Nearly-Neighborly Families of Tetrahedra and the Decomposition of Some Multigraphs

JOSEPH ZAKS

Department of Mathematics, University of Haifa, Haifa, Israel

Communicated by R. L. Graham

Received July 31, 1986

A family of d-polyhedra in E^d is called nearly-neighborly if every two members are separated by a hyperplane which contains facets of both of them. Reducing the known upper bound by 1, we prove that there can be at most 15 members in a nearly-neighborly family of tetrahedra in E^3. The proof uses the following statement: "If the graph, obtained from K_{16} by duplicating the edges of a 1-factor, is decomposed into t complete bipartite graphs, then $t \geq 9". Similar results are derived for various graphs and multigraphs.

A d-polyhedron is the finite intersection of closed half-spaces in E^d, having an interior point. A family F of d-polyhedra in E^d is called nearly-neighborly [13] if for every two members there exists a hyperplane, which separates them and contains a facet of each. This notion is closely related to the notion of neighborliness, where a family of d-polyhedra in E^d is called neighborly [4, 6, 7, 13-16] if every two members meet in a $(d-1)$-dimensional set; this set lies in a hyperplane which separates the two members and which contains a facet of each one of them. Thus a neighborly family is also nearly-neighborly.

Following [13], and slightly changing the notation, let $g_u(d, k)$ ($f_u(d, k)$) denote the maximum number of d-polyhedra in a nearly-neighborly (neighborly, respectively) family in E^d, in which every member has at most k facets. Let $g_b(d, k)$ and $f_b(d, k)$ denote the corresponding maxima, when restricted to bounded d-polyhedra (i.e., to convex d-polytopes), having at most k facets.

Clearly, $f_b(d, k) \leq g_b(d, k) \leq g_u(d, k)$ and $f_b(d, k) \leq f_u(d, k) \leq g_u(d, k)$.

Tietze [11] and Besicovitch [3] gave examples of infinite neighborly families in E^3; these examples show that $f_b(3, k)$ tends to ∞ as k tends to ∞; the same is true for all $d \geq 3$.

The first proof of the finiteness of $g_b(d, k)$, hence (as is easily seen) the finiteness of all the other functions as well, conjectured in [4], was given in [13]; the best known upper bound for $g_b(d, k)$ is 2^k, due to Perles [8].
Considering neighborly families of tetrahedra in E^3, Bagemihl [1] showed that $8 \leq f_b(3, 4) \leq 17$; Baston [2] reduced it to $8 \leq f_u(3, 4) \leq 9$; both of them conjectured that $f_b(3, 4) = 8$ (and similarly that $f_u(d, d+1) = 2^d$ for all d). We [15, 16] have recently proved this conjecture, showing that no neighborly families consisting of nine tetrahedra in E^3 exist. The current situation with $f_b(d, d+1)$ is given by $2^d \leq f_b(d, d+1) \leq 2^{d+1}$, where the upper bound is due to Perles [8] and the lower bound in due to [14].

We wish to remark that Perles' upper bound 2^k for $g_u(d, k)$ is best in case $k = d + 1$ for all $d \geq 2$, i.e., $g_u(d, d+1) = 2^{d+1}$ for all $d \geq 2$ (for details, see Remark 1 at the end of the paper). In addition, $f_u(3, 4) = g_u(3, 4) = 16$ (see Remark 2).

$g_u(3, 4) = 16$ implies that $8 \leq g_b(3, 4) \leq 16$. We make the following

Conjecture. There can be at most eight nearly-neighborly tetrahedra in E^3.

A stronger conjecture would be that $g_b(d, d+1) - f_b(d, d+1)$ for all $d \geq 3$.

One of the purposes of this paper is to reduce the upper bound of $g_b(3, 4)$ from 16 to 15, which is expressed as

THEOREM 1. There can be at most fifteen nearly-neighborly tetrahedra in E^3.

The other purpose of this paper is to extend a theorem, due to R. L. Graham and H. O. Pollak [3]; this theorem states that K_n, the complete graph on n vertices, cannot be decomposed into fewer than $n - 1$ complete bipartite graphs. Let $b(G)$ denote the minimum number of complete bipartite graphs into which the multigraph G can be decomposed; $b(G)$ is well defined, and it is at most equal to the number of edges in G. The Graham–Pollak theorem states that $b(K_n) \geq n - 1$; in fact, it follows easily that $b(K_n) = n - 1$. For extensions of this theorem, see [9, 10].

Let M_m denote a matching in K_n, consisting of m disjoint edges; $2m \leq n$. Let $K_n + M_m$ denote the multigraph, obtained from K_n by taking all the edges of M_m as double edges.

We have the following results.

THEOREM 2. $b(K_n + M_m) \geq n - m$ for all $m \geq 1$.

THEOREM 3. Let $K_n + M_m$ ($m \geq 2$) have a decomposition into $n - m$ complete bipartite graphs K_{A_j, B_j}, where $|A_j| \leq |B_j|$. Then, for each j, $|A_j| \geq m$ or $|A_j| \leq n - 2m$.
COROLLARY 1. $b(K_{2m} + M_m) \geq m$, and equality holds only for $m = 2$.

Proof of Theorem 2. The proof uses Tverberg's [12] proof of the Graham–Pollak theorem, in a form due to R.L. Graham (private communication). Let the vertex set of K_n be $\{1, 2, \ldots, n\} = N$ and let $M_m = \{(2j-1, 2j) | 1 \leq j \leq m\}$. Suppose $K_n + M_m$ has a decomposition into t complete bipartite graphs; denote these t graphs by K_{A_j,B_j}, $1 \leq j \leq t$, $\emptyset \neq A_j, B_j \subseteq N$, $A_j \cap B_j = \emptyset$, and $|A_j| \leq |B_j|$ for all j. Thus we have

$$K_n + M_m = \sum_{j=1}^{t} K_{A_j,B_j} \quad \text{(edge-disjoint sum).} \quad (1)$$

Consider the following system of homogeneous linear equations in the n variables x_1, \ldots, x_n:

$$\sum_{i \in A_j} x_i = 0 \quad \text{for all} \quad j = 1, \ldots, t. \quad (2)$$
$$\sum_{i \in N} x_i = 0. \quad (3)$$

By squaring (3) we get

$$0 = \left(\sum_{i \in N} x_i \right)^2 = \sum_{i \in N} x_i^2 + 2 \sum_{1 \leq i < k \leq n} x_i x_k$$

$$= \sum_{i \in N} x_i^2 + 2 \sum_{(i,k) \in E(K_n + M_m)} x_i x_k$$

$$= \sum_{i \in N} x_i^2 + 2 \left[\sum_{(i,k) \in E(K_n + M_m)} x_i x_k - \sum_{(i,k) \in E(M_m)} x_i x_k \right]$$

$$= \sum_{i \in N} x_i^2 + 2 \left[\sum_{j=1}^{t} \left(\sum_{i \in A_j} x_i \right) \left(\sum_{i \in B_j} x_i \right) - \sum_{j=1}^{m} x_{2j-1} x_{2j} \right]$$

$$= \sum_{j=1}^{m} (x_{2j-1} - x_{2j})^2 + \sum_{i = 2m+1}^{n} x_i^2.$$

Remark that (2) has been used in the last step, to cancel the middle term. It follows that the system (2), (3) satisfies

$$x_{2j-1} = x_{2j} \quad \text{for all} \quad j, 1 \leq j \leq m,$$
$$x_i = 0 \quad \text{for all} \quad i, i \geq 2m + 1. \quad (4)$$

The case $m = 0$ is just Tverberg's proof of the Graham–Pollak theorem, since (4) means that (2), (3) has only the trivial solution, thus $t + 1 \geq n$ or $t \geq n - 1$.

If \(m = 1 \), then (4) means that \(x_1 = x_2 \) and \(x_j = 0 \) for all other values of \(j \); by (3), \(x_1 + x_2 = 0 \), therefore \(x_1 = x_2 = 0 \) as well. It follows that in this case, too, there exists only the trivial solution, hence \(t \geq n - 1 \), which for \(m = 1 \) means also that \(t \geq n - m \).

Suppose \(m \geq 2 \); from (4) it follows that \(\sum_{j=1}^{m} x_{2j-1} = \sum_{j=1}^{m} x_{2j} \), while (3) implies that \(\sum_{j=1}^{m} x_{2j-1} + \sum_{j=1}^{m} x_{2j} = 0 \); therefore each one of these sums is equal to 0, and we get

\[
\begin{align*}
 x_{2j-1} &= -x_j \\
 x_{2m-1} &= x_{2m} = -\sum_{j=1}^{m-1} x_{2j} \\
 x_i &= 0
\end{align*}
\]

for all \(j, 1 \leq j \leq m - 1 \), \(x_{2m-1} = x_{2m} \).

Thus, the dimension of the solution set of (2), (3) is at most \(m - 1 \), and the rank of the system (2), (3) is at most \(t + 1 \); it follows that

\[
n = \text{rank of system} + \text{dimension of solution} \leq (t + 1) + (m - 1) = t + m,
\]

therefore \(t \geq n - m \).

Proof of Theorem 3. Suppose that for some \(m \geq 2 \) and some \(n, n \geq 2m \), \(K_n + M_m \) has a decomposition into \(n - m \) complete bipartite graphs \(K_{A_j, B_j}, \ 1 \leq j \leq n - m \). Applying the procedure of the proof of Theorem 2, we get a system (2), (3) which has the solution (5), in terms of the \(m - 1 \) parameters \(\{x_j | 1 \leq j \leq m - 1 \} \), and so that the solution set has dimension exactly \(m - 1 \); thus the parameters are linearly independent. In particular, for each \(j, 1 \leq j \leq n - m \ (= t) \), the \(j \)th equation in (2) does not represent a linear dependence of the parameters \(\{x_{2j} | 1 \leq j \leq m - 1 \} \). Due to the special coefficients in the equations in (2), it follows that

- either \(A_j \cap \{1, 2, ..., 2m\} \) contains at least one of the two numbers \(2m - 1 \) and \(2m \), and for each one of them appearing in \(A_j \) there must be \(m - 1 \) other integers in \(A_j \), one of \(x_{2j-1} \) and \(x_{2j} \) for all \(j, 1 \leq j \leq m - 1 \),
- or else \(A_j \cap \{1, 2, ..., 2m\} = \emptyset \), implying that \(A_j \subset \{2m + 1, ..., n\} \).

In the first case \(|A_j| \geq m \), therefore \(m \leq |A_j| \leq |B_j| \), and in the latter case \(|A_j| \leq n - 2m \).

Proof of Corollary 1. For all \(m \geq 2 \), \(b(K_{2m} + M_m) \geq m \), by Theorem 1. Trivially, \(b(K_2 + M_1) = 2 \).

Suppose that for some \(m \geq 2 \), \(b(K_{2m} + M_m) = m \), say \(K_{2m} + M_m = \sum_{j=1}^{m} K_{A_j, B_j} \), where \(|A_j| \leq |B_j| \). Now \(2m \geq |A_j| + |B_j| \geq 2 |A_j| \geq 2m \) (by Theorem 3), so that \(|A_j| = |B_j| = m \). Thus \(K_{2m} + M_m \) has a decomposition into \(m \) copies of \(K_{m,m} \), which implies that \(m = 2 \).
To see that $b(K_4 + M_2) = 2$, we observe that $K_4 + M_2$ has the following decomposition into $K_{\{1,3\},\{2,4\}} + K_{\{1,4\},\{2,3\}}$.

It is not hard to show that $b(K_6 + M_3) = 4$, using the inequality ≥ 4, due to Corollary 1, and the decomposition

\[
K_6 + M_3 = K_{\{1,3\},\{2,4\}} + K_{\{1,4\},\{2,3\}} + K_{\{5\},\{1,2,3,4,6\}} + K_{\{6\},\{1,2,3,4,5\}}.
\]

In fact, the following recursive relation holds.

Theorem 4. If p and q are natural numbers and $m = p + q$, then $b(K_{2m} + M_m) \leq b(K_{2p} + M_p) + b(K_{2q} + M_q) + 1$.

The proof of Theorem 4 follows easily from the decomposition of $K_{2m} + M_m$ into $K_{2p} + (K_{2q} + (K_{2p} + M_p)) + (K_{2q} + M_q)$.

Theorem 4 and Corollary 1 yield $b(K_8 + M_4) = 5$. The value of $b(K_{2m} + M_m)$ for $m \geq 5$ can be estimated: $6 \leq b(K_{10} + M_5) \leq 7$, $7 \leq b(K_{12} + M_6) \leq 9$, $8 \leq b(K_{14} + M_7) \leq 10$, and $9 \leq b(K_{16} + M_8) \leq 11$. In general, $2m + 1 \leq b(K_{4m} + M_{2m}) \leq 3m$, $2m + 2 \leq b(K_{4m+2} + M_{2m+1}) \leq 3m + 2$, and $4m + 1 \leq b(K_{6m} + M_{4m}) \leq 6m - 1$, for all $m \geq 2$.

Additional relations on $b(K_n + M_m)$ can be derived from a particular decomposition of K_n which starts with a spanning $K_{1,n-1}$; thus, in general, $b(K_n + M_m) \leq b(K_{n-1} + M_m) + 1$. It follows that for a fixed m, $b(K_n + M_m) - n$ is fixed for large values of n.

We return to deal with Theorem 1, which states that $g_s(3,4)$ can be at most 15, i.e., that there can be at most fifteen nearly-neighborly tetrahedra in E^3. We present the

Proof of Theorem 1. The proof uses the idea of the proof in [8], as follows. Suppose there exists a nearly-neighborly family F in E^3, consisting of 16 tetrahedra P_1, \ldots, P_{16}. Let H_1, \ldots, H_s be the collection of all the planes in E^3 which contain facets of some P_i, and let H_j^+ and H_j^- denote the two closed half-spaces determined by H_j, $1 \leq j \leq s$.

The Baston matrix $B(F) = (b_{ij})$ of F is defined (see [2, 13–15]) by

\[
b_{ij} = \begin{cases}
1 & \text{if } H_j \text{ contains a facet of } P_i \text{ and } P_i \subset H_j^+, \\
-1 & \text{if } H_j \text{ contains a facet of } P_i \text{ and } P_i \subset H_j^-, \\
0 & \text{otherwise}, \quad 1 \leq i \leq 16, 1 \leq j \leq s.
\end{cases}
\]

Each row of $B(F)$ contains precisely four non-zero terms, corresponding to the four facets of the tetrahedron; the nearly-neighborliness of F translates into the following property of $B(F)$: for every two row indices i and k,
1 \leq i < k \leq 16, there exists (at least one) column index \(j, 1 \leq j \leq s \), such that \(b_{ij} \cdot b_{kj} = -1 \), i.e., \(\{b_{ij}, b_{kj}\} = \{1, -1\} \).

Let \(C \) be the \(\pm 1 \)-matrix, obtained from \(B(F) \) by replacing each row of \(B(F) \) with \(2^{s-4} \) rows, so that all the zero terms in the row of \(B(F) \) are replaced by either 1 or \(-1\), in all the \(2^{s-4} \) different ways.

It follows easily that all the rows of \(C \) are different; \(C \) has \(16 \cdot 2^{s-4} = 2^s \) rows of 1 or \(-1\), and it has \(s \) columns; therefore the matrix \(C \) is full, in the sense that every \(\pm 1 \) vector on \(s \) coordinates appears exactly once in \(C \). It follows therefore that in each column of \(C \) there are equal numbers of terms of each sign. This can happen only when each column of \(B(F) \) has the same number of non-zero terms of each sign.

Following [13], let \(x_{ij}, i \leq j \), denote the number of columns of \(B(F) \) in which there are precisely \(i \) non-zero terms of one sign and \(j \) non-zero terms of the opposite sign.

The property of \(B(F) \) which was found can be stated: \(x_{ij} \neq 0 \) implies \(i = j \).

Using Lemmas 9 and 10 of [13] it follows that \(x_{ij} \neq 0 \) implies that that \(i, j \leq 4 \); by Lemma 5 of [13] the following hold

\[
2x_{1,1} + 4x_{2,2} + 6x_{3,3} + 8x_{4,4} = 64 \quad (= 16 \cdot 4),
\]

\[
x_{1,1} + 4x_{2,2} + 9x_{3,3} + 16x_{4,4} \geq 120 \quad \left(\begin{array}{c} \frac{16}{2} \end{array}\right). \quad (7)
\]

This Diophantine system has three possible solutions, as given in the following table:

<table>
<thead>
<tr>
<th></th>
<th>(x_{1,1})</th>
<th>(x_{2,2})</th>
<th>(x_{3,3})</th>
<th>(x_{4,4})</th>
</tr>
</thead>
<tbody>
<tr>
<td>1.</td>
<td>1</td>
<td>0</td>
<td>1</td>
<td>7</td>
</tr>
<tr>
<td>2.</td>
<td>0</td>
<td>2</td>
<td>0</td>
<td>7</td>
</tr>
<tr>
<td>3.</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>8</td>
</tr>
</tbody>
</table>

A member \(P_i \) of \(F \) is said to be of \textit{type} \((a, b, c, d) \), \(a \geq b \geq c \geq d \), if there exist precisely \(a, b, c \), and \(d \) members of \(F \), having one facet on any one (or more) of the four planes containing facets of \(P_i \), such that these other members of \(F \) are separated from \(P_i \) by these (four) planes. By the nearly-neighborliness of \(F \) it follows that \(a + b + c + d \geq 15 \), and by Lemmas 9 and 10 of [13] it follows that \(a, b, c, d \leq 4 \). Thus members of \(F \) can be of type \((4, 4, 4, 4)\) or \((4, 4, 4, 3)\).

The solutions 1 and 2 are impossible, since in these solutions \(x_{i,i} = 1 \) for some \(i \leq 2 \), implying that there should be a member of \(F \) of type \((a, b, c, d)\), where \(\{a, b, c, d\} \cap \{1, 2\} \neq \emptyset \).

In the case of solution 3, it follows that all the 16 members of \(F \) are of type \((4, 4, 4, 4)\). It means that for every member of \(F \), the fifteen other
members of F "appear" altogether 16 times in the expression $a + b + c + d$ of the (common) type; hence the following property holds:

For each member P_i of F there exists precisely one other member P_j of F, $i \neq j$, such that P_i and P_j are separated by exactly two planes which contain facets of both of them, for all other members P_r, $r \neq i, j$, of F, P_i and P_r are separated by exactly one plane which contains facets of both P_i and P_r. (8)

Property (8) of F can be translated to the following property of $B(F)$:

For each row index i, $1 \leq i \leq 16$, there exists a unique row index j, $1 \leq j \leq 16$, $j \neq i$, for which there exist precisely two column indices p and q, $1 \leq p < q \leq 16$, such that $\{b_{i,p}, b_{i,p}\} = \{b_{i,q}, b_{i,q}\} = \{1, -1\}$; for all other row indices k, $k \neq i, j$, there exists a unique column index r for which $\{b_{i,r}, b_{k,r}\} = \{1, -1\}$. (9)

Let us define the multigraph $G(F)$ as follows: $G(F)$ has the 16 vertices $\{1, 2, ..., 16\}$; two vertices n and m of $G(F)$ are connected by as many edges as there are column-indices r (in $B(F)$), for which $\{b_{n,r}, b_{n,r}\} = \{1, -1\}$.

It follows from (9) that $G(F)$ is equal to the multigraph, obtained from K_{16} by duplicating the edges of some 1-factor ($=\maximal matching$) of K_{16}; i.e., $G(F) = K_{16} + M_8$.

The collection of the edges of $G(F)$ which are contributed by any one column of $B(F)$, a column counted by $x_{i,j}$, form a complete bipartite graph of the form $K_{4,4}$. It follows that $G(P) = K_{16} + M_8$ has a decomposition into eight $K_{4,4}$, since in the solution under consideration $x_{4,4} = 8$ and $x_{i,j} = 0$ otherwise. However, this contradicts the inequality $b(K_{16} + M_8) \geq 9$, proved earlier (following Theorem 4).

Therefore there exist no nearly-neighborly families in E^3 consisting of sixteen tetrahedra.

In the first few steps of the proof of Theorem 1 we have actually proved the following.

Corollary 2. If F is a nearly-neighborly family in E^d, in which every member has at most k facets, and if $|F| = 2^k$, then each member of F has precisely k facets and $B(F)$ has the property that $x_{i,j} \neq 0$ implies that $i = j$.

A similar counting argument yields the following.

Corollary 3. If F is a nearly-neighborly family in E^d, in which every member has at most k facets, and if $|F| = 2^k - p$, then $B(F)$ has the following property: $x_{i,j} \neq 0$ implies $j - i < p$.

We were unable to prove that $g_s(3, 4) \neq 15$; using Corollary 3, and assuming there exists a nearly-neighborly family consisting of fifteen tetrahedra in E^3, the analogous system to (6, 7) is $\sum_{i < j} (i + j)x_{i,j} = 60$ and $\sum_{i < j} ijx_{i,j} > 105$, where the variables are $x_{i,j}$, for $0 \leq i \leq j \leq 4$ and $j - i \leq 1$. So far we are unable to refute some of the solutions of this system.

Remarks.
1. It is very easy to show that $g_s(d, d + 1) = 2^{d + 1}$ for all $d \geq 2$; merely observe that the following family of $2^{d + 1}$ d-polyhedra in E^d is nearly-neighborly for all $d \geq 2$. Take in each one of the orthant the following two sets: a d-simplex occupying the corner (i.e., spanned by the origin and d points, one on each one of the semi-axes in that orthant) and the closure of the complement of this d-simplex, taken relative to the orthant.

2. It is slightly harder and less trivial to show that $f_s(3, 4) = 16$; in [13, p. 280, 1.-11 to p. 282, 1.-15], we gave an example of a neighborly family in E^3, consisting of 16 pyramids (having quadrangular bases); each one of these pyramids has one facet which is free (see [13]; a facet of a member of a neighborly family is called free if it contains no one of the intersections of pairs of members). By deleting the free facet from each pyramid (i.e., if the pyramid is $\bigcap_{i=1}^{d} H_i^+$, and H_i is the hyperplane containing a free facet, then consider $\bigcap_{i=1}^{d} H_i^+$), we get a neighborly family in E^3, consisting of 16 3-polyhedra, each one having four facets, thus $f_s(3, 4) \geq 16$; equality follows from $f_s(3, 4) \leq g_s(3, 4) = 16$.

Note added in proof: Using a similar yet more detailed approach, S. Furino, B. Gamble, and J. Zako proved that there can be at most 14 nearly-neighborly tetrahedra in E^3.

REFERENCES

16. J. Zaks, No nine neighborly tetrahedra exist, manuscript.