Nearly-Neighborly Families of Tetrahedra and the Decomposition of Some Multigraphs

Joseph Zaks
Department of Mathematics, University of Haifa, Haifa, Israel
Communicated by R. L. Graham

Received July 31, 1986

Abstract

A family of d-polyhedra in E^{d} is called nearly-neighborly if every two members are separated by a hyperplane which contains facets of both of them. Reducing the known upper bound by 1 , we prove that there can be at most 15 members in a nearly-neighborly family of tetrahedra in E^{3}. The proof uses the following statement: "If the graph, obtained from K_{16} by duplicating the edges of a 1 -factor, is decomposed into t complete bipartite graphs, then $t \geqslant 9$." Similar results are derived for various graphs and multigraphs. © 1988 Academic Press, Inc.

A d-polyhedron is the finite intersection of closed half-spaces in E^{d}, having an interior point. A family F of d-polyhedra in E^{d} is called nearlyneighborly [13] if for every two members there exists a hyperplane, which separates them and contains a facet of each. This notion is closely related to the notion of neighborliness, where a family of d-polyhedra in E^{d} is called neighborly $[4,6,7,13-16]$ if every two members meet in a ($d-1$)dimensional set; this set lies in a hyperplane which separates the two members and which contains a facet of each one of them. Thus a neighborly family is also nearly-neighborly.

Following [13], and slightly changing the notation, let $g_{u}(d, k)$ ($f_{u}(d, k)$) denote the maximum number of d-polyhedra in a nearlyneighborly (neighborly, respectively) family in E^{d}, in which every member has at most k facets. Let $g_{b}(d, k)$ and $f_{b}(d, k)$ denote the corresponding maxima, when restricted to bounded d-polyhedra (i.e., to convex d-polytopes), having at most k facets.

Clearly, $f_{b}(d, k) \leqslant g_{b}(d, k) \leqslant g_{u}(d, k)$ and $f_{b}(d, k) \leqslant f_{u}(d, k) \leqslant g_{u}(d, k)$.
Tietze [11] and Besicovitch [3] gave examples of infinite neighborly families in E^{3}; these examples show that $f_{b}(3, k)$ tends to ∞ as k tends to ∞; the same is true for all $d \geqslant 3$.
The first proof of the finiteness of $g_{b}(d, k)$, hence (as is easily seen) the finiteness of all the other functions as well, conjectured in [4], was given in [13]; the best known upper bound for $g_{b}(d, k)$ is 2^{k}, due to Perles [8].

Considering neighborly families of tetrahedra in E^{3}, Bagemihl [1] showed that $8 \leqslant f_{b}(3,4) \leqslant 17$; Baston [2] reduced it to $8 \leqslant f_{b}(3,4) \leqslant 9$; both of them conjectured that $f_{b}(3,4)=8$ (and similarly that $f_{b}(d, d+1)=2^{d}$ for all d). We $[15,16]$ have recently proved this conjecture, showing that no neighborly families consisting of nine tetrahedra in E^{3} exist. The current situation with $f_{b}(d, d+1)$ is given by $2^{d} \leqslant f_{b}(d, d+1) \leqslant 2^{d+1}$, where the upper bound is due to Perles [8] and the lower bound in due to [14].

We wish to remark that Perles' upper bound 2^{k} for $g_{u}(d, k)$ is best in case $k=d+1$ for all $d \geqslant 2$, i.e., $g_{u}(d, d+1)=2^{d+1}$ for all $d \geqslant 2$ (for details, see Remark 1 at the end of the paper). In addition, $f_{u}(3,4)=g_{u}(3,4)=16$ (see Remark 2).
$g_{u}(3,4)=16$ implies that $8 \leqslant g_{b}(3,4) \leqslant 16$. We make the following
Conjecture. There can be at most eight nearly-neighborly tetrahedra in E^{3}.

A stronger conjecture would be that $g_{b}(d, d+1)-f_{b}(d, d+1)$ for all $d \geqslant 3$.

One of the purposes of this paper is to reduce the upper bound of $g_{b}(3,4)$ from 16 to 15 , which is expressed as

Theorem 1. There can be at most fifteen nearly-neighborly tetrahedra in E^{3}.

The other purpose of this paper is to extend a theorem, due to R.L. Graham and H. O. Pollak [5]; this theorem states that K_{n}, the complete graph on n vertices, cannot be decomposed into fewer than $n-1$ complete bipartite graphs. Let $b(G)$ denote the minimum number of complete bipartite graphs into which the multigraph G can be decomposed; $b(G)$ is well defined, and it is at most equal to the number of edges in G. The Graham Pollak theorem states that $b\left(K_{n}\right) \geqslant n-1$; in fact, it follows easily that $b\left(K_{n}\right)=n-1$. For extensions of this theorem, see $[9,10]$.

Let M_{m} denote a matching in K_{n}, consisting of m disjoint edges; $2 m \leqslant n$. Let $K_{n}+M_{m}$ denote the multigraph, obtained from K_{n} by taking all the edges of M_{m} as double edges.

We have the following results.

THEOREM 2. $\quad b\left(K_{n}+M_{m}\right) \geqslant n-m$ for all $m \geqslant 1$.

Theorem 3. Let $K_{n}+M_{m}(m \geqslant 2)$ have a decomposition into $n-m$ complete bipartite graphs $K_{A_{j}, B_{j}}$, where $\left|A_{j}\right| \leqslant\left|B_{j}\right|$. Then, for each $j,\left|A_{j}\right| \geqslant m$ or $\left|A_{j}\right| \leqslant n-2 m$.

Corollary 1. $b\left(K_{2 m}+M_{m}\right) \geqslant m$, and equality holds only for $m=2$.
Proof of Theorem 2. The proof uses Tverberg's [12] proof of the Graham-Pollak theorem, in a form due to R. L. Graham (private communication). Let the vertex set of K_{n} be $\{1,2, \ldots, n\}=N$ and let $M_{m}=\{(2 j-1,2 j) \mid 1 \leqslant j \leqslant m\}$. Suppose $K_{n}+M_{m}$ has a decomposition into t complete bipartite graphs; denote these t graphs by $K_{A_{j}, B_{j}}, 1 \leqslant j \leqslant t$, $\varnothing \neq A_{j}, B_{j} \subset N, A_{j} \cap B_{j}=\varnothing$, and $\left|A_{j}\right| \leqslant\left|B_{j}\right|$ for all j. Thus we have

$$
\begin{equation*}
K_{n}+M_{m}=\sum_{j=1}^{t} K_{A_{j} ; B_{j}} \quad \text { (edge-disjoint sum) } \tag{1}
\end{equation*}
$$

Consider the following system of homogeneous linear equations in the n variables x_{1}, \ldots, x_{n} :

$$
\begin{align*}
\sum_{i \in A_{j}} x_{i} & =0 \quad \text { for all } j=1, \ldots, t . \tag{2}\\
\sum_{i \in N} x_{i} & =0 \tag{3}
\end{align*}
$$

By squaring (3) we get

$$
\begin{aligned}
0 & =\left(\sum_{i \in N} x_{i}\right)^{2}=\sum_{i \in N} x_{i}^{2}+2 \sum_{1 \leqslant i<k \leqslant n} x_{i} x_{k} \\
& =\sum_{i \in N} x_{i}^{2}+2 \sum_{\substack{(i, k) \in E\left(K_{n}\right) \\
i<k}} x_{i} x_{k} \\
& =\sum_{i \in N} x_{i}^{2}+2\left[\sum_{\substack{(i, k) \in E\left(K_{n}+M_{m}\right) \\
i<k}} x_{i} x_{k}-\sum_{\substack{(i, k) \in E\left(M_{m}\right) \\
i<k}} x_{i} x_{k}\right] \\
& =\sum_{i \in N} x_{i}^{2}+2\left[\sum_{j=1}^{i}\left(\sum_{i \in A_{j}} x_{i}\right)\left(\sum_{i \in B_{j}} x_{i}\right)-\sum_{j=1}^{m} x_{2 j-1} x_{2 j}\right] \\
& =\sum_{j=1}^{m}\left(x_{2 j-1}-x_{2 j}\right)^{2}+\sum_{i=2 m+1}^{n} x_{i}^{2} .
\end{aligned}
$$

Remark that (2) has been used in the lest step, to cancel the middle term. It follows that the system (2), (3) satisfies

$$
\begin{array}{cc}
x_{2 j-1}=x_{2 j} & \text { for all } j, 1 \leqslant j \leqslant m \\
x_{i}=0 & \text { for all } \quad i, i \geqslant 2 m+1 \tag{4}
\end{array}
$$

The case $m=0$ is just Tverberg's proof of the Graham-Pollak theorem, since (4) means that (2), (3) has only the trivial solution, thus $t+1 \geqslant n$ or $t \geqslant n-1$.

If $m=1$, then (4) means that $x_{1}=x_{2}$ and $x_{i}=0$ for all other values of i; by (3), $x_{1}+x_{2}=0$, therefore $x_{1}=x_{2}=0$ as well. It follows that in this case, too, there exists only the trivial solution, hence $t \geqslant n-1$, which for $m=1$ means also that $t \geqslant n-m$.

Suppose $m \geqslant 2$; from (4) it follows that $\sum_{j=1}^{m} x_{2 j-1}=\sum_{j=1}^{m} x_{2 j}$, while (3) implies that $\sum_{j=1}^{m} x_{2 j-1}+\sum_{j=1}^{m} x_{2 j}=0$; therefore each one of these sums is equal to 0 , and we get

$$
\begin{align*}
& x_{2 j-1}=x_{2 j} \quad \text { for all } \quad j, 1 \leqslant j \leqslant m-1, \\
& x_{2 m-1}= x_{2 m}=-\sum_{j-1}^{m-1} x_{2 j} \tag{5}\\
& x_{i}=0 \quad \text { for all } \quad i, i \geqslant 2 m+1 .
\end{align*}
$$

Thus, the dimension of the solution set of (2), (3) is at most $m-1$, and the rank of the system (2), (3) is at most $t+1$; it follows that

$$
n=\text { rank of system }+ \text { dimension of solution } \leqslant(t+1)+(m-1)=t+m
$$

therefore $t \geqslant n-m$.
Proof of Theorem 3. Suppose that for some $m \geqslant 2$ and some $n, n \geqslant 2 m$, $K_{n}+M_{m}$ has a decomposition into $n-m$ complete bipartite graphs $K_{A_{j}, B_{j}}$, $1 \leqslant j \leqslant n-m$. Applying the procedure of the proof of Theorem 2, we get a system (2), (3) which has the solution (5), in terms of the $m-1$ parameters $\left\{x_{2 j} \mid 1 \leqslant j \leqslant m-1\right\}$, and so that the solution set has dimension exactly $m-1$; thus the parameters are linearly independent. In particular, for each $j, 1 \leqslant j \leqslant n-m(=t)$, the j th equation in (2) does not represent a linear dependence of the parameters $\left\{x_{2 j} \mid 1 \leqslant j \leqslant m-1\right\}$. Due to the special coefficients in the equations in (2), it follows that
either $A_{j} \cap\{1,2, \ldots, 2 m\}$ contains at least one of the two numbers $2 m-1$ and $2 m$, and for each one of them appearing in A_{j} there must be $m-1$ other integers in A_{j}, one of $x_{2 j-1}$ and $x_{2 j}$ for all j, $1 \leqslant j \leqslant m-1$,
or else $A_{j} \cap\{1,2, \ldots, 2 m\}=\varnothing$, implying that $A_{j} \subset\{2 m+1, \ldots, n\}$.
In the first case $\left|A_{j}\right| \geqslant m$, therefore $m \leqslant\left|A_{j}\right| \leqslant\left|B_{j}\right|$, and in the latter case $\left|A_{j}\right| \leqslant n-2 m$.

Proof of Corollary 1. For all $m \geqslant 2, b\left(K_{2 m}+M_{m}\right) \geqslant m$, by Theorem 1 . Trivially, $b\left(K_{2}+M_{1}\right)=2$.

Suppose that for some $m \geqslant 2, b\left(K_{2 m}+M_{m}\right)=m$, say $K_{2 m}+M_{m}=$ $\sum_{j=1}^{m} K_{A_{j}, B_{j}}$, where $\left|A_{j}\right| \leqslant\left|B_{j}\right|$. Now $2 m \geqslant\left|A_{j}\right|+\left|B_{j}\right| \geqslant 2\left|A_{j}\right| \geqslant 2 m$ (by Theorem 3), so that $\left|A_{j}\right|=\left|B_{j}\right|=m$. Thus $K_{2 m}+M_{m}$ has a decomposition into m copies of $K_{m, m}$, which implies that $m=2$.

To see that $b\left(K_{4}+M_{2}\right)=2$, we observe that $K_{4}+M_{2}$ has the following decomposition into $K_{\{1,3\},\{2,4\}}+K_{\{1,4\},\{2,3\}}$.

It is not hard to show that $b\left(K_{6}+M_{3}\right)=4$, using the inequality $\geqslant 4$, due to Corollary 1 , and the decomposition

$$
\begin{aligned}
K_{6}+M_{3}= & K_{\{1,3\},\{2,4\}}+K_{\{1,4\},\{2,3\}} \\
& +K_{\{5\},\{1,2,3,4,6\}}+K_{\{6\},\{1,2,3,4,5\}} .
\end{aligned}
$$

In fact, the following recursive relation holds.

Theorem 4. If p and q are natural numbers and $m=p+q$, then $b\left(K_{2 m}+M_{m}\right) \leqslant b\left(K_{2 p}+M_{p}\right)+b\left(K_{2 q}+M_{q}\right)+1$.

The proof of Theorem 4 follows easily from the decomposition of $K_{2 m}+M_{m}$ into $K_{2 p, 2 q}+\left(K_{2 p}+M_{p}\right)+\left(K_{2 q}+M_{q}\right)$.

Theorem 4 and Corollary 1 yield $b\left(K_{8}+M_{4}\right)=5$. The value of $b\left(K_{2 m}+M_{m}\right)$ for $m \geqslant 5$ can be estimated: $6 \leqslant b\left(K_{10}+M_{5}\right) \leqslant 7$, $7 \leqslant b\left(K_{12}+M_{6}\right) \leqslant 9, \quad 8 \leqslant b\left(K_{14}+M_{7} \leqslant 10\right.$, and $9 \leqslant b\left(K_{16}+M_{8}\right) \leqslant 11$. In general, $2 m+1 \leqslant b\left(K_{4 m}+M_{2 m}\right) \leqslant 3 m, 2 m+2 \leqslant b\left(K_{4 m+2}+M_{2 m+1}\right) \leqslant$ $3 m+2$, and $4 m+1 \leqslant b\left(K_{8 m}+M_{4 m}\right) \leqslant 6 m-1$, for all $m \geqslant 2$.

Additional relations on $b\left(K_{n}+M_{m}\right)$ can be derived from a particular decomposition of K_{n} which starts with a spanning $K_{1, n-1}$; thus, in general, $b\left(K_{n}+M_{m}\right) \leqslant b\left(K_{n-1}+M_{m}\right)+1$. It follows that for a fixed m, $b\left(K_{n}+M_{m}\right)-n$ is fixed for large values of n.

We return to deal with Theorem 1, which states that $g_{b}(3,4)$ can be at most 15 , i.e., that there can be at most fifteen nearly-neighborly tetrahedra in E^{3}. We present the

Proof of Theorem 1. The proof uses the idea of the proof in [8], as follows. Suppose there exists a nearly-neighborly family F in E^{3}, consisting of 16 tetrahedra P_{1}, \ldots, P_{16}. Let H_{1}, \ldots, H_{s} be the collection of all the planes in E^{3} which contain facets of some P_{i}, and let H_{j}^{+}and H_{j}^{-}denote the two closed half-spaces determined by $H_{j}, 1 \leqslant j \leqslant s$.

The Baston matrix $B(F)=\left(b_{i j}\right)$ of F is defined (see [2, 13-15]) by

$$
b_{i j}= \begin{cases}1 & \text { if } H_{j} \text { contains a facet of } P_{i} \text { and } P_{i} \subset H_{j}^{+} \\ -1 & \text { if } H_{j} \text { contains a facet of } P_{i} \text { and } P_{i} \subset H_{j}^{-} \\ 0 & \text { otherwise, } \quad 1 \leqslant i \leqslant 16,1 \leqslant j \leqslant s\end{cases}
$$

Each row of $B(F)$ contains precisely four non-zero terms, corresponding to the four facets of the tetrahedron; the nearly-neighborliness of F translates into the following property of $B(F)$: for every two row indices i and k,
$1 \leqslant i<k \leqslant 16$, there exists (at least one) column index $j, 1 \leqslant j \leqslant s$, such that $b_{i j} \cdot b_{k j}=-1$, i.e., $\left\{b_{i j}, b_{k j}\right\}=\{1,-1\}$.

Let C be the ± 1-matrix, obtained from $B(F)$ by replacing each row of $B(F)$ with 2^{s-4} rows, so that all the zero terms in the row of $B(F)$ are replaced by either 1 or -1 , in all the 2^{s-4} different ways.

It follows easily that all the rows of C are different; C has $16 \cdot 2^{s-4}=2^{s}$ rows of 1 or -1 , and it has s columns; therefore the matrix C is full, in the sense that every ± 1 vector on s coordinates appears exactly once in C. It follows therefore that in each column of C there are equal numbers of terms of each sign. This can happen only when each column of $B(F)$ has the same number of non-zero terms of each sign.

Following [13], let $x_{i j}, i \leqslant j$, denote the number of columns of $B(F)$ in which there are precisely i non-zero terms of one sign and j non-zero terms of the opposite sign.

The property of $B(F)$ which was found can be stated: $x_{i j} \neq 0$ implies $i=j$.
Using Lemmas 9 and 10 of [13] it follows that $x_{i j} \neq 0$ implies that that $i, j \leqslant 4$; by Iemma 5 of [13] the following hold

$$
\begin{array}{ll}
2 x_{1,1}+4 x_{2,2}+6 x_{3,3}+8 x_{4,4}=64 & (=16 \cdot 4) \\
x_{1,1}+4 x_{2,2}+9 x_{3,3}+16 x_{4,4} \geqslant 120 & \left(=\binom{16}{2}\right) . \tag{7}
\end{array}
$$

This Diophantine system has three possible solutions, as given in the following table:

	$x_{1,1}$	$x_{2,2}$	$x_{3,3}$	$x_{4,4}$
1.	1	0	1	7
2.	0	2	0	7
3.	0	0	0	8

A member P_{i} of F is said to be of type $(a, b, c, d), a \geqslant b \geqslant c \geqslant d$, if there exist precisely a, b, c, and d members of F, having one facet on any one (or more) of the four planes containing facets of P_{i}, such that these other members of F are separated from P_{i} by these (four) planes. By the nearlyneighborliness of F it follows that $a+b+c+d \geqslant 15$, and by Lemmas 9 and 10 of [13] it follows that $a, b, c, d \leqslant 4$. Thus members of F can be of type $(4,4,4,4)$ or $(4,4,4,3)$.

The solutions 1 and 2 are impossible, since in these solutions $x_{i, i}=1$ for some $i \leqslant 2$, implying that there should be a member of F of type (a, b, c, d), where $\{a, b, c, d\} \cap\{1,2\} \neq \varnothing$.

In the case of solution 3 , it follows that all the 16 members of F are of type $(4,4,4,4)$. It means that for every member of F, the fifteen other
members of F "appear" altogether 16 times in the expression $a+b+c+d$ of the (common) type; hence the following property holds:

For each member P_{i} of F there exists precisely one other member P_{j} of $F, i \neq j$, such that P_{i} and P_{j} are separated by exactly two planes which contain facets of both of them; for all other members $P_{r}, r \neq i, j$, of F, P_{i} and P_{r} are separated by exactly one plane which contains facets of both P_{i} and P_{r}.

Property (8) of F can be translated to the following property of $B(F)$:
For each row index $i, 1 \leqslant i \leqslant 16$, there exists a unique row index j, $1 \leqslant j \leqslant 16, j \neq i$, for which there exist precisely two column indices p and $q, 1 \leqslant p<q \leqslant s$, such that $\left\{b_{i, p}, b_{j, p}\right\}=\left\{b_{i, q}, b_{j, q}\right\}=$ $\{1,-1\}$; for all other row indices $k, k \neq i, j$, there exists a unique column index r for which $\left\{b_{i, r}, b_{k, r}\right\}=\{1,-1\}$.

Let us define the multigraph $G(F)$ as follows: $G(F)$ has the 16 vertices $\{1,2, \ldots, 16\}$; two vertices n and m of $G(F)$ are connected by as many edges as there are column-indices r (in $B(F)$), for which $\left\{b_{n, r}, b_{m, r}\right\}=\{1,-1\}$.

It follows from (9) that $G(F)$ is equal to the multigraph, obtained from K_{16} by duplicating the edges of some 1-factor ($=$ maximal matching) of K_{16}; i.e., $G(F)=K_{16}+M_{8}$.

The collection of the edges of $G(F)$ which are contributed by any one column of $B(F)$, a column counted by $x_{i, j}$, form a complete bipartite graph of the form $K_{i, j}$. It follows that $G(P)=K_{16}+M_{8}$ has a decomposition into eight $K_{4,4}$, since in the solution under consideration $x_{4,4}=8$ and $x_{i, j}=0$ otherwise. However, this contradicts the inequality $b\left(K_{16}+M_{8}\right) \geqslant 9$, proved earlier (following Theorem 4).

Therefore there exist no nearly-neighborly familes in E^{3} consisting of sixteen tetrahedra.

In the first few steps of the proof of Theorem 1 we have actually proved the following.

Corollary 2. If F is a nearly-neighborly family in E^{d}, in which every member has at most k facets, and if $|F|=2^{k}$, then each member of F has precisely k facets and $B(F)$ has the property that $x_{i, j} \neq 0$ implies that $i=j$.

A similar counting argument yields the following.
Corollary 3. If F is a nearly-neighborly family in E^{d}, in which every member has at most k facets, and if $|F|=2^{k}-p$, then $B(F)$ has the following property: $x_{i, j} \neq 0$ implies $j-i \leqslant p$.

We were unable to prove that $g_{b}(3,4) \neq 15$;* using Corollary 3 , and assuming there exists a nearly-neighborly family consisting of fifteen tetrahedra in E^{3}, the analogous system to $(6,7)$ is $\sum_{i \leqslant j}(i+j) x_{i, j}=60$ and $\sum_{i \leqslant j} i j x_{i, j} \geqslant 105$, where the variables are $x_{i, j}$, for $0 \leqslant i \leqslant j \leqslant 4$ and $j-i \leqslant 1$. So far we are unable to refute some of the solutions of this system.

Remarks. 1. It is very easy to show that $g_{u}(d, d+1)=2^{d+1}$ for all $d \geqslant 2$; merely observe that the following family of $2^{d+1} d$-polyhedra in E^{d} is nearly-neighborly for all $d \geqslant 2$. Take in each one of the orthant the following two sets: a d-simplex occupying the corner (i.e., spanned by the origin and d points, one on each one of the semi-axes in that orthant) and the closure of the complement of this d-simplex, taken relative to the orthant.
2. It is slightly harder and less trivial to show that $f_{u}(3,4)=16$; in [13, p. 280, 1.-11 to p.282, 1.-15], we gave an example of a neighborly family in E^{3}, consisting of 16 pyramids (having quadrangular bases); each one of these pyramids has one facet which is free (see [13]; a facet of a member of a neighborly family is called free if it contains no one of the intersections of pairs of members). By deleting the free facet from each pyramid (i.e., if the pyramid is $\bigcap_{i=1}^{5} H_{i}^{+}$, and H_{5} is the hyperplane containing a free facet, then consider $\bigcap_{i=1}^{4} H_{i}^{+}$), we get a neighborly family in E^{3}, consisting of 163 -polyhedra, each one having four facets, thus $f_{u}(3,4) \geqslant 16$; equality follows from $f_{u}(3,4) \leqslant g_{u}(3,4)=16$.

* Note added in proof. Using a similar yet more detailed approach, S. Furino, B. Gamble, and J. Zako proved that there can be at most 14 nearly-neighborly tetrahedra in E^{3}.

References

1. F. Bagemith, A conjecture concerning neighboring tetrahedra, Amer. Math. Monthly 63 (1956), 328-329.
2. V. J. D. Baston, "Some Properties of Polyhedra in Euclidean Space, Pergamon, Oxford, 1965.
3. A. S. Besicovitch, On Crum's problem, J. London Math. Soc. 22 (1947), 285-287.
4. L. Danzer, B. Grünbaum, and V. Klee, Helly's theorem and its relatives, Amer. Math. Soc. Proc. Symp. Pure Math. 7 (1963), 101-180.
5. R. L. Graham and H. O. Pollak, On the addressing problem for loop switching, Bell System Tech. J. 50 (1971), 2495-2519; Lecture Notes in Math. Vol. 303, pp. 99-110, Springer-Verlag, Berlin/New York, 1973.
6. B. Grünbaum, "Convex Polytopes," Wiley, New York, 1967.
7. V. Klee, Can nine tetrahedra form a neighboring family? Amer. Math. Monthly 76 (1969), 178-179.
8. M. A. Perles, At most 2^{d+1} neighborly simplices in E^{d}, in "Proceedings, Conf. Convexity and Graph Theory, Israel, 1981"; Ann. Discrete Math. 20 (1984), 253-254.
9. D. Pritikin, Applying a proof of Tverberg to complete bipartite decomposition of digraphs and multigraphs, J. Graph Theory 10 (1986), 197-201.
10. B. Reznick, P. Tiwari, and D. B. West, Decomposition of product graphs into complete bipartite subgraphs, Discrete Math. 57 (1986), 189-193.
11. H. Tietze, Uber das problem der nachbargebiete im raum, Monatsh. Math. 16 (1905), 211-216.
12. H. Tverberg, On the decomposition of K_{n} into complete bipartite graphs, J. Graph Theory 6 (1982), 493-494.
13. J. Zaks, Bounds of neighborly families of convex polytopes, Geom. Dedicata 8 (1979), 279-296.
14. J. Zaks, Neighborly families of $2^{d} d$-simplices in E^{d}, Geom. Dedicata 11 (1981), 505-507.
15. J. Zaks, A solution to Bagemihl's conjecture, C. R. Math. Rep. Acad. Sci. Canada 8 (1986), 317-321.
16. J. Zaks, No nine neighborly tetrahedra exist, manuscript.
