IOURNAL OF COMBINATORIAL THEORY, Series A 48, 147-155 (1988)

Nearly-Neighborly Families of Tetrahedra and the Decomposition of Some Multigraphs

JOSEPH ZAKS

Department of Mathematics, University of Haifa, Haifa, Israel

Communicated by R. L. Graham

Received July 31, 1986

A family of *d*-polyhedra in E^d is called nearly-neighborly if every two members are separated by a hyperplane which contains facets of both of them. Reducing the known upper bound by 1, we prove that there can be at most 15 members in a nearly-neighborly family of tetrahedra in E^3 . The proof uses the following statement: "If the graph, obtained from K_{16} by duplicating the edges of a 1-factor, is decomposed into *t* complete bipartite graphs, then $t \ge 9$." Similar results are derived for various graphs and multigraphs. \bigcirc 1988 Academic Press, Inc.

A *d*-polyhedron is the finite intersection of closed half-spaces in E^d , having an interior point. A family F of *d*-polyhedra in E^d is called *nearly-neighborly* [13] if for every two members there exists a hyperplane, which separates them and contains a facet of each. This notion is closely related to the notion of neighborliness, where a family of *d*-polyhedra in E^d is called *neighborly* [4, 6, 7, 13–16] if every two members meet in a (d-1)-dimensional set; this set lies in a hyperplane which separates the two members and which contains a facet of each one of them. Thus a neighborly family is also nearly-neighborly.

Following [13], and slightly changing the notation, let $g_u(d, k)$ $(f_u(d, k))$ denote the maximum number of *d*-polyhedra in a nearlyneighborly (neighborly, respectively) family in E^d , in which every member has at most *k* facets. Let $g_b(d, k)$ and $f_b(d, k)$ denote the corresponding maxima, when restricted to *bounded d*-polyhedra (i.e., to convex *d*-polytopes), having at most *k* facets.

Clearly, $f_b(d, k) \leq g_b(d, k) \leq g_u(d, k)$ and $f_b(d, k) \leq f_u(d, k) \leq g_u(d, k)$.

Tietze [11] and Besicovitch [3] gave examples of infinite neighborly families in E^3 ; these examples show that $f_b(3, k)$ tends to ∞ as k tends to ∞ ; the same is true for all $d \ge 3$.

The first proof of the finiteness of $g_b(d, k)$, hence (as is easily seen) the finiteness of all the other functions as well, conjectured in [4], was given in [13]; the best known upper bound for $g_b(d, k)$ is 2^k , due to Perles [8].

Considering neighborly families of tetrahedra in E^3 , Bagemihl [1] showed that $8 \le f_b(3, 4) \le 17$; Baston [2] reduced it to $8 \le f_b(3, 4) \le 9$; both of them conjectured that $f_b(3, 4) = 8$ (and similarly that $f_b(d, d+1) = 2^d$ for all d). We [15, 16] have recently proved this conjecture, showing that no neighborly families consisting of nine tetrahedra in E^3 exist. The current situation with $f_b(d, d+1)$ is given by $2^d \le f_b(d, d+1) \le 2^{d+1}$, where the upper bound is due to Perles [8] and the lower bound in due to [14].

We wish to remark that Perles' upper bound 2^k for $g_u(d, k)$ is best in case k = d + 1 for all $d \ge 2$, i.e., $g_u(d, d + 1) = 2^{d+1}$ for all $d \ge 2$ (for details, see Remark 1 at the end of the paper). In addition, $f_u(3, 4) = g_u(3, 4) = 16$ (see Remark 2).

 $g_{\mu}(3, 4) = 16$ implies that $8 \leq g_{b}(3, 4) \leq 16$. We make the following

Conjecture. There can be at most eight nearly-neighborly tetrahedra in E^3 .

A stronger conjecture would be that $g_b(d, d+1) = f_b(d, d+1)$ for all $d \ge 3$.

One of the purposes of this paper is to reduce the upper bound of $g_b(3, 4)$ from 16 to 15, which is expressed as

THEOREM 1. There can be at most fifteen nearly-neighborly tetrahedra in E^3 .

The other purpose of this paper is to extend a theorem, due to R. L. Graham and H. O. Pollak [5]; this theorem states that K_n , the complete graph on *n* vertices, cannot be decomposed into fewer than n-1 complete bipartite graphs. Let b(G) denote the minimum number of complete bipartite graphs into which the multigraph G can be decomposed; b(G) is well defined, and it is at most equal to the number of edges in G. The Graham-Pollak theorem states that $b(K_n) \ge n-1$; in fact, it follows easily that $b(K_n) = n-1$. For extensions of this theorem, see [9, 10].

Let M_m denote a matching in K_n , consisting of *m* disjoint edges; $2m \le n$. Let $K_n + M_m$ denote the multigraph, obtained from K_n by taking all the edges of M_m as double edges.

We have the following results.

THEOREM 2. $b(K_n + M_m) \ge n - m$ for all $m \ge 1$.

THEOREM 3. Let $K_n + M_m$ $(m \ge 2)$ have a decomposition into n - m complete bipartite graphs K_{A_j,B_j} , where $|A_j| \le |B_j|$. Then, for each j, $|A_j| \ge m$ or $|A_j| \le n-2m$.

COROLLARY 1. $b(K_{2m} + M_m) \ge m$, and equality holds only for m = 2.

Proof of Theorem 2. The proof uses Tverberg's [12] proof of the Graham-Pollak theorem, in a form due to R. L. Graham (private communication). Let the vertex set of K_n be $\{1, 2, ..., n\} = N$ and let $M_m = \{(2j-1, 2j) | 1 \le j \le m\}$. Suppose $K_n + M_m$ has a decomposition into t complete bipartite graphs; denote these t graphs by K_{A_j,B_j} , $1 \le j \le t$, $\emptyset \ne A_j$, $B_j \subset N$, $A_j \cap B_j = \emptyset$, and $|A_j| \le |B_j|$ for all j. Thus we have

$$K_n + M_m = \sum_{j=1}^{t} K_{A_j, B_j} \qquad \text{(edge-disjoint sum)}. \tag{1}$$

Consider the following system of homogeneous linear equations in the *n* variables $x_1, ..., x_n$:

$$\sum_{i \in A} x_i = 0 \quad \text{for all} \quad j = 1, \dots, t.$$
 (2)

$$\sum_{i\in N} x_i = 0.$$
(3)

By squaring (3) we get

$$0 = \left(\sum_{i \in N} x_i\right)^2 = \sum_{i \in N} x_i^2 + 2 \sum_{\substack{1 \le i < k \le n \\ i \le k \ x_i x_k}} x_i x_k$$

= $\sum_{i \in N} x_i^2 + 2 \sum_{\substack{(i,k) \in E(K_n) \\ i < k \ x_i x_k}} x_i x_k$
= $\sum_{i \in N} x_i^2 + 2 \left[\sum_{\substack{(i,k) \in E(K_n) \\ i < k \ x_i x_k}} x_i x_k - \sum_{\substack{(i,k) \in E(M_m) \\ i < k \ x_i x_k}} x_i x_k \right]$
= $\sum_{i \in N} x_i^2 + 2 \left[\sum_{j=1}^i \left(\sum_{\substack{i \le k \\ i \le k \ x_i \ x_i x_k}} x_i \right) \left(\sum_{\substack{i \in B_j \ x_i \ x_i x_k}} x_i x_{2j-1} x_{2j} \right]$
= $\sum_{j=1}^m (x_{2j-1} - x_{2j})^2 + \sum_{\substack{i = 2m+1 \ x_i^2}}^n x_i^2.$

Remark that (2) has been used in the lest step, to cancel the middle term. It follows that the system (2), (3) satisfies

$$x_{2j-1} = x_{2j} \quad \text{for all} \quad j, 1 \le j \le m,$$

$$x_i = 0 \quad \text{for all} \quad i, i \ge 2m + 1.$$
(4)

The case m = 0 is just Tverberg's proof of the Graham-Pollak theorem, since (4) means that (2), (3) has only the trivial solution, thus $t + 1 \ge n$ or $t \ge n - 1$.

If m = 1, then (4) means that $x_1 = x_2$ and $x_i = 0$ for all other values of *i*; by (3), $x_1 + x_2 = 0$, therefore $x_1 = x_2 = 0$ as well. It follows that in this case, too, there exists only the trivial solution, hence $t \ge n - 1$, which for m = 1 means also that $t \ge n - m$.

Suppose $m \ge 2$; from (4) it follows that $\sum_{j=1}^{m} x_{2j-1} = \sum_{j=1}^{m} x_{2j}$, while (3) implies that $\sum_{j=1}^{m} x_{2j-1} + \sum_{j=1}^{m} x_{2j} = 0$; therefore each one of these sums is equal to 0, and we get

$$x_{2j-1} = x_{2j} \quad \text{for all} \quad j, \ 1 \le j \le m-1,$$

$$x_{2m-1} = x_{2m} = -\sum_{j=1}^{m-1} x_{2j} \quad (5)$$

$$x_{j} = 0 \quad \text{for all} \quad i, \ i \ge 2m+1.$$

Thus, the dimension of the solution set of (2), (3) is at most m-1, and the rank of the system (2), (3) is at most t+1; it follows that

 $n = \text{rank of system} + \text{dimension of solution} \leq (t+1) + (m-1) = t + m$,

therefore $t \ge n - m$.

Proof of Theorem 3. Suppose that for some $m \ge 2$ and some $n, n \ge 2m$, $K_n + M_m$ has a decomposition into n - m complete bipartite graphs K_{A_j,B_j} , $1 \le j \le n - m$. Applying the procedure of the proof of Theorem 2, we get a system (2), (3) which has the solution (5), in terms of the m - 1 parameters $\{x_{2j} \mid 1 \le j \le m - 1\}$, and so that the solution set has dimension exactly m - 1; thus the parameters are linearly independent. In particular, for each $j, 1 \le j \le n - m$ (=t), the *j*th equation in (2) does not represent a linear dependence of the parameters $\{x_{2j} \mid 1 \le j \le m - 1\}$. Due to the special coefficients in the equations in (2), it follows that

either $A_j \cap \{1, 2, ..., 2m\}$ contains at least one of the two numbers 2m-1and 2m, and for each one of them appearing in A_j there must be m-1 other integers in A_j , one of x_{2j-1} and x_{2j} for all j, $1 \le j \le m-1$,

or else $A_i \cap \{1, 2, ..., 2m\} = \emptyset$, implying that $A_i \subset \{2m + 1, ..., n\}$.

In the first case $|A_j| \ge m$, therefore $m \le |A_j| \le |B_j|$, and in the latter case $|A_j| \le n-2m$.

Proof of Corollary 1. For all $m \ge 2$, $b(K_{2m} + M_m) \ge m$, by Theorem 1. Trivially, $b(K_2 + M_1) = 2$.

Suppose that for some $m \ge 2$, $b(K_{2m} + M_m) = m$, say $K_{2m} + M_m = \sum_{j=1}^{m} K_{A_j, B_j}$, where $|A_j| \le |B_j|$. Now $2m \ge |A_j| + |B_j| \ge 2 |A_j| \ge 2m$ (by Theorem 3), so that $|A_j| = |B_j| = m$. Thus $K_{2m} + M_m$ has a decomposition into *m* copies of $K_{m,m}$, which implies that m = 2.

To see that $b(K_4 + M_2) = 2$, we observe that $K_4 + M_2$ has the following decomposition into $K_{\{1,3\},\{2,4\}} + K_{\{1,4\},\{2,3\}}$.

It is not hard to show that $b(K_6 + M_3) = 4$, using the inequality ≥ 4 , due to Corollary 1, and the decomposition

$$K_6 + M_3 = K_{\{1,3\},\{2,4\}} + K_{\{1,4\},\{2,3\}} + K_{\{5\},\{1,2,3,4,6\}} + K_{\{6\},\{1,2,3,4,5\}}.$$

In fact, the following recursive relation holds.

THEOREM 4. If p and q are natural numbers and m = p + q, then $b(K_{2m} + M_m) \leq b(K_{2p} + M_p) + b(K_{2q} + M_q) + 1$.

The proof of Theorem 4 follows easily from the decomposition of $K_{2m} + M_m$ into $K_{2p,2q} + (K_{2p} + M_p) + (K_{2q} + M_q)$.

Theorem 4 and Corollary 1 yield $b(K_8 + M_4) = 5$. The value of $b(K_{2m} + M_m)$ for $m \ge 5$ can be estimated: $6 \le b(K_{10} + M_5) \le 7$, $7 \le b(K_{12} + M_6) \le 9$, $8 \le b(K_{14} + M_7 \le 10$, and $9 \le b(K_{16} + M_8) \le 11$. In general, $2m + 1 \le b(K_{4m} + M_{2m}) \le 3m$, $2m + 2 \le b(K_{4m+2} + M_{2m+1}) \le 3m + 2$, and $4m + 1 \le b(K_{8m} + M_{4m}) \le 6m - 1$, for all $m \ge 2$.

Additional relations on $b(K_n + M_m)$ can be derived from a particular decomposition of K_n which starts with a spanning $K_{1,n-1}$; thus, in general, $b(K_n + M_m) \le b(K_{n-1} + M_m) + 1$. It follows that for a fixed m, $b(K_n + M_m) - n$ is fixed for large values of n.

We return to deal with Theorem 1, which states that $g_b(3, 4)$ can be at most 15, i.e., that there can be at most fifteen nearly-neighborly tetrahedra in E^3 . We present the

Proof of Theorem 1. The proof uses the idea of the proof in [8], as follows. Suppose there exists a nearly-neighborly family F in E^3 , consisting of 16 tetrahedra $P_1, ..., P_{16}$. Let $H_1, ..., H_s$ be the collection of all the planes in E^3 which contain facets of some P_i , and let H_j^+ and H_j^- denote the two closed half-spaces determined by H_j , $1 \le j \le s$.

The Baston matrix $B(F) = (b_{ij})$ of F is defined (see [2, 13–15]) by

$$b_{ij} = \begin{cases} 1 & \text{if } H_j \text{ contains a facet of } P_i \text{ and } P_i \subset H_j^+, \\ -1 & \text{if } H_j \text{ contains a facet of } P_i \text{ and } P_i \subset H_j^-, \\ 0 & \text{otherwise,} \quad 1 \leq i \leq 16, \ 1 \leq j \leq s. \end{cases}$$

Each row of B(F) contains precisely four non-zero terms, corresponding to the four facets of the tetrahedron; the nearly-neighborliness of F translates into the following property of B(F): for every two row indices i and k, $1 \le i < k \le 16$, there exists (at least one) column index $j, 1 \le j \le s$, such that $b_{ij} \cdot b_{kj} = -1$, i.e., $\{b_{ij}, b_{kj}\} = \{1, -1\}$.

Let C be the ± 1 -matrix, obtained from B(F) by replacing each row of B(F) with 2^{s-4} rows, so that all the zero terms in the row of B(F) are replaced by either 1 or -1, in all the 2^{s-4} different ways.

It follows easily that all the rows of C are different; C has $16 \cdot 2^{s-4} = 2^s$ rows of 1 or -1, and it has s columns; therefore the matrix C is full, in the sense that every ± 1 vector on s coordinates appears exactly once in C. It follows therefore that in each *column* of C there are equal numbers of terms of each sign. This can happen only when each column of B(F) has the same number of non-zero terms of each sign.

Following [13], let x_{ij} , $i \le j$, denote the number of columns of B(F) in which there are precisely *i* non-zero terms of one sign and *j* non-zero terms of the opposite sign.

The property of B(F) which was found can be stated: $x_{ij} \neq 0$ implies i = j. Using Lemmas 9 and 10 of [13] it follows that $x_{ii} \neq 0$ implies that that

Using Lemmas 9 and 10 of [13] it follows that $x_{ij} \neq 0$ implies that that $i, j \leq 4$; by Lemma 5 of [13] the following hold

$$2x_{1,1} + 4x_{2,2} + 6x_{3,3} + 8x_{4,4} = 64 \qquad (=16 \cdot 4), \tag{6}$$

$$x_{1,1} + 4x_{2,2} + 9x_{3,3} + 16x_{4,4} \ge 120 \qquad \left(= \binom{16}{2} \right). \tag{7}$$

This Diophantine system has three possible solutions, as given in the following table:

	<i>x</i> _{1,1}	<i>x</i> _{2,2}	<i>x</i> _{3,3}	<i>x</i> _{4,4}
1.	1	0	1	7
2.	0	2	0	7
3.	0	0	0	8

A member P_i of F is said to be of type (a, b, c, d), $a \ge b \ge c \ge d$, if there exist precisely a, b, c, and d members of F, having one facet on any one (or more) of the four planes containing facets of P_i , such that these other members of F are separated from P_i by these (four) planes. By the nearly-neighborliness of F it follows that $a + b + c + d \ge 15$, and by Lemmas 9 and 10 of [13] it follows that $a, b, c, d \le 4$. Thus members of F can be of type (4, 4, 4, 4) or (4, 4, 4, 3).

The solutions 1 and 2 are impossible, since in these solutions $x_{i,i} = 1$ for some $i \leq 2$, implying that there should be a member of F of type (a, b, c, d), where $\{a, b, c, d\} \cap \{1, 2\} \neq \emptyset$.

In the case of solution 3, it follows that all the 16 members of F are of type (4, 4, 4, 4). It means that for every member of F, the fifteen other

members of F "appear" altogether 16 times in the expression a+b+c+d of the (common) type; hence the following property holds:

For each member P_i of F there exists precisely one other member P_j of F, $i \neq j$, such that P_i and P_j are separated by exactly two planes which contain facets of both of them; for all other members P_r , $r \neq i$, j, of F, P_i and P_r are separated by exactly one plane which contains facets of both P_i and P_r . (8)

Property (8) of F can be translated to the following property of B(F):

For each row index *i*, $1 \le i \le 16$, there exists a *unique* row index *j*, $1 \le j \le 16$, $j \ne i$, for which there exist precisely two column indices *p* and *q*, $1 \le p < q \le s$, such that $\{b_{i,p}, b_{j,p}\} = \{b_{i,q}, b_{j,q}\} =$ $\{1, -1\}$; for all other row indices *k*, $k \ne i$, *j*, there exists a unique column index *r* for which $\{b_{i,r}, b_{k,r}\} = \{1, -1\}$. (9)

Let us define the multigraph G(F) as follows: G(F) has the 16 vertices $\{1, 2, ..., 16\}$; two vertices *n* and *m* of G(F) are connected by as many edges as there are column-indices *r* (in B(F)), for which $\{b_{n,r}, b_{m,r}\} = \{1, -1\}$.

It follows from (9) that G(F) is equal to the multigraph, obtained from K_{16} by duplicating the edges of some 1-factor (=maximal matching) of K_{16} ; i.e., $G(F) = K_{16} + M_8$.

The collection of the edges of G(F) which are contributed by any one column of B(F), a column counted by $x_{i,j}$, form a complete bipartite graph of the form $K_{i,j}$. It follows that $G(P) = K_{16} + M_8$ has a decomposition into eight $K_{4,4}$, since in the solution under consideration $x_{4,4} = 8$ and $x_{i,j} = 0$ otherwise. However, this contradicts the inequality $b(K_{16} + M_8) \ge 9$, proved earlier (following Theorem 4).

Therefore there exist no nearly-neighborly familes in E^3 consisting of sixteen tetrahedra.

In the first few steps of the proof of Theorem 1 we have actually proved the following.

COROLLARY 2. If F is a nearly-neighborly family in E^d , in which every member has at most k facets, and if $|F| = 2^k$, then each member of F has precisely k facets and B(F) has the property that $x_{i,i} \neq 0$ implies that i = j.

A similar counting argument yields the following.

COROLLARY 3. If F is a nearly-neighborly family in E^d , in which every member has at most k facets, and if $|F| = 2^k - p$, then B(F) has the following property: $x_{i,j} \neq 0$ implies $j - i \leq p$.

JOSEPH ZAKS

We were unable to prove that $g_b(3, 4) \neq 15$;* using Corollary 3, and assuming there exists a nearly-neighborly family consisting of fifteen tetrahedra in E^3 , the analogous system to (6, 7) is $\sum_{i \leq j} (i+j)x_{i,j} = 60$ and $\sum_{i \leq j} ijx_{i,j} \ge 105$, where the variables are $x_{i,j}$, for $0 \leq i \leq j \leq 4$ and $j-i \leq 1$. So far we are unable to refute some of the solutions of this system.

Remarks. 1. It is very easy to show that $g_u(d, d+1) = 2^{d+1}$ for all $d \ge 2$; merely observe that the following family of 2^{d+1} d-polyhedra in E^d is nearly-neighborly for all $d \ge 2$. Take in each one of the orthant the following two sets: a d-simplex occupying the corner (i.e., spanned by the origin and d points, one on each one of the semi-axes in that orthant) and the closure of the complement of this d-simplex, taken relative to the orthant.

2. It is slightly harder and less trivial to show that $f_u(3, 4) = 16$; in [13, p. 280, 1.-11 to p. 282, 1.-15], we gave an example of a neighborly family in E^3 , consisting of 16 pyramids (having quadrangular bases); each one of these pyramids has one facet which is free (see [13]; a facet of a member of a neighborly family is called *free* if it contains no one of the intersections of pairs of members). By deleting the free facet from each pyramid (i.e., if the pyramid is $\bigcap_{i=1}^{5} H_i^+$, and H_5 is the hyperplane containing a free facet, then consider $\bigcap_{i=1}^{4} H_i^+$), we get a neighborly family in E^3 , consisting of 16 3-polyhedra, each one having four facets, thus $f_u(3, 4) \ge 16$; equality follows from $f_u(3, 4) \le g_u(3, 4) = 16$.

* Note added in proof. Using a similar yet more detailed approach, S. Furino, B. Gamble, and J. Zako proved that there can be at most 14 nearly-neighborly tetrahedra in E^3 .

References

- 1. F. BAGEMIHL, A conjecture concerning neighboring tetrahedra, Amer. Math. Monthly 63 (1956), 328-329.
- 2. V. J. D. BASTON, "Some Properties of Polyhedra in Euclidean Space, Pergamon, Oxford, 1965.
- 3. A. S. BESICOVITCH, On Crum's problem, J. London Math. Soc. 22 (1947), 285-287.
- 4. L. DANZER, B. GRÜNBAUM, AND V. KLEE, Helly's theorem and its relatives, Amer. Math. Soc. Proc. Symp. Pure Math. 7 (1963), 101–180.
- R. L. GRAHAM AND H. O. POLLAK, On the addressing problem for loop switching, *Bell System Tech. J.* 50 (1971), 2495–2519; Lecture Notes in Math. Vol. 303, pp. 99–110, Springer-Verlag, Berlin/New York, 1973.
- 6. B. GRÜNBAUM, "Convex Polytopes," Wiley, New York, 1967.
- 7. V. KLEE, Can nine tetrahedra form a neighboring family? Amer. Math. Monthly 76 (1969), 178-179.
- 8. M. A. PERLES, At most 2^{d+1} neighborly simplices in E^d , in "Proceedings, Conf. Convexity and Graph Theory, Israel, 1981"; Ann. Discrete Math. 20 (1984), 253-254.

- 9. D. PRITIKIN, Applying a proof of Tverberg to complete bipartite decomposition of digraphs and multigraphs, J. Graph Theory 10 (1986), 197-201.
- 10. B. REZNICK, P. TIWARI, AND D. B. WEST, Decomposition of product graphs into complete bipartite subgraphs, *Discrete Math.* 57 (1986), 189–193.
- 11. H. Tietze, Uber das problem der nachbargebiete im raum, Monatsh. Math. 16 (1905), 211-216.
- 12. H. TVERBERG, On the decomposition of K_n into complete bipartite graphs, J. Graph Theory 6 (1982), 493-494.
- 13. J. ZAKS, Bounds of neighborly families of convex polytopes, Geom. Dedicata 8 (1979), 279-296.
- 14. J. ZAKS, Neighborly families of 2^d d-simplices in E^d, Geom. Dedicata 11 (1981), 505-507.
- 15. J. ZAKS, A solution to Bagemihl's conjecture, C. R. Math. Rep. Acad. Sci. Canada 8 (1986), 317-321.
- 16. J. ZAKS, No nine neighborly tetrahedra exist, manuscript.