem 51 (plus synergy). If 
H = (1, {i)& then the case of strong monomorphism is the Rado 
Selection Lemma, whereas in the case of not necessarily strong mono- 
morphisms this yields an analog of the Selection Lemma for systems of 
distinct representatives [3]. The standard counterexample to the Selection 
Lemma [3, Sect. 4.21 shows the importance of orbit finiteness. Clearly 
Theorem 1 can be used to answer the question of Pym [3, p. 221, 
Question 51. 

We now consider an application to graph theory. A graph is a relational 
system on the set of vertices G with one relation, the relation p of incidence 
so that r(x, y) if and only if x and y are joined by an edge. In this case rr 
is irrelevant and we denote homomorphisms byf: G -+ c’. 

THEOREM 3. Let (Go, w  E I;L) and (G,‘, w  E Q] be subgraphs which 
exhaust the graphs G and G’ respectively. Suppose there exists homo- 
morphisms fo: G, + G,‘, w  E !2. If the family (fW , w  E Q> is orbit finite 
then there is a homomorphism fW: G -+ 6’ which is synergistically related 
to the (fW>. If tlze fu are monomorphisms then f is a monomorphism. rf the fW 
are epimorphisms or isomorphisms and ( f ;‘, w  E 1;2) is orbit finite, then f is 
an epimorphism or isomorphism. 



This result has an immediate application to the reconstruction problem 
for infinite graphs which will hopefully be developed in a later paper. 
There are probably many other applications of nonstandard analysis to 
infinite combinatorics and graph theory. 

In conclusion I would like to thank Professor Richard Rado for remarks which were 
very helpful in preparing this paper. 

Note added in proof. The condition that {f;‘, w E Q} and IT;*, w E Sz} are orbit finite 
can be replaced by the following condition: for each y  E Y and j G J there exist points 
x E X and i E P so that .jJ,(x) = y  and r@(i) = j for all w f  s2, when defined. Theorems 
2 and 3 can be similarly changed. 
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