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Oxidative Stress and Pathological Changes
After Coronary Artery Interventions
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Oxidative stress greatly influences the pathogenesis of various cardiovascular disorders. Coronary interventions,
including balloon angioplasty and coronary stent implantation, are associated with increased vascular levels of
reactive oxygen species in conjunction with altered endothelial cell and smooth muscle cell function. These alter-
ations potentially lead to restenosis, thrombosis, or endothelial dysfunction in the treated artery. Therefore, the
understanding of the pathophysiological role of reactive oxygen species (ROS) generated during or after coronary
interventions, or both, is essential to improve the success rate of these procedures. Superoxide O2

·� anions,
whether derived from uncoupled endothelial nitric oxide synthase, nicotinamide adenine dinucleotide phosphate
oxidase, xanthine oxidase, or mitochondria, are among the most harmful ROS. O2

·� can scavenge nitric oxide,
modify proteins and nucleotides, and induce proinflammatory signaling, which may lead to greater ROS produc-
tion. Current innovations in stent technologies, including biodegradable stents, nitric oxide donor-coated
stents, and a new generation of drug-eluting stents, therefore address persistent oxidative stress and re-
duced nitric oxide bioavailability after percutaneous coronary interventions. This review discusses the molecu-
lar mechanisms of ROS generation after coronary interventions, the related pathological events—including restenosis,
endothelial dysfunction, and stent thrombosis—and possible therapeutic ways forward. (J Am Coll Cardiol 2013;61:
1471–81) © 2013 by the American College of Cardiology Foundation
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Oxidative stress, characterized by an imbalance between the
generation reactive oxygen species (ROS) and the capacity
of the intrinsic antioxidant defense system, has been impli-
cated in the pathogenesis of cardiovascular diseases. ROS
are produced by various biological systems, including un-
coupling of nitric oxide synthase (NOS), nicotinamide
adenine dinucleotide phosphate oxidase (NOX), mitochon-
drial uncoupled respiration, xanthine oxidase, and cycloox-
ygenase (Fig. 1). NOS is a homodimeric enzyme that
produces superoxide (O2

·�) when uncoupled, that is, be-
ause of a deficiency in tetrahydrobiopterin or a lack of
-arginine (1). Seven isoforms of NOX are transmembrane
roteins with multiple cytosolic and transmembranous sub-
nits that are able to transport electrons across the mem-
rane to produce O2

·� (2). Mitochondria is the nonenzy-
matic source of ROS that mainly emerges from complex I
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and III of the respiratory chain (3,4). Another vascular
source of ROS is xanthine oxidase, which uses O2 as an
electron acceptor to produce O2

·�. In addition, O2
·� can be

generated as a product of arachidonic acid metabolism by
cyclooxygenase (5). Although excessive ROS production is
damaging, a lack of ROS generation (i.e., reductive stress)
also is detrimental (6). The redox window hypothesis
suggests that a shift in the redox state to an overly
reductive or oxidative environment is harmful and that
only when the redox environment is in balance can these
radicals be biologically beneficial (7).

Percutaneous coronary interventions (PCI), for example,
percutaneous transluminal coronary angioplasty (PTCA)
and stent deployment, induce pathophysiological levels of
vascular ROS production (8,9), leading to post-procedural
pathological changes, including restenosis, stent thrombo-
sis, and endothelial dysfunction. This review discusses the
generation of ROS after different types of PCI and the
post-procedural pathological consequences and summarizes
possible preventive and therapeutic strategies.

ROS Generation After PTCA

Immediately or several days after balloon injury, O2
·� levels

re elevated in the vessel wall (8,10), which colocalize to
mooth muscle cells (SMC) (8). In addition, O2

·� genera-

tion is observed in the adventitial layers, implying the role of
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fibroblasts in the production of
the free radical. This is mediated
by NOX, because the O2

·� gen-
eration was abolished after di-
phenyleneiodonium administra-
tion (11). Further, messenger
ribonucleic acid and protein ex-
pression of nox1, nox4, gp91
phox, and p22phox are upregu-
lated in rat carotid arteries after
balloon injury (8). Xanthine oxi-
dase does not seem to be in-
volved in O2

·� generation after
balloon angioplasty (11). It also
has been suggested that inducible
NOS is not involved in the gen-
eration of O2

·� because the inhi-
bition of this enzyme does not
affect the level of ROS after bal-
loon injury in pig coronaries (11).
O2

·� anions can promote prolif-
eration of vascular SMC and fi-
broblasts (11). Indeed, balloon
angioplasty rapidly induces p38
mitogen–activated protein ki-
nase, which also is activated by
ROS and is involved in SMC
hypertrophy and neointimal
hyperplasia (12). NOS may

lay a significant role in the prevention of neointimal
ormation and, thereby, restenosis after balloon injury
13,14). Nevertheless, the underlying mechanisms remain
o be elucidated. Studies regarding PTCA-associated
xidative stress are summarized in Table 1.

OS Production After
are-Metal Stent Deployment

imilar to balloon angioplasty, bare-metal stent (BMS)
eployment in human coronary arteries can induce oxidative
tress (9). A significant increase of O2

·� production after
BMS deployment also has been reported in the rabbit
arterial wall, which is associated with increased expression of
2 NOX subunits, p22phox and gp91phox (15). Studies
regarding BMS-associated oxidative stress are summarized
in Table 1.

ROS Production After DES Deployment

Paclitaxel-eluting stent (PES) deployment in pig coronary
arteries induces a higher production of O2

·� compared with
BMS deployment and decreased nitric oxide (NO) bioavail-
ability (16). Paclitaxel causes ROS generation by enhancing
NOX activity (17) and stimulating mitochondrial ROS
production (18). Sirolimus administration increases O2

·�

production in the aorta and heart of rats, leading to reduced

Abbreviations
and Acronyms

BES � biolimus-eluting
stent(s)

BMS � bare-metal stent(s)

DES � drug-eluting stent(s)

eNOS � endothelial nitric
oxide synthase

NO � nitric oxide

NOS � nitric oxide
synthase

NOX � nicotinamide
adenine dinucleotide
phosphate oxidase

O2
·� � superoxide

PCI � percutaneous
coronary intervention

PES � paclitaxel-eluting
stent(s)

PTCA � percutaneous
transluminal coronary
angioplasty

ROS � reactive oxygen
species

SES � sirolimus-eluting
stent(s)

SMC � smooth muscle
cells
NO bioavailability. Here, NOX and mitochondria were
found to be the major ROS generators (19). Importantly,
patients with stable coronary artery disease who received
sirolimus-eluting stents (SES) have a different behavior of
oxidative stress compared with those with BMS, and this
could contribute to the difference in restenosis rates between
these 2 types of stents (9). See also Table 1.

PCI-Associated Pathological Events

Restenosis. ROS contribute to the initial apoptosis, pro-
liferation, and migration of vascular SMC and adventitial
myofibroblasts, processes that occur shortly after balloon
angioplasty or stent deployment, leading to restenosis
(Figs. 2 and 3) (20,21). As in injuries occurring after balloon
angioplasty, restenosis after BMS deployment can be ex-
plained by ROS-associated neointimal formation (22,23).
Administration of an angiotensin II type 1 receptor blocker
attenuates in-stent restenosis by reducing NOX expression,
leading to a decrease in O2

·� production in stented rabbit
liac artery (15). An association between NOX and reste-
osis has been investigated in NOX2�/� mice that showed
educed neointimal proliferation and leukocyte accumula-
ion after wire-induced vascular injury in the femoral arter-
es (24). Inflammatory response after balloon angioplasty or
MS deployment also has been associated with neointimal

ormation (25). Because inflammatory cells are capable of
enerating O2

·�, their recruitment may lead to oxidative
stress enhancement and induction of restenosis. It has been
shown in stented human coronary arteries that ROS pro-
duction by activated neutrophils plays a role in the mecha-
nism of restenosis (26).

The precursors of antiproliferative drugs eluted from
drug-eluting stents (DES), including sirolimus (Cypher,
Cordis, Miami Lakes, Florida), paclitaxel (Taxus, Boston
Scientific, Natick, Massachusetts), zotarolimus (Endeavor
and Resolute, Medtronic, Minneapolis, Minnesota), and
everolimus (Xience, Abbott, Illinois, and Promus Element,
Boston Scientific Corporation, Natick, Massachusetts), ex-
ert a potent antimitotic action. Sirolimus (rapamycin) and
paclitaxel are cell cycle inhibitors working by inhibiting
mammalian target of rapamycin (27) and interfering with
microtubule assembly (28), respectively. Despite their effi-
cacy, restenosis still occurs and is more frequent in some
circumstances, for example, diabetes mellitus, complex le-
sions, bypass grafts, bifurcations, and deployment of longer
stents (29). There are significant overlaps in the cause of
restenosis after BMS and DES deployment, although
emerging data indicate that subtle differences may exist
(e.g., development of in-stent neoatherosclerosis) that are
more common and faster after DES deployment (30). The
biological effect of DES on neointimal proliferation has
uncovered the contribution of 2 other aspects of restenosis
after BMS: mechanical-related failures (31) and technique-

related factors (32). Further, hypersensitivity to BMS and
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DES has been implicated in the inflammatory process
leading to restenosis (33,34). Different factors contributing
to restenosis are depicted in Figure 4.
Endothelial dysfunction. BMS deployment has been as-
sociated with more severe impairment of endothelium-
dependent vasomotor function in comparison with balloon
angioplasty (35). Endothelial dysfunction after DES is more
pronounced than after BMS implantation (36). Both PES
and SES impair endothelium dependent relaxation re-
sponses to acetylcholine in the adjacent and remote distal
nonstented segments (37). Further, PES are able to induce
paradoxical vasoconstriction in the proximal and distal
segments of the stented vessel (38). Paclitaxel, sirolimus,
and everolimus reduce endothelial nitric oxide synthase
(eNOS) expression (39), leading to decreased NO bioavail-
ability, which may explain vasomotor disturbance after DES
deployment. The use of multiple stents to cover long
segments of blood vessels also decreases production of NO
and other endothelium-derived vasodilators, leading to

Figure 1 Reactive Oxygen Species Production in the Vascular

Reactive oxygen species (ROS) can be generated by different enzymatic systems,
pled nitric oxide synthase (NOS), xanthine oxidase (XOD), and cyclooxygenase (CO
production in the vasculature. CAM � calmodulin; Cyt C � cytochrome C; e� � el
mononucleotide; Mopt � molybdopterine; O2 � oxygen; UQ � ubiquitine.
endothelial dysfunction (40). d
The pathogenesis of DES-induced endothelial dysfunc-
tion is multifactorial. A major determinant is a decrease in
endothelial NO synthesis resulting from direct influence of
the eluting drug (41). As previously mentioned, sirolimus
administration increases O2

·� production, leading to re-
duced NO bioavailability (19). In addition, PES deploy-
ment induces high production of O2

·�, leading to decreased
O levels and impairment of endothelium-dependent re-

axation (16). ROS generation also interferes with other NO
rotective functions, for example, preventing vascular SMC
rowth, platelet aggregation, and leukocyte adhesion (42).
nother explanation for DES-related endothelial dysfunc-

ion is an acute or delayed hypersensitivity reaction to DES
omponents, for example, the strut, polymer, eluting drug,
r a combination thereof (16).
n-stent thrombosis. Acute and early stent thrombosis are
elated to mechanical issues with the stents, inadequate
latelet inhibition, or prothrombotic risk factors (43). Late
nd very late stent thrombosis have been associated with

y nicotinamide adenine dinucleotide phosphate (NADPH) oxidase (NOX), uncou-
mplex 1 and 3 in the respiratory chain in mitochondria also contribute to ROS
; FAD � flavin adenine dinucleotide; Fe � iron; Fe2S2 � ferredoxin; FMN � flavin
Wall

namel
X). Co
ectron
elayed re-endothelialization and inhibition of vascular
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repair after DES deployment (44,45). The high rates of
stent thrombosis in the first generation of DES had raised
safety concerns. Therefore, a new generation of DES have
been developed. A meta-analysis showed that late stent
thrombosis was significantly lower with cobalt-chromium
everolimus-eluting stent than with BMS, PES, SES, or
zotarolimus-eluting stent (46). The pathological changes,
including stent thrombosis, endothelial dysfunction, re-
stenosis, and their relation with ROS generation, occur-
ring after DES deployments are summarized in Figure 5.

Antioxidant and Concomitant
Medical Therapies in PCI

Ascorbic acid, �-tocopherol, probucol, and succinobucol.
Protective effects of antioxidants ascorbic acid and �-
tocopherol on cardiovascular diseases have been conflicting
(47–50). Regarding the use of these antioxidants after PCI,
although animal studies show a protective effect on neoin-
timal formation (51,52), clinical trials show contrary out-
comes (53,54). Several clinical studies (55,56) showed a
reduction in restenosis after probucol administration. Al-
though reducing restenosis after angioplasty, probucol has
no effect on stent restenosis after BMS deployment (57). It
is only protective when combined with other drugs, such as
cilostazol (58) or candesartan (59). This discrepancy may be
the result of the difference in treatment duration (57) or the
presence of confounding factors (60). Nevertheless, probu-
col is no longer available for clinical use because of its
proarrhythmogenic effect (61). Succinobucol is a derivate of
probucol with an antioxidant effect (62) that lacks proar-
rhythmogenic properties (63). Succinobucol administration
after balloon angioplasty and stent deployment leads to

Studies Regarding Coronary Intervention-Associated Oxidative StreTable 1 Studies Regarding Coronary Intervention-Associated O

Source of ROS Species

Balloon angioplasty-induced ROS

Medial and neointimal SMCs and
adventitial fibroblasts

Rat carotid artery

Cells present in the media and
neointima

Pig coronary artery

Adventitial fibroblasts Pig coronary artery

BMS-induced ROS

Blood Human coronary artery

Iliac ring Cynomolgus monkey and rabbit
iliac artery

DES-induced ROS

Coronary artery Pig coronary artery

Blood Human blood

Aortic ring Rat aorta (continuous sirolimus
infusion)

BMS � bare-metal stent(s); DES � drug-eluting stent(s); eNOS � endothelial nitric oxide synthase;
ROS � reactive oxygen species; SMC � smooth muscle cells; SOD � superoxide dismutase.
reduction of restenosis (63).
�-adrenergic receptor blockers. The third-generation
�-blocker nebivolol reduces O2

·� levels by inhibiting vas-
cular NOX expression and activity (64) and by preventing
eNOS uncoupling (65). In addition, this drug increases
eNOS activity (66) and restores endothelium-dependent
vasodilation (67). A clinical trial of the antioxidant effect of
carvedilol on restenosis showed negative results (68). How-
ever, a pitfall in the study design may invalidate the
conclusions of this study (69). Implantation of carvedilol-
eluting stents resulted in reduction of neointimal hyperpla-
sia in porcine coronary arteries (70). A small trial in patients
reported that carvedilol-eluting stents show a tendency to
inhibit neointimal hyperplasia (71). The antioxidant prop-
erty of �-blockers seems to be limited only to the third-
generation groups (64).
Angiotensin-converting enzyme inhibitors and angiotensin II
type 1 receptor antagonists. Stimulation of angiotensin II
type 1 receptors after arterial injury induces oxidative stress,
leading to neointimal formation. Treatment with
angiotensin-converting enzyme inhibitors (72) and angio-
tensin II type 1 receptor antagonists (73) decreases ROS
generation by reducing activity of NOX, attenuating eNOS
uncoupling, and increasing O2

·� dismutase levels (74).
Despite evidence of neointimal inhibition in animal models
of restenosis (75), 2 large-scale trials with angiotensin-
converting enzyme inhibitors failed to show any benefit of
these drugs (76,77). Although the angiotensin II type 1
receptor antagonist prevents neointimal formation in animal
studies (78,79), the results of clinical trials seem to be
conflicting (80,81). A protective effect of candesartan, how-
ever, was observed in the subgroup of patients with smaller
vessel diameters, suggesting that angiotensin II type 1
receptor blockers are only beneficial for certain groups of

ive Stress

Parameter(s) First Author, Year (Ref. #)

production, NOX mRNA expression Szocs et al., 2002 (8)

production, vitamin C and E levels Nunes et al., 1997 (10)

production, NOX expression and activity,
OD activity

Shi et al., 2001 (11)

od total peroxides levels, restenosis Kochiadakis et al., 2009 (9)

production, NOX mRNA expression,
roinflammatory markers mRNA expression,
eointimal thickness

Ohtani et al., 2006 (15)

production, endothelial vasomotor function,
eointimal thickness

Pendyala et al., 2009 (16)

l peroxide levels Kochiadakis et al., 2009 (9)

production, NOX expression, NO synthesis,
NOS protein expression

Jabs et al., 2008 (19)

� messenger ribonucleic acid; NO � nitric oxide; NOS � nitric oxide synthase; O2
●� � superoxide;
ssxidat

O2
●�

O2
●�

O2
●�

S

Blo

O2
●�

p
n

O2
●�

n

tota

O2
●�

e

patients (81).



i
b
p
c
f
s
r
S
i
s
i
p
O
a
2
o

n
s
d
i
r
e
p
t
a
s
P

t
a
m
p
(
a
t

1475JACC Vol. 61, No. 14, 2013 Juni et al.
April 9, 2013:1471–81 Oxidative Stress and Coronary Artery Interventions
Statins. Among the pleiotropic effects of statins, their
antioxidant effect may explain additional beneficial contri-
bution of these drugs to ameliorate various pathological
processes. Statins inhibit O2

·� formation by preventing
soprenylation of p21 RAC, which is essential for assem-
ling NOX (82) and reducing NOX4, p47phox (83), and
22phox (84) expression. Further, statins up-regulate vas-
ular eNOS expression and activity (83) and prevent the
ormation of NOS-derived O2

·� (85). Administration of
tatins in patients undergoing stent deployment reduces the
isk of myocardial injury (86) and stent thrombosis (87).
tatins exert antiproliferative effects without endothelium

mpairment. It has been shown that cerivastatin-eluting
tents significantly decrease neointimal hyperplasia and
nflammatory responses, without endothelial dysfunction, in
orcine coronary arteries (88).
ther concomitant therapies with antioxidant properties. The

ntioxidant effect of aspirin is mediated through cyclooxygenase-
inhibition and its interaction with NOX (89). The role

Figure 2 ROS Generation and Associated Pathological Changes

Balloon angioplasty induces an increase in ROS production from vascular smooth
induced inflammatory response. ROS stimulate SMC and fibroblast proliferation an
restenosis. Proliferative neointimal cells also generate ROS, enhancing the oxidati
f aspirin in the prevention of restenosis after PCI has g
ot been explored thoroughly. Amlodipine has been
tudied for its effect on restenosis prevention. Although it
id not decrease luminal loss, the incidence of repeated

nterventions was reduced significantly (90). Pentaeryth-
itol tetranitrate is a long-acting nitrate that reduces
NOS uncoupling and NOX activation (91), leading to
revention of endothelial dysfunction and plaque forma-
ion in animal models (92,93). Despite their potential
s a therapeutic strategy against restenosis, there is no
tudy so far investigating the role of long-acting nitrate in
CI.
The results demonstrated by the above-mentioned

rials indicate that the effect of antioxidant treatment to
meliorate restenosis or thrombosis after PCI deploy-
ent remains debatable. The conflicting results are

robably the result of differences in type of antioxidants
broad spectrum vs. specific targeting antioxidants), dos-
ge, supplementation methods and duration (94), and the
ype of stented vessel and lesions (81). In addition,

r Balloon Angioplasty

e cells (SMC) and adventitial fibroblasts via the NOX pathway and vascular injury-
ration through the internal elastic lamina to form a neointimal layer leading to
ss after balloon angioplasty. Abbreviations as in Figure 1.
Afte

muscl
d mig
ve stre
enetic factors influence individual response to antioxi-



i
m
a
i
d
p
l
R
m

m
e
T

m
c
f
t
i
t
a
c
o
d
n
v
p
i
g
d
(

1476 Juni et al. JACC Vol. 61, No. 14, 2013
Oxidative Stress and Coronary Artery Interventions April 9, 2013:1471–81
dants, (95) suggesting that only some individuals respond
well to certain therapies.

Perspectives

The high levels of O2
·� produced after various coronary

nterventions have been associated with the initiation of
igration and proliferation of SMC, leading to restenosis

nd reduction of NO bioavailability, which results in an
mpairment of endothelium-dependent vasodilatation and
evelopment of stent thrombosis. Therefore, ROS seem to
lay a significant role in the development of those patho-

ogical events after coronary interventions. The sources of
OS are not completely clear, but NOX seems to play a
ajor role.
The use of coronary artery stents, especially DES, re-
ains hampered by the occurrence of adverse events of

ndothelial dysfunction and late-stent thrombosis (96,97).

Figure 3 Bare-Metal Stents Induce ROS Production with Subse

After bare-metal stent (BMS) deployment, there is recruitment of inflammatory cell
pathological characteristics after BMS deployment. BMS deployment increases ex
way is considered to be the main ROS-generating pathway during coronary stent im
tion, leading to neointimal growth and restenosis. The proliferating neointimal cell
oxide (NO), resulting in decreased NO bioavailability with subsequent endothelial d
o overcome these problems, several attempts have been s
ade to improve the stent design and polymer and drug
oating the stents. Incorporation of endothelium-specific
actors into the stent coating can provide improved clinical
reatment. Several NO-releasing materials have been stud-
ed in the form of films or hydrogels and have been shown
o reduce platelet adhesion and intimal hyperplasia in vitro
nd in vivo (98–100). A use of a nanofibrous matrix
ontaining NO leads to stimulation of in vitro proliferation
f endothelial cells, reduction of SMC proliferation, and
ecline in platelet attachment (101). Such an NO-eluting
anofibrous matrix has the potential of being applied to
arious cardiovascular implants, thereby providing a
hysiological-like endothelial environment. EES have some
mportant differences in comparison with the first-
eneration DES, including a thinner stent strut, a lower
urable polymer load, a newer drug, and a lower drug dose
102). These stents have been proven superior with a better

t Vascular Damage

h as neutrophils. These cells produce ROS, which contribute to the vascular
n of NOX subunits leading to additional superoxide (O2

·�) production. This path-
ation. O2

·� anions induce vascular SMC and fibroblast proliferation and migra-
uce ROS, leading to more accumulation of the radicals that may react with nitric
tion also contributing to restenosis. Abbreviations as in Figures 1 and 2.
quen

s, suc
pressio
plant

s prod
ysfunc
afety profile than the first-generation DES in a number of
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randomized controlled trials (103–105) and meta-analyses
(46,102), and therefore are the most widely used DES at
present in the United States. In addition to everolimus,
biolimus is another sirolimus derivative that has been
studied increasingly. Biolimus is the -limus family member
that was developed specifically for local delivery to coronary
arteries (106). Biolimus-eluting stents (BES) (Nobori,
Terumo, Leuven, Belgium) are equipped with a biodegrad-
able polymer, polylactic acid, in which the biolimus is
incorporated and applied only to the abluminal surface of a
flexible stainless steel stent (107). Several large clinical trials
have compared BES and SES (107–110). BES performance
is superior in some subpopulations such as in myocardial
infarction patients with ST-segment elevation (109), and
these stents show a lower risk of very late stent thrombosis
(110). By reducing the risk of very late stent thrombosis-
related cardiac events, this stent may improve long-term
clinical outcomes for up to 4 years compared with SES.

Another attempt to improve coronary stents is to reduce
polymer-induced inflammation or hypersensitivity by incor-
porating biodegradable polymer into the stents. SES with
biodegradable polymer have been shown to be noninferior
to permanent polymer-based SES in terms of clinical
efficacy and stent thrombosis (111,112). Another biode-
gradable polymer-based DES is BES, which better preserve
endothelium-dependent coronary vasomotor response in
comparison with SES and PES (36,113).

The role of eNOS increasingly has been studied to

Figure 4 Different Factors Contributing to Restenosis

Several stent-related factors (i.e., ROS formation, vascular injuries, stent-induced
failures) can induce SMC and fibroblast proliferation and migration, leading to rest
deployment. DES � drug-eluting stent(s). Abbreviations as in Figures 1, 2, and 3.
develop a new strategy to reduce PCI-induced adverse
pathological reactions. As mentioned, several NO-releasing
material-based stents show promising outcomes. However,
whether the addition of an NO donor to the stent coating
would be sufficient to prevent endothelial dysfunction in-
duced by a coronary intervention, because administration of
NO does not reduce the eNOS uncoupling-dependent ROS
generation, is unclear. eNOS-eluting stents have been tested
in vivo and shown to reduce restenosis and to accelerate
re-endothelialization (114,115). Although NOX seems to
play an important role in ROS generation after vascular
damage, a role for eNOS cannot be excluded. Uncoupled
eNOS generates ROS and it seems that antiproliferative
drugs used in DES reduce functional eNOS with subse-
quent declined NO bioavailability, which may lead to stent
thrombosis and vasomotor disturbance (39,40). The in-
creased level of oxidative radicals in the dog coronary sinus
after PTCA was reduced after inhibition of eNOS with
NG-nitro-L-arginine (116). Modulation of eNOS by ad-
ministration of tetrahydrobiopterin or folic acid is another
potential way to overcome complications after coronary
interventions (117).

Conclusions

Various coronary interventions, namely balloon angioplasty
and implantation of BMS and DES, can induce ROS
generation from different enzymatic systems and mitochon-
dria, leading to pathological-related events, including

ensitivity, subendothelial lipid deposition, and mechanical- and technique-related
. Concomitant complications also can increase the rate of restenosis after stent
hypers
enosis
restenosis, endothelial dysfunction, and stent thrombosis.
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Given that coronary interventions reduce eNOS with
subsequent decline in NO bioavailability, the role of
eNOS in generating O2

·� after coronary interventions
annot be disregarded.

Several new approaches are being developed to overcome
he adverse events after coronary interventions, including
mprovement of stent design, incorporation of biodegrad-
ble stents, newer DES, and eNOS-based coated stents.
ecause there is no single approach available that can
ompletely overcome PCI-induced adverse reactions, more
nnovations are needed to improve the efficacy and safety
rofile of the coronary intervention further.

Reprints requests and correspondence: Dr. An L. Moens,
Department of Cardiology, Cardiovascular Research Institute
Maastricht, Maastricht University Medical Centre, Universite-
itssingel 50, 6229 ER Maastricht, the Netherlands. E-mail:

Figure 5 DES-Induced Oxidative Stress and Related Pathologic

DES are a double-edged sword. On the one hand, they prevent restenosis by elutio
other hand, they contribute to vascular abnormalities by induction of ROS in the ve
deployment, leading to reduced NO bioavailability and endothelial dysfunction. Ano
hypersensitivity reaction to DES components. The endothelial dysfunction ultimate
and restenosis. Abbreviations as in Figures 1, 2, 3, and 4.
anmoens@hotmail.com.
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