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Abstract

We consider the nonlinear Schrödinger equation in higher dimension with Dirichlet boundary conditions
and with a nonlocal smoothing nonlinearity. We prove the existence of small amplitude periodic solutions.
In the fully resonant case we find solutions which at leading order are wave packets, in the sense that they
continue linear solutions with an arbitrarily large number of resonant modes. The main difficulty in the
proof consists in a “small divisor problem” which we solve by using a renormalisation group approach.
© 2008 Elsevier Inc. All rights reserved.

1. Introduction and results

In this paper we prove the existence of small amplitude periodic solutions for a class of non-
linear Schrödinger equations in D dimensions

ivt − �v + μv = f
(
x,Φ(v),Φ(v̄)

) := ∣∣Φ(v)
∣∣2Φ(v) + F

(
x,Φ(v),Φ(v̄)

)
, (1.1)

with Dirichlet boundary conditions on the square [0,π]D . Here D � 2 is an integer, μ is a real
parameter, Φ is a smoothing operator, which in Fourier space acts as

(
Φ(u)

)
k
= |k|−2suk, (1.2)
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for some positive s, and F is an analytic odd function, real for real u, such that F(x,u, ū) is of
order higher than three in (u, ū), i.e.

F(x,u, ū) =
∞∑

p=4

∑
p1+p2=p

ap1,p2(x)up1 ūp2 , F (−x,−u,−ū) = −F(x,u, ū). (1.3)

In particular this implies that the functions ap1,p2 must be even for odd p and odd for even p.
To simplify the analysis we assume that ip+1ap1,p2(x) is real. Such an assumption could be
removed, see [22].

For D = 2 we do not impose any further condition on f , whereas for D � 3 we shall consider
a more restrictive class of nonlinearities, by requiring

f (x,u, ū) = ∂

∂ū
H(x,u, ū) + g(x, ū), H(x,u, ū) = H(x,u, ū), (1.4)

i.e. with H a real function and g depending explicitly only on ū (besides x) and not on u.
Studying Hamiltonian perturbations is quite natural. In fact, we can extend the analysis to more
general perturbations by including functions depending only on ū, even if we cannot provide a
physical motivation for them. This limitation is due to technical difficulties which do not occur
for D = 2, where any analytic perturbation is allowed.

A particular case of (1.4) occurs when H(x,u, ū) = F(x, |u|2): this is usually referred to as
the gauge-invariant case.

In general when looking for small periodic solutions for PDEs one expects to find a “small
divisor problem” due to the fact that the eigenvalues of the linear term accumulate to zero in the
space of T -periodic solutions, for any T in a positive measure set.

The case of one space dimension was widely studied in the ’90 for nonresonant equations
by using KAM theory by Kuksin and Pöshel [25,26] and Wayne [32], and by using Lyapunov–
Schmidt decomposition by Craig and Wayne [13] and Bourgain [5,9]. The two techniques are
somehow complementary. The Lyapunov–Schmidt decomposition is more flexible: it can be suc-
cessfully adapted to non-Hamiltonian equations and to “resonant” equations, i.e. where the linear
frequencies are not rationally independent (see for instance [2–4,8,20,27] and [31] in the case of
the nonlinear wave equation). On the other hand, KAM theory provides more information, for
instance on the stability of the solutions.

Generally speaking the main feature which is used to solve the small divisor problem (in all
the above mentioned techniques) is the “separation of the resonant sites.” Such a feature can be
described as follows. For instance for D = 1 consider an equation D[u] = f (u), where D is a
linear differential operator and f (u) a smooth super-linear function; let λk with k ∈ Z

2 be the
linear eigenvalues in the space of T -periodic solutions, so that after rescaling the amplitude and
in Fourier space the equation has the form

λkuk = εfk(u), (1.5)

with infk|λk| = 0. The separation property for Dirichlet boundary conditions requires:

1. If |λk| < α then |k| > Cα−δ0 (this is generally obtained by restricting T to a Cantor set).
2. If both |λk| < α and |λh| < α then either h = k or |h − k| � C(min{|h|, |k|})δ .
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Here δ0 and δ are model-dependent parameters, and C is some positive constant. In the case
of periodic boundary conditions, 2 should be suitably modified.

It is immediately clear that 2 cannot be satisfied by our equation (1.1) as the linear eigenvalues
are

λn,m = −ωn + |m|2 + μ, ω = 2π

T
, (n,m) ∈ Z × Z

D, (1.6)

so that all the eigenvalues λn1,m1 with n1 = n and |m1| = |m| are equal to λn,m.
The existence of periodic solutions for D > 1 space dimensions was first proved by Bour-

gain in [6] and [9], by using a Lyapunov–Schmidt decomposition and a technique by Spencer
and Frölich to solve the small divisor problem. Again the separation properties are crucial: 1 is
assumed and 2 is weakened in the following way:

2′. The sets of k ∈ Z
D+1 such that |λk| < 1 and R < |k| < 2R are separated in clusters, say Cj

with j ∈ N, such that each cluster contains at most Rδ1 elements and dist(Ci,Cj ) � Rδ2 ,
with 0 < δ2 � δ1 � 1.

Now, in order to apply Spencer and Frölich’s method, one has to control the eigenvalues of
appropriate matrices of dimension comparable to |Cj |. Such a dimension goes to infinity with R

and at the same time the linear eigenvalues go to zero, so that achieving such estimates is a rather
delicate question.

Recently Bourgain also proved the existence of quasi-periodic solutions for the nonlinear
Schrödinger equation, with local nonlinearities (which corresponds to s = 0 in (1.2)), in any
dimensions [10]. Still more recently in [15], Eliasson and Kuksin proved the same result by
using KAM techniques. We can also mention a very recent paper by Yuan [34], where a variant
of the KAM approach was provided to show the existence of quasi-periodic solutions: in this
version, stability of the solutions is not obtained, but, conversely, the proof rather simplifies with
respect to that given in [15].

In [18], Geng and You have proved, via KAM theory, the existence of quasi-periodic solutions
for the NLS with a nonlocal smoothing nonlinearity which does not explicitly depend on the
space variables and with periodic boundary conditions; under these assumptions they show the
existence of a symmetry, which greatly simplifies the analysis. In the case of Dirichlet boundary
condition or with nonlinearities depending explicitly on x, such as (1.3), this symmetry is broken,
so that the results of [18] do not apply to Eq. (1.1) with F depending explicitly on x and/or with
Dirichlet boundary conditions.

In this paper we give a different proof of existence of periodic solutions for the nonlinear
Schrödinger equation (1.1) with Dirichlet boundary conditions (cf. Theorem 1 below). We use the
Lyapunov–Schmidt decomposition and then the so-called (slightly improperly) “Lindstedt series
method” [19] to solve the small divisor problem. The main purpose is to establish appropriate
techniques and notation in the simplest (nontrivial) possible case which still carries the main
difficulties of the D space dimensions. This motivates our choice of Eq. (1.1), with the nonlocal
smoothing nonlinearities.

Nonlocal nonlinear Schrödinger equations appear in several contexts in physics, but not of the
form (1.1) we are considering (see, for instance, [16,28,29,35,36]). Although such equations do
not arise from any physical situation that we are aware of, the regularisation through a smoothing
function was already considered in the literature (see [1,30] and [18]), as it provides some nice
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simplifications when looking for periodic or quasi-periodic or almost-periodic solutions in PDE
problems. In our case we can take any regularisation (that is any s > 0 is acceptable). We can
remove the smoothing (so allowing s = 0), but this requires some extra work, which will be
discussed elsewhere [22].

Moreover, we are able to find periodic solutions also in some non-Hamiltonian systems and
in resonant cases (cf. Theorems 2 to 4 below) where the result was not known in the literature.
Such a result represents the main original contribution of our paper: we have preferred to start
from the simpler periodic solutions which are usually discussed in the literature (cf. Theorem 1
below) because in that case the formalism is less involved, and hence the proofs simplify in a
substantial way.

In particular in the completely resonant case (μ = 0 in (1.1)) we find solutions which in
the absence of the perturbation reduce to wave packets, i.e. linear combinations of harmonics
centered around suitable frequencies – on the contrary the periodic solutions usually discussed
continue a single unperturbed harmonic. To the best of our knowledge the only results in this
direction are due to Bourgain: cf. [7] and [8], which have been the main source of inspiration
for our work. Solutions of this kind, which arise from the superposition of several harmonics,
were already discussed [21] in the one-dimensional case. Also for these solutions the higher
dimensions introduce a lot of extra difficulties. With respect to the nonresonant case, the main
additional difficulties are related to the nondegeneracy property of the unperturbed solution to
be continued. Such a property is very hard to check in general. Bourgain’s paper deals with
periodic boundary conditions, and explicitly studies the case of quasi-periodic solutions with
two frequencies in D = 2, where the nondegeneracy property is not the main point. On the other
hand, the nondegeneracy property is significantly more difficult in the case of Dirichlet boundary
conditions, and we have been able to solve completely the problem only in D = 2; we refer to
Section 8 for a more detailed discussion.

Let us now describe the general lines of the Lindstedt series approach, which were originally
developed by Eliasson [14], Gallavotti [17], and Chierchia and Falcolini [11], in the context of
KAM theory for finite-dimensional systems.

The main idea is to consider a “renormalisation” of Eq. (1.5) which can be proved to
have solutions. More precisely we consider a new, vector-valued, equation with unknowns
Uj := {uk: k ∈ Cj }

(
Dj (ω) + Mj

)
Uj = εFj (U) + LjUj , (1.7)

where {Cj }j∈N are appropriately chosen clusters (a precise definition will be given below),
Dj (ω) is the diagonal matrix of the eigenvalues λk with k ∈ Cj , Fj (U) is the vector {fk(u):
k ∈ Cj } defined in (1.5), and Mj , Lj are matrices of free parameters. Eq. (1.7) coincides with
(1.5) provided Mj = Lj for all j ∈ N.

The aim then is to proceed as in the one-dimensional renormalisation scheme proposed in
[19] and [20]; namely we restrict (ω, {Mj }) to a Cantor set and construct both the solution
Uj (ε,ω, {Mh}) and Lj (ε,ω, {Mh}) as convergent power series in ε. Then one solves the compat-
ibility equation Mj = Lj (ε,ω, {Mh}); essentially this is done by the implicit function theorem
but with the additional complication that Lj is defined for (ω, {Mh}) in a Cantor set.

We look for periodic solutions of frequency ω = D + μ − ε, with ε > 0, which continue
the unperturbed one (ε = 0) with frequency ω0 = D + μ. Note that the choice of this particular
unperturbed frequency is made only for the sake of definiteness: any other linear frequency would
yield the same type of results.
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For ε �= 0 we perform the change of variables

√
εu(x, t) = Φ

(
v(x,ωt)

)
, (1.8)

so that (1.1) becomes

Φ−1(iωut − �u + μu) = ε|u|2u + 1√
ε
F (x,

√
εu,

√
εū) ≡ εf (x,u, ū, ε), (1.9)

with a slight abuse of notation in the definition of f .
We start by considering explicitly the case F = 0, for simplicity, so that f (x,u, ū, ε) =

f (u, ū) = |u|2u. In that case the problem of the existence of periodic solutions becomes trivial,
but the advantage of proceeding this way is that the construction that we are going to envisage
extends easily to more general f , with some minor technical adaptations.

We pass to the equation for the Fourier coefficients, by writing

u(x, t) =
∑

n∈Z,m∈ZD

un,mei(nt+m·x), (1.10)

where · denotes the scalar product, so that (1.9) gives

|m|2s
(−ωn + |m|2 + μ

)
un,m = ε

∑
n1+n2−n3=n

m1+m2−m3=m

un1,m1un2,m2 ūn3,m3 ≡ εfn,m(u, ū), (1.11)

and the Dirichlet boundary conditions spell

un,m = −un,Si (m), Si(ej ) = (1 − 2δ(i, j)
)
ej ∀i = 1, . . . ,D, (1.12)

where δ(i, j) is Kronecker’s delta and Si(m) is the linear operator that changes the sign of the
ith component of m.

We proceed as follows. We perform a Lyapunov–Schmidt decomposition separating the P –Q

supplementary subspaces. By definition Q is the space of Fourier labels (n,m) such that un,m

solves (1.11) at ε = 0. If μ �= 0 we impose an irrationality condition on μ, i.e. ω0n − p �= 0, so
that Q is defined as

Q := {(n,m) ∈ Z × Z
D: n = 1, mi = ±1 ∀i

}
. (1.13)

By the Dirichlet boundary conditions, calling V = {1,1, . . . ,1}, for all (1,m) ∈ Q we have that
u1,m = ±u1,V ; see (1.12). Then (1.11) naturally splits into two sets of equations: the Q equa-
tions, for (n,m) such that n = 1 and |m| = √

D, and the P equations, for all the other values of
(n,m). We first solve the P equations keeping q := u1,V as a parameter. Then we consider the
Q equations and solve them via the implicit function theorem.

We look for solutions of (1.11) such that un,m ∈ R for all (n,m); this is possible as one can
find real solutions for the bifurcation equations in Q, and then the recursive P –Q equations are
closed on the subspace of real un,m. The same condition can be imposed also in the more general
case (1.3), provided the functions ip1+p2+1ap ,p (x) are real, as we are assuming.
1 2
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For μ �= 0 we shall construct periodic solutions which are analytic both in time and space,
and not only sub-analytic, as for instance in [6]. This is due to the presence of the smoothing
nonlinearity.

Theorem 1. Consider Eq. (1.9), with Φ defined by (1.2) for arbitrary s > 0 and F given by (1.3)
if D = 2 and by (1.3) and (1.4) if D � 3. There exist a Cantor set M ⊂ (0,μ0) and a constant ε0
such that the following holds. For all μ ∈ M there exists a Cantor set E(μ) ⊂ (0, ε0), such that
for all ε ∈ E(μ) the equation admits a solution u(x, t), which is 2π -periodic in time, analytic in
time and in space, such that

∣∣∣∣∣u(x, t) − (2i)Dq0eit
D∏

i=1

sinxi

∣∣∣∣∣� Cε, q0 =
√

Ds3−D, (1.14)

uniformly in (x, t). The set M has full measure and for all μ ∈ M the set E = E(μ) has positive
Lebesgue measure and

lim
ε→0+

meas(E ∩ [0, ε])
ε

= 1, (1.15)

where meas denotes the Lebesgue measure.

In [22], by refining the analysis we show that the result extends to the case s = 0.
For μ = 0 the following result extends Theorem 1 of [21] to the higher-dimensional case.

Theorem 2. Consider Eq. (1.9) with μ = 0, D � 2, Φ defined by (1.2) and F given by (1.3)
and (1.4). There exist a constant ε0 and a Cantor set E ⊂ (0, ε0), such that for all ε ∈ E the
equation admits a solution u(x, t), which is 2π -periodic in time, sub-analytic in time and in
space, satisfying (1.14) and (1.15).

Remark. For μ �= 0 we could consider unperturbed periodic solutions with other frequencies
and we would obtain the same kind of results as in Theorem 1, with only some trivial changes
of notation in the proofs. For μ = 0 and if the functions ap1,p2(x) in (1.3) are constant, we could
easily extend Theorem 2 to unperturbed solutions with different frequencies (as the proof of
Lemma 8.3 shows). Considering nonconstant ap1,p2 ’s would require some extra work.

For D = 2 the following result extends Theorem 2 of [21].

Theorem 3. Consider Eq. (1.9) with μ = 0, D = 2, Φ defined by (1.2) and F given by (1.3) and
(1.4). Let K any interval in R+. For N > 4 there exist sets M+ of N vectors in Z

2+ and sets of
real amplitudes am with m ∈ M+ such that the following holds. Define

q0(x, t) = −4
∑

m∈M+
amei

|m|2
2 t sin(m1x1) sin(m2x2). (1.16)

There are a finite set K0 of points in K, a positive constant ε0 and a set E ⊂ (0, ε0) (all depending
on M+), such that for all s ∈ K \ K0 and ε ∈ E, Eq. (1.9) admits a solution u(x, t), which is 2π -
periodic in time, sub-analytic in time and space, such that
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∣∣u(x, t) − q0(x, t)
∣∣� Cε, (1.17)

uniformly in (x, t). Finally

lim
ε→0+

meas(E ∩ [0, ε])
ε

= 1, (1.18)

where meas denotes the Lebesgue measure.

In the case D > 2 we can still find a solution of the leading order of the Q equations of the
form (1.16); however in order to prove the existence of a solution u(x, t) of the full equation we
need a “nondegeneracy condition,” namely that some finite-dimensional matrix (denoted by J1,1

and defined in Section 8) is invertible.

Theorem 4. Consider Eq. (1.9) with μ = 0, D � 2, Φ defined by (1.2) and F given by (1.3) and
(1.4). There exist sets M+ of N vectors in Z

D+ and sets of real amplitudes am with m ∈ M+ such
that the Q equations at ε = 0 have the solution

q0(x, t) = (2i)D
∑

m∈M+
amei

|m|2
D

t
D∏

i=1

sin(mixi). (1.19)

The set M+ identifies a finite order matrix J1,1 (depending analytically on the parameter s). For
N > 1 if detJ1,1 = 0 is not an identity in s then the following holds. There are a finite set K0

of points in K, a positive constant ε0 and a set E ⊂ (0, ε0) (all depending on M+), such that
for all s ∈ K \ K0 and ε ∈ E, Eq. (1.9) admits a solution u(x, t), which is 2π -periodic in time,
sub-analytic in time and space, such that

∣∣u(x, t) − q0(x, t)
∣∣� Cε, (1.20)

uniformly in (x, t), and E satisfies the property (1.18).

The existence of periodic solutions in the completely resonant case μ = 0 holds “for most
values of the parameter s.” Essentially in the proof we use that detJ1,1 is not identically zero in s

(which can be explicitly proved for D = 2). Therefore it is not obvious how to extend Theorems 2
to 4 to the case s = 0 even by following the strategy in [22]. Indeed one has in principle the further
difficulty of proving that detJ1,1 �= 0 for a given value of s, in particular for s = 0. In [22] we
have proved this result in the case of ap1,p2 constant. In the general case, for given sets M+, one
can check such a property numerically, but of course in full generality the problem remains open.

Note that the sets M+ for which Theorems 3 and 4 hold are different – as the construction
given in the proof shows – from those considered by Bourgain, where all vectors in M+ have
the same modulus. In particular, when considering periodic solutions, in our case also in the
gauge-preserving case we find small divisor problems, contrary to what happens for the solutions
explicitly described by Bourgain.
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2. Technical set-up and propositions

2.1. Separation of the small divisors

Let us require that μ is strongly nonresonant (and in a full measure set), i.e. that there exist
1 � γ0 > 0 and τ0 > 1 such that

∣∣(D + μ)n − p − aμ
∣∣� γ0

|n|τ0
∀a = 0,1, (n,p) ∈ Z

2, (n,p) �= (1,D), n �= 0. (2.1)

We shall denote by M the set of values μ ∈ (0,μ0) which satisfy (2.1). For μ ∈ M and ε0
small enough we shall restrict ε to a large relative measure set E0(γ ) ⊂ (0, ε0) by imposing the
Diophantine conditions (recall that ω = D + μ − ε)

E0(γ ) :=
{
ε ∈ (0, ε0): |ωn − p| � γ

nτ1
∀(n,p) ∈ N

2
}
, (2.2)

for some τ1 > τ0 + 1 and γ � γ0/2; see Appendix A.1. These conditions guarantee the “separa-
tion of the resonant sites,” due to the regularising nonlinearity, for all pairs (n,m) and (n′,m′)
such that n �= n′; indeed we have the following result.

Lemma 2.1. Fix s0 ∈ R. For all ε ∈ E0(γ ) if for some p � p1, n,n1 ∈ N one has

ps0 |ωn − p − μ| � γ /2, p
s0
1 |ωn1 − p1 − μ| � γ /2, (2.3)

then either n = n1 and p = p1 or |n − n1| � p
s0/τ1
1 and n + n1 � B0p1 for some constant B0.

Proof. If n − n1 �= 0 one has γ /|n − n1|τ1 � |ω(n − n1) − (p − p1)| � γ /p
s0
1 , so that one

obtains p
s0
1 � |n − n1|τ1 . If n = n1 then |p − p1| � γ /p

s0
1 , hence p = p1. Finally the inequality

n+n1 � B0p1 follows immediately from (2.3), with the constant B0 depending on ω and μ. �
Remark. Note that if s0 is small enough one can always bound B0p1 � p

s0/τ1
1 .

We shall now use the following lemma to reorder our space index set Z
D . The proof is deferred

to Appendix A.2 (see also [12,9]). Through all the paper, for any given finite set A we denote
with |A| the number of elements of A.

Lemma 2.2. For all α > 0 small enough one can write Z
D =⋃j∈N

Λj such that

(i) all m ∈ Λj are on the same sphere, i.e. for all j ∈ N there exists pj ∈ N such that |m|2 ≡ pj

∀m ∈ Λj ;
(ii) Λj has dj elements such that |Λj | ≡ dj � C1p

α
j , for some j -independent constant C1;

(iii) for all i �= j such that Λj and Λi are on the same sphere (i.e. such that pj = pi ) one has

dist(Λi,Λj ) � C2p
β
j , β = 2α

2D + (D + 2)!D2
, (2.4)

for some j -independent constant C2;
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(iv) if dj > 1 then for any m ∈ Λj there exists m′ ∈ Λj such that |m − m′| < C2p
β
j , so that one

has diam(Λj ) � C1C2p
α+β
j .

If D = 2 one can take dj = 2 for all j and β = 1/3.

Remarks. (1) Essentially Lemma 2.2 assures that the points located on the intersection of the
lattice Z

D with a sphere of any given radius r can be divided into a finite number of clusters,
containing each just a few elements (that is of order rα , α � 1) and not too close to each other
(that is at a distance not less than of order rβ , β > 0; in fact one has β < α).

(2) In fact the proof given in Appendix A.2 shows that diam(Λj ) < const. pα/D
j .

By definition we call Λ1 the list of vectors m such that mi = ±1 (that is pj = D). In the
following we shall take α � min{s,1}, with s given in (1.2).

2.2. Renormalised P –Q equations

For (n, j) �= (1,1), let us define

Un,j = {un,m}m∈Λj
, (2.5)

which is a vector in R
dj . Recall that pj = |m|2 if m ∈ Λj ; the equations for Un,j are then by

definition

ps
j δn,jUn,j = εFn,j , (2.6)

where

δn,j = −ωn + pj + μ, Fn,j = {fn,m}m∈Λj
. (2.7)

We introduce the ε-dependent

yn,j := p
s2
j δn,j , (2.8)

where the exponent s2 < s will be fixed in the forthcoming Definition 2.5(iv), and we define the
renormalised P equations (for (n, j) �= (1,1)) as

ps
j

(
δn,j I + p−s

j χ̄1(yn,j )Mn,j

)
Un,j = ηFn,j + Ln,jUn,j , (2.9)

where I (the identity), Mn,j and Ln,j are dj ×dj matrices and χ̄1 is a C∞ nonincreasing function
such that (see Fig. 2 below)

{
χ̄1(x) = 1, if |x| < γ/8,

χ̄1(x) = 0, if |x| > γ/4,
(2.10)

and χ̄ ′
1(x) < Cγ −1 for some positive constant C (the prime denotes derivative with respect to

the argument).
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Clearly (2.9) coincides with (2.6), hence with (1.11), provided

η = ε, χ̄1(yn,j )Mn,j = Ln,j , (2.11)

for all (n, j) �= (1,1). The matrices Ln,j will be called the counterterms.
We complete the renormalised P equations with the renormalised Q equations

Dsq =
∑

n1+n2−n3=1
ni=1

∑
m1+m2−m3=V

mi∈Λ1

un1,m1un2,m2un3,m3 +
∑∗

n1+n2−n3=1
m1+m2−m3=V

un1,m1un2,m2un3,m3,

(2.12)

where the symbol
∑∗ implies the restriction to the triples of (ni,mi) such that at least one has

not ni = |mi |2 = 1. It should be noticed that the second sum vanishes at η = 0.

2.3. Matrix spaces

Here we introduce some notations and properties that we shall need in the following.

Definition 2.3. Let A be a d × d real-symmetric matrix, and denote with A(i, j) and λ(i)(A)

its entries and its eigenvalues, respectively. Given a list m := {m1, . . . ,md} with mi ∈ Z
D and a

positive number σ , we define the norms

|A|∞ := max
i,j�d

∣∣A(i, j)
∣∣, |A|σ,m := max

i,j�d

∣∣A(i, j)
∣∣eσ |mi−mj |ρ ,

‖A‖ := 1√
d

√
tr
(
AT A

)=
√√√√√ 1

d

d∑
i,j=1

A(i, j)2, (2.13)

with ρ depending on D. For fixed m = {m1, . . . ,md} ∈ Z
dD we call A(m) the space of d × d

real-symmetric matrices A with norm |A|σ,m.

Lemma 2.4. Given a matrix A ∈ A(m), the following properties hold.

(i) The norm ‖A‖ is a smooth function in the coefficients A(i, j).
(ii) One has 1√

d
‖A‖ � |A|∞ �

√
d‖A‖.

(iii) One has 1√
d

maxi

√
λ(i)(AT A) � ‖A‖ � maxi

√
λ(i)(AT A).

(iv) For invertible A one has

∂A(i,j)A
−1(h, l) = −A−1(h, i)A−1(j, l), ∂A(i,j)‖A‖ = A(i, j)

d‖A‖ . (2.14)

Proof. Item (i) follows by the invariance of the characteristic polynomial under change of coor-
dinates.
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Items (ii) and (iii) are trivial.
The first relation in item (iv) follows by the definition of differential as

DAf (A)[B] ≡ ∂εf (A + εB)|ε=0. (2.15)

Now by Taylor expansion we get DA(A)−1[B] = −A−1BA−1. The second relation is trivial. �
Remark. Note that for A symmetric one has

√
λ(i)(AT A) = |λ(i)(A)|.

Definition 2.5. Let {Λj }∞j=1 be the partition of Z
D introduced in Lemma 2.2. Fix α small enough

with respect to min{s,1}, with s given in (1.2). Call Ω ⊂ Z × N the set of indices (n, j) �= (1,1)

such that

−1

2
+ (D + μ − ε0)n < pj < (D + μ)n + 1

2
. (2.16)

For ε0 small enough (2.16) in particular implies n > 0, hence Ω ⊂ N
2. With each (n, j) �= (1,1)

we associate the list Λj = {m(1)
j , . . . ,m

(dj )

j }, with dj � C1p
α
j , and a dj × dj real-symmetric

matrix Mn,j ∈ A(Λj ) (see Definition 2.3), such that Mn,j = 0 if (n, j) /∈ Ω .

(i) We call M the space of all matrices which belong to a space A(Λj ) for some j ∈ N, and
for A ∈ A(Λj ) we set |A|σ = |A|σ,Λj

.

(ii) We denote the eigenvalues of χ̄1(yn,j )Mn,j with pα
j ν

(i)
n,j , so that ν

(i)
n,j � C|Mn,j |∞ �

C|Mn,j |σ , for some constant C.
(iii) For invertible δn,j I + p−s

j χ̄1(yn,j )Mn,j we define xn,j and νn,j by setting

xn,j = ∣∣δn,j + p−s+2α
j νn,j

∣∣= ∥∥(δn,j I + p−s
j χ̄1(yn,j )Mn,j

)−1∥∥−1
, (2.17)

where the norm ‖A‖ is introduced in Definition 2.3 – notice that νn,j , hence xn,j , depends
both on ε and M ;

(iv) We call s1 = s − 2α and set s2 = s1/4 in (2.8).

Remark. Note that the eigenvalues ν
(i)
n,j are proportional to χ̄1(yn,j ), hence vanish for |yn,j | >

γ/4.

Lemma 2.6. There exists a positive constant C such that one has |νn,j | � C|Mn,j |∞ �
C|Mn,j |σ .

Proof. For notational simplicity set Mn,j = M , δn,j = δ, pj = p, dj = d , xn,j = x, νn,j = ν,

ν
(i)
n,j = νi , and define λi = δ + p−s+ανi , with |νi | � C|M|∞ (see Definition 2.5(ii)). Then one

has

x = ∣∣δ + p−s+2αν
∣∣=
(

1

d

d∑
i=1

1

λ2
i

)−1/2

� C
1/2
1 pα/2 min

i
|λi | � C

1/2
1 pα/2

(
|δ| + p−s+α min

i
|νi |
)
.

We distinguish between two cases.
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1. If there exists i = i0 such that |δ| < 2p−s+α|νi0 | then one obtains

x � 2C
1/2
1 p−s+3α/2|νi0 | + p−s+3α/2 min

i
|νi | � 4C

1/2
1 p−s+2α|νi0 |.

Therefore, if |δ| < p−s+2α|ν|/2 one has

p−s+2α|ν|/2 < x < 4C
1/2
1 p−s+2α|νi0 | � 4CC

1/2
1 p−s+2α|M|∞,

hence |ν| � const. |M|∞. If |δ| � p−s+2α|ν|/2 one has, by the assumption on δ,
p−s+2α|ν|/2 � |δ| < 2p−s+α|νi0 | � 4p−s+2α|νi0 |, and the same bound follows.

2. If |δ| � 2p−s+α|νi | for all i = 1, . . . , d , then one has

x = |δ|
(

1

d

d∑
i=1

1

(1 + δ−1p−s+ανi)2

)−1/2

= |δ| + O
(
p−s+α max

i
νi

)
,

so that |ν| � const. p−αC|M|∞. �
Remark. The space of lists M = {Mn,j }(n,j)∈N2 such that Mn,j ∈ M (cf. Definition 2.5(i)) and
|M|σ = supn,j |Mn,j |σ < ∞ is a Banach space, that we denote with B.

Definition 2.7. We define D0 = {(ε,M): 0 < ε � ε0, |M|σ � C0ε0}, for a suitable positive
constant C0, and D(γ ) ⊂ D0 as the set of all (ε,M) ∈ D0 such that ε ∈ E0(γ ) and∣∣∣∣ωn −

(
pj + μ + νn,j

p
s1
j

)∣∣∣∣� γ

|n|τ ∀(n, j) ∈ Ω, (n, j) �= (1,1), n �= 0, (2.18)

for some τ > τ0 + 1 + D.

Remark. We shall call Melnikov conditions the Diophantine conditions in (2.2) and (2.18). We
shall call (2.2) the second Melnikov conditions, as they will be used to bound the difference of
the momenta of comparable lines of the forthcoming tree formalism.

2.4. Main propositions

We state the propositions which represent our main technical results. Theorem 1 is an imme-
diate consequence of Propositions 1 and 2 below.

Proposition 1. Assume that (ε,M) ∈ D(γ ). There exist positive constants c0, K0, K1, σ , η0, Q0
such that the following holds true. It is possible to find a sequence of matrices L ∈ B,

L := {Ln,j (η, ε,M;q)
}
(n,j)∈N2\{(1,1)}, (2.19)

such that the following holds.

(i) There exists a unique solution Un,j (η,M,ε;q), with (n, j) ∈ Z × N \ {(1,1)}, of Eq. (2.9)
which is analytic in η, q for |η| � η0, |q| � Q0, η0Q

2
0 � c0 and such that

∣∣Un,j (η,M,ε;q)(a)
∣∣� |η|q3K0e−σ(|n|+|pj |1/2). (2.20)
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(ii) The sequence Ln,j (η, ε,M;q) is analytic in η and uniformly bounded for (ε,M) ∈ D(γ )

as ∣∣L(η, ε,M;q)
∣∣
σ

� K0|η|q2. (2.21)

(iii) The functions Un,j (η, ε,M;q) and Ln,j (η, ε,M;q) can be extended on the set D0 to C1

functions, denoted by UE
n,j (η, ε,M;q) and LE

n,j (η, ε,M;q), such that

LE
n,j (η, ε,M;q) = Ln,j (η, ε,M;q), UE

n,j (η, ε,M;q) = Un,j (η, ε,M;q), (2.22)

for all (ε,M) ∈ D(2γ ).
(iv) The extended Q-equation, obtained from (2.12) by substituting Un,j (η, ε,M;q) with

UE
n,j (η, ε,M;q), has a solution qE(η, ε,M), which is a true solution of (2.12) for (ε,M) ∈

D(2γ ); with an abuse of notation we shall call

UE
n,j (η, ε,M) = UE

n,j

(
η, ε,M;qE(η, ε,M)

)
,

LE
n,j (η, ε,M) = LE

n,j

(
η, ε,M;qE(η, ε,M)

)
.

(v) The functions LE
n,j (η, ε,M) satisfy the bounds

∣∣LE(η, ε,M)
∣∣
σ

� |η|K1,
∣∣∂εL

E
n,j (η, ε,M)

∣∣
σ

� |η|K1|n|1+s2,

∑
(n,j)∈Ω

dj∑
a,b=1

∣∣∂Mn,j (a,b)L
E(η, ε,M)

∣∣
σ

e−σ |ma−mb|ρ � |η|K1, (2.23)

with ρ depending on D, and one has

∣∣UE
n,j (η, ε,M)

∣∣� |η|K1e−σ(|n|+|pj |1/2), (2.24)

uniformly for (ε,M) ∈ D0.

Once we have proved Proposition 1, we solve the compatibility equation for the extended
counterterm function LE

n,j (η = ε, ε,M), which is well defined provided we choose ε0 so that
ε0 < η0.

Proposition 2. For all (n, j) ∈ Ω , there exist C1 functions Mn,j (ε) : (0, ε0) → D0 (with an
appropriate choice of C0) such that

(i) Mn,j (ε) verifies

χ̄1(yn,j )Mn,j (ε) = LE
n,j

(
ε, ε,M(ε)

)
, (2.25)

and is such that∣∣Mn,j (ε)
∣∣
σ

� K2ε,
∣∣∂εMn,j (ε)

∣∣
σ

� K2
(
1 + |εn|)|n|s2, (2.26)

for a suitable constant K2;
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(ii) the set A ≡ A(2γ ), defined as

A = {ε ∈ E0(γ ):
(
ε,M(ε)

) ∈ D(2γ )
}
, (2.27)

has large relative Lebesgue measure, namely limε→0+ ε−1 meas(A ∩ (0, ε)) = 1.

Proof of Theorem 1. By Proposition 1(i) for all (ε,M) ∈ D(γ ) we can find a sequence
Ln,j (η, ε,M) so that there exists a unique solution Un,j (η, ε,M) of (2.6) for all |η| � η0, where
η0 depends only on γ for ε0 small enough. By Proposition 1(iii) the sequence Ln,j (η, ε,M)

and the solution Un,j (η, ε,M) can be extended to C1 functions (denoted by LE
n,j (η, ε,M) and

UE
n,j (η, ε,M)) for all (ε,M) ∈ D. Moreover LE

n,j (η, ε,M) = Ln,j (η, ε,M) and UE
n,j (η, ε,M) =

Un,j (η, ε,M) for all (ε,M) ∈ D(2γ ).
Eq. (2.8) coincides with our original (2.6) provided the compatibility equations (2.10) are

satisfied. Now we fix ε0 < η0 so that LE
n,j (η = ε, ε,M) and UE

n,j (η = ε, ε,M) are well defined.
By Proposition 2(i) there exists a sequence of matrices Mn,j (ε) which satisfies the extended
compatibility equations (2.24). Finally by Proposition 2(ii) the Cantor set A(2γ ) is well defined
and of large relative measure.

For all ε ∈ A(2γ ) the pair (ε,M(ε)) is by definition in D(2γ ) so that by Proposition 1(iii)
one has

Ln,j

(
ε, ε,M(ε)

)= LE
n,j

(
ε, ε,M(ε)

)
, u

(
ε, ε,M(ε);x, t

)= uE
(
ε, ε,M(ε);x, t

)
, (2.28)

so that Un,j (ε, ε,M(ε)) solves (2.8) for η = ε. So by Proposition 2(i) M(ε) solves the true
compatibility equations (2.10), χ̄1(yn,j )Mn,j (ε) = Ln,j (ε, ε,M(ε)), for all ε ∈ A(2γ ). Then
u(ε, ε,M(ε);x, t) is a true nontrivial solution of our (1.9) in A(2γ ). Then by setting E(μ) =
A(2γ ) the result follows. �
3. Recursive equations and tree expansion

In this section we find a formal solution Un,j of (2.9) as a power series on η; the solution Un,j

is parameterised by the matrices Ln′,j ′ and it will be written in the form of a tree expansion.
We assume for Ln,j (η, ε,M) and Un,j (η, ε,M), with (n, j) �= (1,1), a formal series expan-

sion in η, i.e.

Ln,j (η, ε,M) =
∞∑

k=1

ηkL
(k)
n,j , Un,j (η, ε,M) =

∞∑
k=1

ηkU
(k)
n,j , (3.1)

for all (n, j) �= (1,1). Note that (3.1) naturally defines the vector components u
(k)
n,m, m ∈ Λj .

By definition we set

U
(0)
1,1 = {u1,m: m ∈ Λ1}, u1,V = q, U

(k)
1,1 = 0, k �= 0, (3.2)

where V = (1,1, . . . ,1). Inserting the series expansion in (2.9) we obtain for all (n, j) �= (1,1)

the recursive equations
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Fig. 1. Graphs of some of the C∞ compact support functions χh(x) partitioning the unity. The function χ(x) is given by
the envelope of all functions but χ−1(x).

ps
j

(
δn,j I + p−s

j χ̄1(yn,j )Mn,j

)
U

(k)
n,j = F

(k)
n,j +

k−1∑
r=1

L
(r)
n,jU

(k−r)
n,j , (3.3)

while for (n, j) = (1,1) we have

q = f1,V . (3.4)

In (3.3), for ma ∈ Λj , where a = 1, . . . , dj , F
(k)
n,j (a) is defined as

F
(k)
n,j (a) =

∑
k1+k2+k3=k−1

∑
n1+n2−n3=n

m1+m2−m3=ma

u(k1)
n1,m1

u(k2)
n2,m2

u(k3)
n3,m3

, (3.5)

where each u
(ki )
ni ,mi

is a component of some U
(ki)
ni ,ji

. Recall that we are assuming for the time being

f (u, ū) = |u|2u and we are looking for solutions with real Fourier coefficients un,m.

3.1. Multiscale analysis

It is convenient to rewrite (3.3) introducing the following scale functions.

Definition 3.1. Let χ(x) be a C∞ nonincreasing function such that χ(x) = 0 if |x| � 2γ and
χ(x) = 1 if |x| � γ ; moreover, if the prime denotes derivative with respect to the argument, one
has |χ ′(x)| � Cγ −1 for some positive constant C. Let χh(x) = χ(2hx) − χ(2h+1x) for h � 0,
and χ−1(x) = 1 − χ(x); see Fig. 1. Then

1 = χ−1(x) +
∞∑

h=0

χh(x) =
∞∑

h=−1

χh(x). (3.6)

We can also write

1 = χ̄1(x) + χ̄0(x) + χ̄−1(x), (3.7)
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Fig. 2. Graphs of the C∞ functions partitioning the unity χ̄−1(x), χ̄0(x) and χ̄1(x).

with χ̄1(x) = χ(8x) (cf. (2.8) and Fig. 2), χ̄−1(x) = 1 − χ(4x), and χ̄0(x) = χ2(x) = χ(4x) −
χ(8x).

Remark. Note that χh(x) �= 0 implies 2−h−1γ < |x| < 2−h+1γ if h � 0 and γ < |x| if h = −1.
In particular if χh(x) �= 0 and χh′(x) �= 0 for h �= h′ then |h − h′| = 1.

Definition 3.2. We denote (recall (2.17) and that s1 = s − 2α)

xn,j ≡ xn,j (ε,M) =
∣∣∣∣δn,j + νn,j

p
s1
j

∣∣∣∣. (3.8)

For h = −1,0,1,2, . . . ,∞ and i = −1,0,1 we define Gn,j,h,i (ε,M) as follows:

(i) for i = −1,0, we set Gn,j,h,i = 0 for h �= −1 and Gn,j,−1,i = 0 for all (ε,M) such that
χ̄i (yn,j ) = 0;

(ii) similarly we set Gn,j,h,1 = 0 for all (ε,M) such that χh(xn,j ) = 0;
(iii) otherwise we set

⎧⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

Gn,j,−1,i = χ̄i (yn,j )p
−s
j

(
δn,j I + χ̄1(yn,j )Mn,j

ps
j

)−1

, i = −1,0,

Gn,j,h,1 = χ̄1(yn,j )χh(xn,j )p
−s
j

(
δn,j I + χ̄1(yn,j )Mn,j

ps
j

)−1

, h � −1.

(3.9)

Then Gn,j,h,i will be called the propagator on scale h.

Remarks. (1) If pα
j ν

(i)
n,j are the eigenvalues of χ̄1(yn,j )Mn,j (cf. Definition 2.5) one has by

Lemma 2.4

min
∣∣δn,j + p−s+α

j ν
(i)
n,j

∣∣� xn,j � min
√

dj

∣∣δn,j + p−s+α
j ν

(i)
n,j

∣∣, (3.10)

i i
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so that δn,j I + p−s
j χ̄1(yn,j )Mn,j is invertible where Gn,j,h,i (ε,M) is not identically zero; this

implies that Gn,j,h,i(ε,M) is well defined (and C∞) on all D0 (as given in Definition 2.7).
(2) If i = −1,0, then for (ε,M) ∈ D0 the denominators are large. Indeed i �= 1 implies

|yn,j | � γ /8, hence |δn,j | � p
−s2
j γ /8, whereas |p−s1

j νn,j | � p
−s1
j CC0|ε0| � const. p−s2

j ε0 in D0

(with C as in Lemma 2.6 and C0 as in Definition 2.7), so that xn,j = |δn,j +p
−s1
j νn,j | � |δn,j |/2.

Then

|Gn,j,−1,i |∞ = p−s
j

∣∣∣∣
(

δn,j I + χ̄1(yn,j )Mn,j

ps
j

)−1∣∣∣∣∞
� C

1/2
1 p

−s+α/2
j

∣∣∣∣δn,j + νn,j

p
s1
j

∣∣∣∣
−1

� 2C
1/2
1 p

−s+α/2+s2
j |yn,j |−1

� 16

γ
C

1/2
1 p

−3s/4
j , (3.11)

where we have also used Lemma 2.4(ii).
(3) Notice that Gn,j,−1,−1 is a diagonal matrix (cf. (3.9) and notice that χ̄−1(yn,j )χ̄1(yn,j ) = 0

identically).

Inserting the multiscale decomposition (3.6) and (3.7) into (3.3) we obtain

U
(k)
n,j =

∑
i=−1,0,1

∞∑
h=−1

U
(k)
n,j,h,i , (3.12)

with

U
(k)
n,j,h,i = Gn,j,h,iF

(k)
n,j + δ(i,1)Gn,j,h,1

( ∞∑
h1=−1

∑
i1=0,1

k−1∑
r=1

L
(r)
n,j,hU

(k−r)
n,j,h1,i1

)
, (3.13)

where δ(i, j) is Kronecker’s delta, and we have used that h = −1 for i �= 1 and written

L
(r)
n,j =

∞∑
h=−1

χ̄1(yn,j )χh(xn,j )L
(r)
n,j,h, (3.14)

with the functions L
(r)
n,j,h to be determined.

3.2. Tree expansion

Eq. (3.13) can be applied recursively until we obtain the Fourier components u
(k)
n,m as (formal)

polynomials in the variables Gn,j,h,i , q and L
(r)
n,j,h with r < k. It turns out that u

(k)
n,m can be

written as sums over trees (see Lemma 3.6 below), defined in the following way.
A (connected) graph G is a collection of points (vertices) and lines connecting all of them. The

points of a graph are most commonly known as graph vertices, but may also be called nodes or
points. Similarly, the lines connecting the nodes of a graph are most commonly known as graph
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Fig. 3. Example of an unlabelled tree (only internal nodes with 1 and 3 entering lines are taken into account, according
to the diagrammatic rules in Section 3.3).

edges, but may also be called branches or simply lines, as we shall do. We denote with V (G) and
L(G) the set of nodes and the set of lines, respectively. A path between two nodes is the minimal
subset of L(G) connecting the two nodes. A graph is planar if it can be drawn in a plane without
graph lines crossing.

Definition 3.3. A tree is a planar graph G containing no closed loops. One can consider a tree
G with a single special node v0: this introduces a natural partial ordering on the set of lines and
nodes, and one can imagine that each line carries an arrow pointing toward the node v0. We can
add an extra (oriented) line �0 exiting the special node v0; the added line will be called the root
line and the point it enters (which is not a node) will be called the root of the tree. In this way we
obtain a rooted tree θ defined by V (θ) = V (G) and L(θ) = L(G)∪ �0. A labelled tree is a rooted
tree θ together with a label function defined on the sets L(θ) and V (θ).

We shall call equivalent two rooted trees which can be transformed into each other by contin-
uously deforming the lines in the plane in such a way that the latter do not cross each other (i.e.
without destroying the graph structure). We can extend the notion of equivalence also to labelled
trees, simply by considering equivalent two labelled trees if they can be transformed into each
other in such a way that also the labels match. An example of tree is illustrated in Fig. 3.

Given two nodes v,w ∈ V (θ), we say that w ≺ v if v is on the path connecting w to the root
line. We can identify a line with the nodes it connects; given a line � = (v,w) we say that � enters
v and exits (or comes out of) w. Given two comparable lines � and �1, with �1 ≺ �, we denote
with P (�1, �) the path of lines connecting �1 to �; by definition the two lines � and �1 do not
belong to P (�1, �). We say that a node v is along the path P (�1, �) if at least one line entering or
exiting v belongs to the path. If P (�1, �) = ∅ there is only one node v along the path (such that
�1 enters v and � exits v).

In the following we shall deal mostly with labelled trees: for simplicity, where no confusion
can arise, we shall call them just trees.

We call internal nodes the nodes such that there is at least one line entering them; we call
internal lines the lines exiting the internal nodes. We call end-points the nodes which have no
entering line. We denote with L(θ), V0(θ) and E(θ) the set of lines, internal nodes and end-
points, respectively. Of course V (θ) = V0(θ) ∪ E(θ).
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Fig. 4. Labels associated to the nodes and lines of the trees. (a) The line � exits the end-point v: one associate with �

the labels i� , h�, n� and m�, and with v the labels nv , mv and kv , with the constraints i� = −1, h� = −1, n� = nv = 1,
m� = mv ∈ Λ1, kv = 0. (b) The line � exits the node v with sv = 3: one associate with � the labels i� , h�, n�, j� , m�,
m′

�
, a� , b� , and with v the label kv , with the constraints (n�, j�) �= (1,1), m� = Λj�

(a�), m′
�

= Λj�
(b�), kv = 1. (c) The

line � exits the node v with sv = 1: one associate with � the labels i� , h�, n� , j�, m�, m′
�
, a� , b� , and with v the labels

kv , av , bv , jv and nv , with the constraints (n�, j�) �= (1,1), m� = Λj�
(a�), m′

�
= Λj�

(b�), kv � 1, av = b�, bv = a�1 ,
n� = n�1 , j� = j�1 . Other constraints are listed in the text.

3.3. Diagrammatic rules

We associate with the nodes (internal nodes and end-points) and lines of any tree θ some
labels, according to the following rules; see Fig. 4 for reference.

(1) For each node v there are sv entering lines, with sv ∈ {0,1,3}; if sv = 0 then v ∈ E(θ).
(2) With each end-point v ∈ E(θ) one associates the mode labels (nv,mv), with mv ∈ Λ1 and

nv = 1. One also associates with each end-point an order label kv = 0, and a node factor
ηv = ±q , with the sign depending on the sign of the permutation from mv to V : one can
write ηv = (−1)|mv−V |1/2q , where |x|1 is the l1-norm of x.

(3) With each line � ∈ L(θ) not exiting an end-point, one associates the index label j� ∈ N and
the momenta (n�,m�,m

′
�) ∈ Z × Z

D × Z
D such that (n�, j�) �= (1,1) and m�,m

′
� ∈ Λj�

.
One has pj�

= |m�|2 = |m′
�|2 (see Lemma 2.2(ii) for notations). The momenta define

a�, b� ∈ {1, . . . , dj }, with dj�
= |Λj�

| � C1p
α
j�

, such that m� = Λj�
(a�), m′

� = Λj�
(b�).

(4) With each line � ∈ L(θ) not exiting an end-point one associates a type label i� = −1,0,1.
If i� = −1 then m� = m′

�.
(5) With each line � ∈ L(θ) not exiting an end-point one associates the scale label h� ∈ N ∪

{−1,0}. If i� = 0,−1 then h� = −1; if two lines �, �′ have (n�, j�) = (n�′ , j�′), then |i� −
i�′ | � 1 and if moreover i� = i�′ = 1 then also |h� − h�′ | � 1.

(6) If � ∈ L(θ) exits an end-point v then h� = −1, i� = −1, j� = 1, n� = 1 and m� = mv .
(7) With each line � ∈ L(θ) except the root line one associates a sign σ(�) = ±1 such that for

all v ∈ V0(θ) one has

1 =
∑

�∈L(v)

σ (�), (3.15)

where L(v) is the set of the sv lines entering v. One does not associate any label σ to the
root line �0.

(8) If sv = 1 the labels n�1, j�1 of the line entering v are the same as the labels n�, j� of the line
� exiting v, and one defines jv = j�, av = b�, bv = a�1 . One associates with such v an order
label kv ∈ N and with � a type label i� = 1.

(9) If sv = 3 then kv = 1. If � is the line exiting v and �1, �2, �3 are the lines entering v one has
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n� = σ(�1)n�1 + σ(�2)n�2 + σ(�3)n�3 =
∑

�′∈L(v)

σ (�′)n�′ (3.16)

and

m′
� = σ(�1)m�1 + σ(�2)m�2 + σ(�3)m�3 =

∑
�′∈L(v)

σ (�′)m�′ , (3.17)

with L(v) defined after (3.15).
(10) With each line � ∈ L(θ) one associates the propagator

g� := Gn�,j�,h�,i� (a�, b�), (3.18)

if � does not exit an end-point and g� = 1 otherwise.
(11) With each internal node v ∈ V0(θ) one associates a node factor ηv such that ηv = 1/3 for

sv = 3 and ηv = L
(kv)
n�,j�,h�

(av, bv) for sv = 1.
(12) Finally one defines the order of a tree as

k(θ) =
∑

v∈V (θ)

kv. (3.19)

Definition 3.4. We call Θ(k) the set of all the nonequivalent trees of order k defined according to
the diagrammatic rules. We call Θ

(k)
n,m the set of all the nonequivalent trees of order k and with

labels (n,m) associated to the root line.

Lemma 3.5. For all θ ∈ Θ(k) and for all lines � ∈ L(θ) one has |n�|, |m�|, |m′
�| � Bk, for some

constant B .

Proof. By definition of order one has |V0(θ)| � k and by induction one proves |E(θ)| �
2|V0(θ)| + 1 (by using that sv � 3 for all v ∈ V0(θ)). Hence |E(θ)| � 2k + 1. Each end-point v

contributes nv = ±1 to the momentum n� of any line � following v, so that |n�| � 2k + 1 for all
lines � ∈ L(θ).

Let θ� be the tree with root line � and let k(θ�) be its order. Then the bounds |m�|, |m′
�| �

2k(θ�) + 1 can be proved by induction on k(θ�) as follows. If v is the internal node which � exits
and sv = 3, call �1, �2, �3 the lines entering v (the case sv = 1 can be discussed in the same way,
and it is even simpler) and for i = 1, . . . ,3 denote by θi the tree with root line �i and by ki the
corresponding order. Then k1 + k2 + k3 = k(θ�) − 1, so that by the inductive hypothesis one has

m′
� = m�1 + m�2 + m�3 �⇒ ∣∣m′

�

∣∣� 3∑
i=1

(2ki + 1) � 2k(θ�) + 1,

and hence also |m�| = |m′
�| � 2k(θ�) + 1. �

The coefficients u
(k)
n,m can be represented as sums over the trees defined above; this is in fact

the content of the following lemma.
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Fig. 5. Graphical representation of (3.20); the sums are understood; note that
∑

j σ (�j )mj = m′ in the first summand
and kv + k1 = k in the second summand.

Lemma 3.6. The coefficients u
(k)
n,m can be written as

u(k)
n,m =

∑
θ∈Θ

(k)
n,m

Val(θ), (3.20)

where

Val(θ) =
( ∏

�∈L(θ)

g�

)( ∏
v∈V (θ)

ηv

)
. (3.21)

Proof. The proof is done by induction on k � 1. For k = 1 it reduces just to a trivial check.
Now, let us assume that (3.20) holds for k′ < k, and use that u

(0)
n,m = qδ(n,1) ·∏D

i=1(±δ(mi,±1)). If we set m = Λj(a), we have (see Fig. 5)

u(k)
n,m =

∞∑
h=−1

∑
i=−1,0,1

dj∑
b=1

Gn,j,h,i (a, b)
∑

k1+k2+k3=k

∑
n1+n2−n3=n

m1+m2−m3=Λj (b)

u(k1)
n1,m1

u(k2)
n2,m2

u(k3)
n3,m3

+
∞∑

h=−1

dj∑
b,b′=1

Gn,j,h,1(a, b)

k−1∑
r=1

Ln,j,h(b, b′)u
(k−r)

n,Λj (b′). (3.22)

Consider a tree θ ∈ Θ
(k)
n,m such that m = Λj(a), sv0 = 3 and h�0 = h, if �0 is the root line of θ and

v0 is defined in 3.3. Let θ1, θ2, θ3 be the sub-trees whose root lines �1, �2, �3 enter v0. By (3.15)
one has

∑3
j=1 σ(�j )m�j

= m′
�0

, with m′
�0

= Λj(b) for b = b�0 . Then we have

Val(θ) = Gn,j,h,i (a, b)Val(θ1)Val(θ2)Val(θ3), (3.23)

and we reorder the lines so that σ(�3) = −1, which produces a factor 3.
In the same way consider a tree θ ∈ Θ

(k)
n,m such that m = Λj(a), sv0 = 1 and h�0 = h, with

the same notations as before. Let θ1 be the sub-tree whose root line �1 enters v0. Set kv0 = r ,
mv = Λj(b), m′ = Λj(b

′), where b = b� and b′ = a� . Then
0 v0 0 1
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Val(θ) = Gn,j,h,1(a, b)L
(r)
n,j,h(b, b′)Val(θ1), (3.24)

so that the proof is complete. �
3.4. Clusters and resonances

In the preceding section we have found a power series expansion for Un,j solving (2.9) and
parameterised by Ln,j . However for general values of Ln,j such an expansion is not convergent,
as one can easily identify contributions at order k which are O(k!ξ ), for a suitable constant ξ .
In this section we show that it is possible to choose the parameters Ln,j in a proper way to
cancel such “dangerous” contributions; in order to do this we have to identify the dangerous
contributions and this will be done through the notion of clusters and resonances.

Definition 3.7. Given a tree θ ∈ Θ
(k)
n,m a cluster T on scale h is a connected maximal set of nodes

and lines such that all the lines � have a scale label � h and at least one of them has scale h;
we shall call hT = h the scale of the cluster. We shall denote by V (T ), V0(T ) and E(T ) the set
of nodes, internal nodes and the set of end-points, respectively, which are contained inside the
cluster T , and with L(T ) the set of lines connecting them. Finally kT =∑V (T ) kv will be called
the order of T .

Therefore an inclusion relation is established between clusters, in such a way that the inner-
most clusters are the clusters with lowest scale, and so on. A cluster T can have an arbitrary
number of lines entering it (entering lines), but only one or zero line coming out from it (exiting
line or root line of the cluster); we shall denote the latter (when it exists) with �1

T . Notice that by
definition all the external lines have i� = 1.

Definition 3.8. We call 1-resonance on scale h a cluster T of scale hT = h with only one entering
line �T and one exiting line �1

T of scale h
(e)
T > h + 1, with |V (T )| > 1 and such that

(i) one has

n�1
T

= n�T
� 2(h−2)/τ , m′

�1
T

∈ Λj�T
, (3.25)

(ii) if for some � ∈ L(T ) not on the path P (�T , �1
T ) one has n� = n�T

, then j� �= j�T
.

We call 2-resonance a set of lines and nodes which can be obtained from a 1-resonance by setting
i�T

= 0.
Finally we call resonances the 1- and 2-resonances. The line �1

T of a resonance will be called
the root line of the resonance. The root lines of the resonances will be also called resonant lines.

Remarks. (1) A 2-resonance is not a cluster, but it is well defined due to condition (ii) of the 1-
resonances. Indeed, such a condition implies that there is a one-to-one correspondence between
1-resonances and 2-resonances.

(2) The reason why we do not include in the definition of 1-resonances the clusters which
satisfy only condition (i), i.e. such that there is a line � ∈ L(T ) \ P (�T , �1

T ) with n� = n�T
and

j� = j�T
, is that these clusters do not give any problems and can be easily controlled, as will

become clear in the proof of Lemma 4.1; cf. also the subsequent Remark (1).
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Fig. 6. Example of resonance T . We have set j
�1
T

= j , n
�1
T

= n, m′
�1
T

= m′ , m�T
= m, so that n�T

= n and j�T
= j ,

by (3.25). Moreover, if hT = h is the scale of T , one has h�T
� h + 1 by definition of cluster and h

�1
T

= h
(e)
T

> h + 1

by definition of resonance. For any line � ∈ L(T ) one has h� � h and there is at least one line on scale h. The path
P(�T , �1

T
) consists of the line �1. If n�2 = n then j�2 �= j by the condition (ii).

(3) The 2-resonances are included among the resonances for the following reason. The
1-resonances are the dangerous contributions, and we shall cancel them by a suitable choice
of the counterterms. Such a choice automatically cancels out the 2-resonances.

An example of resonance is illustrated in Fig. 6. We associate a numerical value with the
resonances as done for the trees. To do this we need some further notations.

Definition 3.9. The trees θ ∈ R(k)
h,n,j with n � 2(h−2)/τ and (n, j) ∈ Ω are defined as the trees

θ ∈ Θ
(k)
h,n,m with the following modifications:

(a) there is a single end-point, called e, carrying the labels ne,me such that ne = n, me ∈ Λj ; if
�e is the line exiting from e then we associate with it a propagator g�e = 1, a label m�e = me

and a label σ�e ∈ {±1};
(b) the root line �0 has i�0 = 1, n�0 = n and m′

�0
∈ Λj and the corresponding propagator is

g�0 = 1;
(c) one has max�∈L(θ)\{�0,�e} h� = h.

A cluster T (and consequently a resonance) on scale hT � h for θ ∈ R(k)
h,n,j is defined as a

connected maximal set of nodes v ∈ V (θ) and lines � ∈ L(θ) \ {�0, �e} such that all the lines �

have a scale label � hT and at least one of them has scale hT .
We define the set R(k) as the set of trees belonging to R(k)

h,n,j for some triple (h,n, j).

Remark. The entering line �e has no label m′
�e

, while the root line has no label m�0 . Both carry
no scale label. Recall that by the diagrammatic rule (7) the root line �0 has no σ label.



3276 G. Gentile, M. Procesi / J. Differential Equations 245 (2008) 3253–3326
Fig. 7. We associate with the resonance T (enclosed in an ellipse and such that m = Λj (a), m′ = Λj (b), m1,m′
1 ∈ Λj )

the tree θT ∈ Rh1,n,j , and vice versa.

Lemma 3.10. Let B be the same constant as in Lemma 3.5. For all θ ∈ R(k)
h,n,j and for all �

not in the path P (�e, �0) one has |n�| � Bk and |m�|, |m′
�| � Bk. For � on such a path one has

min{|n� − ne|, |n� + ne|} � Bk.

Proof. For the lines not along the path P = P (�e, �0) the proof is as for Lemma 3.5. If a line � is
along the path P then one can write n� = n0

� ±ne, where n0
� is the sum of the labels ±nv of all the

end-points preceding � but e. The signs depend on the labels σ(�′) of the lines �′ preceding �;
in particular the sign in front of ne depends on the labels σ(�′) of the lines �′ ∈ P (�e, �), in
agreement with to (3.16). Then the last assertion follows by reasoning once more as in the proof
of Lemma 3.5. �

The definition of value of the trees in R(k) is identical to that given in (3.21) for the trees
in Θ(k).

Let us now consider a tree θ with a resonance T whose exiting line is the root line �0 of θ , let
θ1 be the tree atop the resonance. Given a resonance T , there exists a unique θT ∈ R(k)

h,n,j , with
n = n�0 , j = j�0 and h = hT , such that (see Fig. 7)

Val(θ) = g�0 Val(θT )Val(θ1), (3.26)

so that we can call, with a slight abuse of language, Val(θT ) the value of the resonance T .

3.5. Choice of the parameters Ln,j

With a suitable choice of the parameters Ln,j,h the functions u
(k)
n,m can be rewritten as sum

over “renormalised” trees defined below.

Definition 3.11. We define the set of renormalised trees Θ
(k)
R,n,m defined as the trees in Θ

(k)
n,m with

no resonances nor nodes with sv = 1. In the same way we define R(k)
R,h,n,j . We call R(k)

R,h,n,j (a, b)

the set of trees θ ∈ R(k)
R,h,n,j such that the entering line has me = Λj(b) while the root line has

m′
�0

= Λj(a). Finally we define the sets Θ
(k)
R and R(k)

R as the sets of trees belonging to Θ
(k)
R,n,m

for some n,m and, respectively, to R(k) for some h,n, j .
R,h,n,j
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We extend the notion of resonant line by including also the lines coming out from a node v

with sv = 1. This leads to the following definition.

Definition 3.12. A resonant line is either the root line of a resonance (see Definition 3.8) or the
line exiting a node v with sv = 1.

The following result holds.

Lemma 3.13. For all k,n,m one has

u(k)
n,m =

∑
θ∈Θ

(k)
R,n,m

Val(θ), (3.27)

provided we choose in (3.14)

⎧⎪⎪⎨
⎪⎪⎩

L
(k)
n,j,h(a, b) = −

∑
h1<h−1

∑
θ∈R(k)

R,h1,n,j (a,b)

Val(θ), (n, j) ∈ Ω,

L
(k)
n,j,h(a, b) = 0, (n, j) /∈ Ω,

(3.28)

where R(k)
R,h1,n,j (a, b) is as in Definition 3.11.

Proof. First note that by definition Ln,j,h = 0 if (n, j) /∈ Ω . We proceed by induction on k. For

k = 1 (3.28) holds as Θ
(1)
R,n,m ≡ Θ

(1)
n,m. Then we assume that (3.28) holds for all r < k. By (3.13)

one has U
(k)
n,j,h,i = Gn,j,h,iF

(k)
n,j for i = −1,0, and

U
(k)
n,j,h,1 = Gn,j,h,1F

(k)
n,j + Gn,j,h,1

( ∞∑
h2=−1

∑
i2=1,0

k−1∑
r=1

L
(r)
n,j,hU

(k−r)
n,j,h2,i2

)
, (3.29)

where F
(k)
n,j is a function of the coefficients u

(r ′)
n′,m′ with r ′ < k. By the inductive hypothesis each

u
(r ′)
n′,m′ can be expressed as a sum over trees in Θ

(r ′)
R,n′,m′ . Therefore (Gn,j,h,iF

(k)
n,j )(a) is given

by the sum over the trees θ ∈ Θ
(k)
n,m, with m = Λj(a) and sv0 = 3 (v0 is introduced in Defini-

tion 3.3), such that only the root line �0 of θ can be resonant. Note that �0 can be resonant only if
i = i�0 = 1. If �0 is nonresonant then θ ∈ Θ

(k)
R,n,m, so that the assertion holds trivially for i �= 1.

For i = 1 we split the coefficients of Gn,j,h,1F
(k)
n,j as sum of two terms: the first one, denoted

Gn,j,h,1J
(k)
n,j , is the sum over all trees belonging to ΘR,n,m for m ∈ Λj with sv0 = 3 and the

second one is sum of trees with value

Val(θ) = g�0 Val(θT )Val(θ1), (3.30)

with θT ∈ R(r)
R,h1,n,j and θ1 ∈ Θ

(k−r)

R,n,m′ with m′ = Λj(b) for some r and some b; by definition of
resonance we have h1 < h − 1.
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We get terms of this type for all θT and θ1 so that

F
(k)
n,j (a) = J

(k)
n,j (a) +

dj∑
b=1

∞∑
h2=−1

∑
i2=1,0

k−1∑
r=1

∑
h1<h−1

( ∑
θ∈R(r)

R,h1,n,j (a,b)

Val(θ)

)
U

(k−r)
n,j,h2,i2

(b), (3.31)

where the sum over h1 < h − 1 of the terms between parentheses gives −L
(r)
n,j,h(a, b) by the first

line in (3.28) Therefore all the terms but J
(k)
n,j (a) in (3.31) cancel out the term between parenthe-

ses in (3.29), and only the term Gn,j,h,iJ
(k)
n,j (a) is left in (3.29). On the other hand Gn,j,h,iJ

(k)
n,j (a)

is by definition the sum over all trees in Θ
(k)
R,n,m, so that the assertion follows also for i = 1. �

Remarks. (1) The proof of Lemma 3.13 justifies why we included into the definition of reso-
nances (cf. Definition 3.8) also the 2-resonances, even if the latter are not clusters. Indeed in
(3.29) we have to sum also over i2 = 0.

(2) Note that Val(θ) is a monomial of degree 2k + 1 in q for θ ∈ Θ
(k)
R,n.m, and it is a monomial

of degree 2k in q for θ ∈ Θ
(k)
R,n,m.

In the next section we shall prove that the matrices L
(k)
n,j,h are symmetric (we still have to show

that the matrices are well defined). For this we shall need the following result.

Lemma 3.14. For all trees θ ∈ RR,h,n,j (a, b) there exists a tree θ1 ∈ RR,h,n,j (b, a) such that
Val(θ) = Val(θ1).

Proof. Given a tree θ ∈ RR,h,n,j (a, b) consider the path P = P (�e, �0), and set P =
{�1, . . . , �N }, with �0 � �1 � · · · � �N � �N+1 = �e . We construct a tree θ1 ∈ RR,h,n,j (b, a)

in the following way.
1. We shift the σ� labels down the path P , so that σ�k

→ σ�k+1 for k = 1, . . . ,N , �0 acquires
the label σ�1 , while �e loses its label σ�e (which becomes associated with the line �N ).

4. For all the lines � ∈ P we exchange the labels m�,m
′
�, so that m�k

→ m′
�k

, m′
�k

→ m�k
for

k = 1, . . . ,N , while one has simply m′
�0

→ m�e and m�e → m′
�0

for the root and entering lines.
3. For any pair �1(v), �2(v) of lines not on the path P and entering the node v along the path,

we exchange the corresponding labels σ�, i.e. σ�1(v) → σ�2(v) and σ�2(v) → σ�1(v).
2. The line �e becomes the root line, and the line �0 becomes the entering line.
As a consequence of item 2 the ordering of nodes and lines along the path P is reversed (in

particular the arrows of all the lines � ∈ P ∪ {�T , �1
T } are reversed). On the contrary the ordering

of all the lines and nodes outside P is not changed by the operations above. This means that all
propagators and node factors of lines and nodes, respectively, which do not belong to P remain
the same.

Then the symmetry of M , hence of the propagators, implies the result. �
4. Bryuno lemma and bounds

In the previous section we have shown that, with a suitable choice of the parameters Ln,j ,

we can express the coefficients u
(k)
n,m as sums over trees belonging to Θ

(k) . We show in this
R,n,m
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section that such an expansion is indeed convergent if η is small enough and (ε,M) ∈ D(γ ) (see
Definition 2.7).

4.1. Bounds on the trees in Θ
(k)
R

Given a tree θ ∈ Θ
(k)
R,n,m, we call S(θ, γ ) the set of (ε,M) ∈ D0 such that for all � ∈ L(θ) one

has

{
2−h�−1γ � |xn�,j�

| � 2−h�+1γ, h� �= −1,

|xn�,j�
| � γ, h� = −1,

(4.1)

with xn,j defined in (2.17), and

⎧⎨
⎩

|yn�,j�
| � 2−2γ, i� = 1,

2−3γ � |yn�,j�
| � 2−1γ, i� = 0,

2−2γ � |yn�,j�
|, i� = −1,

(4.2)

with yn,j defined in (2.8). In other words we can have Val(θ) �= 0 only if (ε,M) ∈ S(θ, γ ).
We call D(θ, γ ) ⊂ D0 the set of (ε,M) such that

|xn�,j�
| � γ

|n�|τ , (4.3)

for all lines � ∈ L(θ) such that i� = 1, and

|δn�,j�
− δn�1 ,j�1

| � γ

|n� − n�1 |τ
, (4.4)

for all pairs of lines �1 ≺ � ∈ L(θ) such that n� �= n�1 , i�, i�1 = 0,1 and
∏

�′∈P (�1,�)
σ (�′)σ (�1) = 1

(the last condition implies that |n� − n�1 | is bounded by the sum of |nv| of the nodes v preceding
� but not �1). This means that D(θ, γ ) is the set of (ε,M) verifying the Melnikov conditions
(2.2) and (2.18) in θ .

In order to bound Val(θ) we will use the following result (Bryuno lemma).

Lemma 4.1. Given a tree θ ∈ Θ
(k)
R,n,m such that D(θ, γ ) ∩ S(θ, γ ) �= ∅, then the scales h� of θ

obey

Nh(θ) � max
{
0, ck(θ)2(2−h)β/τ − 1

}
, (4.5)

where Nh(θ) is the number of lines � with i� = 1 and scale h� greater or equal than h, and c is
a suitable constant.

Proof. For (ε,M) ∈ D(θ, γ ) ∩ S(θ, γ ) both (4.1) and (4.3) hold. Moreover by Lemma 3.5 one
has |n| � Bk(θ). This implies that one can have Nh(θ) � 1 only if k(θ) is such that k(θ) > k0 :=
B−12(h−1)/τ . Therefore for values k(θ) � k0 the bound (4.5) is satisfied.

If k(θ) > k0, we proceed by induction by assuming that the bound holds for all trees
θ ′ with k(θ ′) < k(θ). Define Eh := c−12(−2+h)β/τ : so we have to prove that Nh(θ) �
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max{0, k(θ)E−1
h − 1}. In the following we shall assume that c is so large that all the assertions

we shall make hold true.
Call �0 the root line of θ and �1, . . . , �m the m � 0 lines on scale � h−1 which are the closest

to �0 and such that i�s = 1 for s = 1, . . . ,m.
If the root line �0 of θ is on scale < h then

Nh(θ) =
m∑

i=1

Nh(θi), (4.6)

where θi is the sub-tree with �i as root line.
By construction Nh−1(θi) � 1, so that k(θi) > B−12(h−2)/τ and therefore for c large enough

(recall that β < α � 1) one has max{0, k(θi)E
−1
h − 1} = k(θi)E

−1
h − 1, and the bound follows

by the inductive hypothesis.
If the root line �0 has i�0 = 1 and scale � h then �1, . . . , �m are the entering line of a cluster T .
By denoting again with θi the sub-tree having �i as root line, one has

Nh(θ) = 1 +
m∑

i=1

Nh(θi), (4.7)

so that, by the inductive assumption, the bound becomes trivial if either m = 0 or m � 2.
If m = 1 then one has a cluster T with two external lines �1

T = �0 and �T = �1, such that
h�1 � h − 1 and h�0 � h. Then, for the assertion to hold in such a case, we have to prove that
(k(θ) − k(θ1))E

−1
h � 1. For (ε,M) ∈ S(θ, γ ) ∩ D(θ, γ ) one has

min
{|n�0 |, |n�1 |

}
� 2(h−2)/τ , (4.8)

and, by definition, one has i�0 = i�1 = 1, hence |yn�0 ,j�0
|, |yn�1 ,j�1

| � γ /4 (see (4.2)), so that we
can apply Lemma 2.1.

We distinguish between two cases.

1. If n�0 �= n�1 , by Lemma 2.1 with s0 = s2 (and the subsequent Remark) one has

|n�0 ± n�1 | � const.min
{|n�0 |, |n�1 |

}s2/τ1 � const.min
{|n�0 |, |n�1 |

}s2/τ

� const.2(h−2)s2/τ
2 � Eh,

where we have used that s2/τ
2 � β/τ for α small enough. Therefore B(k(θ) − k(θ1)) �

mina=±1 |n�0 + an�1 | � Eh.
2. If n�0 = n�1 , consider the path P = P (�1, �0). Now consider the nodes along the path, and

call �i the lines entering these nodes and θi the sub-trees which have such lines as root lines.
If mi denotes the momentum label m�i

one has, by Lemma 3.5, |mi | � Bk(θi).

Call �̄ the line on the path P ∪ {�1} closest to �0 such that i�̄ �= −1 (that is all lines � along the
path P (�̄, �0) have i� = −1).
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2.1. If |n�̄| � |n�0 |/2 then, by the conservation law (3.16) one has k(θ) − k(θ1) > B−1|n�0 |/2 �
Eh.

2.2. If |n�̄| � |n�0 |/2 we distinguish between the two following cases.

2.2.1. If n�̄ �= n�0 (= n�1 ) then by Lemma 2.1 and (4.2) one finds

|n�̄ ± n�0 | � const.min
{|n�̄|, |n�0 |

}s2/τ � const.2−s2/τ 2(h−2)s2/τ
2
> Eh.

2.2.2. If n�̄ = n�0 then we have two further sub-cases.

2.2.2.1. If j�0 �= j�̄, then |m�̄ − m′
�0

| � C2p
β
j�0

� C|n�0 |β , for some constant C. For all the lines

� along the path P (�̄, �0) one has i� = −1, hence m� = m′
� (cf. Remark (3) after Defi-

nition 3.2), so that |m�̄ − m′
�0

| �
∑

i |mi | � B(k(θ) − k(θ1)), and the assertion follows
once more by using (4.8).

2.2.2.2. If j�0 = j�̄ then i�̄ = 0 because h�̄ � h−2 and one would have |h�̄ −h| = |h�̄ −h�0 | � 1
if i�̄ = 1. As 2-resonances (as well as 1-resonances) are not possible there exists a line
�′ (again with i�′ = 0 because h�′ � h − 2), not on the path P (�̄, �0), such that j�′ = j�0

and |n�′ | = |n�0 | > 2(h−2)/τ ; cf. condition (ii) in Definition 3.8. In this case one has
k(θ) − k(θ1) > B−1|n�′ | � Eh.

This completes the proof of the lemma. �
Remarks. (1) It is just the notion of 2-resonance and property (ii) in Definition 3.8, which makes
nontrivial case 2.2.2.2 in the proof of Lemma 4.1.

(2) Note that in the discussion of case 2.2.2.1 we have proved that k(θ)− k(θ1) � const.|n�0 |β
(using once more that s2/τ � β for α, hence β , small enough with respect to s).

The Bryuno lemma implies the following result.

Lemma 4.2. There is a positive constant D0 such that for all trees θ ∈ Θk
R,n,m and for all

(ε,M) ∈ D(θ, γ ) ∩ S(θ, γ ) one has

(i)
∣∣Val(θ)

∣∣� Dk
0q2k+1

( ∞∏
h=1

2hNh(θ)

) ∏
�∈L(θ)

p
−3s/4
j�

,

(ii)
∣∣∂ε Val(θ)

∣∣� Dk
0q2k+1

( ∞∏
h=1

22hNh(θ)

) ∏
�∈L(θ)

p
−s2−α
j�

,

(iii)
∑

(n′,j ′)∈Ω

dj ′∑
a′,b′=1

∣∣∂Mn′,j ′ (a′,b′) Val(θ)
∣∣� Dk

0q2k+1

( ∞∏
h=1

22hNh(θ)

) ∏
�∈L(θ)

p
−s2−α
j�

(4.9)

if |n| < Bk and |m| < Bk, with B given as in Lemma 3.5, and Val(θ) = 0 otherwise.



3282 G. Gentile, M. Procesi / J. Differential Equations 245 (2008) 3253–3326
Proof. By Lemma 3.5 we know that Θk
R,n,m is empty if |n| > Bk or |m| > Bk. We first extract

the factor q2k+1 by noticing that a renormalised tree of order k has 2k + 1 end-points (cf. the
proof of Lemma 3.5).

For (ε,M) ∈ D(θ, γ ) ∩ S(θ, γ ) the bounds (4.5) hold. First of all we bound all propaga-
tors g� such that i� = −1,0 with 16C

1/2
1 γ −1|pj�

|−3s/4 according to (3.11). For the remain-
ing g� we use the inequalities (4.1) due to the scale functions: by Lemma 2.4(ii) one has
|Gn,j,h,1(a, b)| �

√
djp

−s
j |δn,j + p

−s1
j νn,j |, so that we can bound the propagators g� propor-

tionally to 2h� |pj�
|−3s/4. This proves the bound (i) in (4.9); notice that the product over the scale

labels is convergent.
When deriving Val(θ) with respect to ε we get a sum of trees with a distinguished line, say �,

whose propagator g� is substituted with ∂εg� in the tree value. For simplicity, in the following
set j = j�, h� = h and n = n�.

Let us first consider the case i� = −1,0 (so that g� is given by the first line of (3.9)), and
recall Lemma 2.4(ii) and (iii). Bounding the derivative ∂εg� we obtain, instead of the bound
on g�, a factor

Cγ −1
p

s2
j |n|C1/2

1 p
α/2
j

ps
j |δn,j + p

−s1
j νn,j |

� CC
1/2
1

16

γ 2
|n|p−(s−2s2−α/2)

j , (4.10)

arising when the derivative acts on χ̄i (yn,j ) (here and in the following factors Cγ −1 is a bound
on the derivative of χ with respect to its argument), and a factor

2|n|C1p
α
j

ps
j (δn,j + p

−s1
j νn,j )2

� 2C1
162

γ 2
|n|p−(s−2s2−α)

j , (4.11)

arising when the derivative acts on the matrix (δn,j I + p−s
j χ̄(yn,j )Mn,j )

−1.
If i� = 1 then the propagator is given by the second line in (3.9), so that both summands arising

from the derivation of the function χ̄1(yn,j ) and of the matrix (δn,j I + p−s
j χ̄(yn,j )Mn,j )

−1 are

there, and they are both bounded proportionally to p
−s2−α
j |n|22h (recall that s2 = (s − 2α)/4).

Moreover (see Lemma 2.4(iv)) there is also an extra summand containing a factor

2Cγ −1C
7/2
1

|n|p7α/2
j 2h+1

ps
j |δn,j + p

−s1
j νn,j |

� const. p−s+4α
j |n|22h, (4.12)

arising when the derivative acts on χh(xn,j ). Indeed, by setting A = (δn,j I + p−s
j χ̄1(yn,j ) ·

Mn,j )
−1, so that xn,j = ‖A‖−1, one has

∂εxn,j = 1

d
1/2
j ‖A‖3

dj∑
i,k,h,l=1

A(i, k)A(i, h)A(l, k)∂εA
−1(h, l), (4.13)

which implies (4.12). For α � s we can bound s − 4α with s2 + α.
Finally we can bound each n = n� with Bk (see Lemma 3.5). All the undistinguished lines in

the tree (i.e. all lines �′ �= � in L(θ)) can be bounded as in item (i). This proves the bound (ii)
in (4.9).
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The derivative with respect to Mn′,j ′(a′, b′) gives a sum of trees with a distinguished line �

(as in the previous case (ii)), with the propagator ∂Mn′,j ′ (a′,b′)g� replacing g�. Notice that � must
carry the labels n′, j ′. We have two contributions, one arising from the derivative of the matrix
and the other one (provided i� = 1) arising from the derivative of the scale function χh�

(there is
no contribution analogous to (4.10) because yn,j does not depend on M). By reasoning as in the
case (ii) we obtain a factor proportional to 22hp

−s2−α
j�

.
The sums over the labels (n′, j ′) ∈ Ω and a′, b′ = 1, . . . , dj ′ can be bounded as follows.

By Lemma 3.5 one has |n′| < Bk. Then j ′ must be such that pj ′ = O(n′), which implies that
the number of values which j ′ can assume is at most proportional to |n′|D−1, and a′, b′ vary
in {1, . . . , dj ′ }, with dj ′ � C1p

α
j ′ � const.|n′|α . Therefore we obtain an overall factor propor-

tional to k1+(D−1)+2α � k1+D � Ck for some constant C. Hence also the bound (iii) of (4.9) is
proved. �
4.2. Bounds on the trees in R(k)

R

Given a tree θ ∈ RR,h,n,j , we call S̃(θ, γ ) set of (ε,M) ∈ D0 such that (4.1) holds for all
� ∈ L(θ) \ {�e, �0}, and (4.2) holds for all � ∈ L(θ). Let D̃(θ, γ ) ⊂ D0 be the set of (ε,M) such
that (4.3) holds for all � ∈ L(θ) \ {�e, �0}, and (4.4) holds for all pairs �1 ≺ � ∈ L(θ) such that

(i) n�1 �= n�, i�, i�1 = 0,1 and
∏

�′∈P (�1,�)
σ (�′)σ (�1) = 1;

(ii) either both �, �1 are on the path P (�e, �0) or none of them is on such a path.

The following lemma will be useful.

Lemma 4.3. Given a tree θ ∈ R(k)

R,h̄,n,j
(a, b) such that D̃(θ, γ )∩ S̃(θ, γ ) �= ∅ then there are two

positive constants B2 and B3 such that

(i) a line � on the path P (�e, �0) can have i� �= −1 only if k � B2|n|β ;
(ii) one has k � B3|ma − mb|ρ with 1/ρ = 1 + α/β = 1 + D(1 + D(D + 2)!/2).

Proof. (i) One can proceed very closely to case 2 in the proof of Lemma 4.1, with �e and �

playing the role of �1 and �̄, respectively – see Remark (2) after the proof of Lemma 4.1. We
omit the details.

(ii) By Lemma 2.2, for all ma,mb ∈ Λj one has |ma − mb| � C2p
α+β
j . For (n, j) ∈ Ω this

implies that |ma − mb| � const.|n|α+β . If k � B2|n|β then one has k � const.|ma − mb|β/(α+β),
the statement holds true (recall that α/β is given by (2.4)). If k < B2|n|β then by item (i) all the
lines � on the path P (�e, �0) have i� = −1, hence m� = m′

�. Then by calling, as in the proof of
Lemma 4.1, θi the sub-trees whose root lines enter the nodes of P (�e, �0) and mi the momentum
label m�i

, we obtain |m�e − m�0 | �
∑

i |mi | � Bk, and the assertion follows once more. �
The following generalisation of Lemma 4.1 holds.

Lemma 4.4. Given tree θ ∈ R(k)

R,h̄,n,j
such that D̃(θ, γ ) ∩ S̃(θ, γ ) �= ∅ then the scales h� of θ

obey, for all h � h̄,
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Nh(θ) � max
{
0, ck(θ)2(2−h)β/τ

}
, (4.14)

where Nh(θ) and c are defined as in Lemma 4.1.

Proof. To prove the lemma we consider a slightly different class of trees with respect to R(k)

R,h̄,n,j
,

which we denote by R(k)

R,h̄
. The differences are as follows:

(i) the root line has scale labels h�0 � h̄ and i�0 ∈ {−1,0,1},
(ii) we remove the condition ne = n�0 , je = j�0 , and require only that |ne| > 2(h̄−2)/τ .

Notice that, for all θ ∈ R(k)

R,h̄,n,j
, among the three sub-trees entering the root, two are in Θ

(k1)
R

and Θ
(k2)
R , respectively, and one is in R(k3)

R,h̄1
, with h̄1 � h̄ (recall that by definition h� � h̄ for

all � ∈ L(θ)), and k1 + k2 + k3 = k − 1. Hence we shall prove (4.14) for the trees θ ∈ R(k)

R,h̄
, for

which we can proceed by induction on k.
For (ε,M) ∈ D̃(θ, γ ) ∩ S̃(θ, γ ) we have both (4.1) and (4.3) for all � ∈ L(θ) \ {�0, �e}.

Moreover by Lemma 3.10 we have Bk(θ) � |n� + ane|, where a = 0 if � is not on the path
P = P (�e, �0) and a ∈ {±1} otherwise.

For � not on the path P one can have h� � h only if k(θ) is such that k(θ) > k0 = B−12(h−1)/τ

(cf. the proof of Lemma 4.1). If all lines not along the path P have scales < h, consider the line
� on the path P with scale h� � h which is the closest to �e (the case in which such a line does
not exist is trivial, because it yields Nh(θ) = 0)). Then � is the exiting line of a cluster T with �e

as entering line. Note that we have both |n�| � 2(h−1)/τ and |ne| > 2(h̄−2)/τ , with h̄ � h. As T

cannot be a resonance, if n� = ne then either j� �= je , so that

kT > min
{
B2|ne|β,B−1C2|pje |β

}
> const.2(h−1)β/τ

(cf. Lemma 4.3(i) and case 2.2.2.1 in the proof of Lemma 4.1), or j� = je, so that

kT > B−12(h̄−2)/τ � B−12(h−2)/τ

(cf. case 2.2.2.2 in the proof of Lemma 4.1). If on the contrary n� �= ne, by Lemma 2.1 one has
Bk(θ) � const.min{|n� ± ne|} � const.2(h−2)s2/τ

2
. Therefore there exists a constant B̃ such that

for values k(θ) � k̃0 := B̃−12(h−1)s2/τ
2

the bound (4.14) is satisfied.
If k(θ) > k̃0, we assume that the bound holds for all trees θ ′ with k(θ ′) < k(θ). Define Eh =

c−12(−2+h)β/τ : we want to prove that Nh(θ) � max{0, k(θ)E−1
h }.

We proceed exactly as in the proof of Lemma 4.1. The only difference is that, when discussing
case 2.2.1, one can deduce |n�̄ ± n�0 | � const.min{|n�0 |, |n�̄|}s2/τ � const.2(h−2)s2/τ

2
> Eh by

using that the quantity ne cancels out as the line �̄ is along the path P . �
The following result is an immediate consequence of the previous lemma.

Lemma 4.5. For fixed k the matrices L
(k)
n,j are symmetric; moreover the following identity holds:

L
(k)
n,j = −χ̄1(yn,j )

∞∑
h=−1

Ch(xn,j )
∑

θ∈R(k)

Val(θ), (4.15)
R,h,n,j
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where, by definition,

Ch(x) =
∞∑

h1=h+2

χh(x). (4.16)

Proof. The previous analysis has shown that the matrices L
(k)
n,j are well defined. Then the ma-

trices are symmetric by Lemma 3.14, where we have established a one-to-one correspondence
between the trees contributing to L

(k)
n,j (a, b) and those contributing to L

(k)
n,j (b, a) such that the

corresponding trees have the same value. Identity (4.15) follows from the definitions (3.14) and
(3.28). �
Remark. Notice that Ch(x) = 1 when |x| � 2−h−2γ and Ch(x) = 0 when |x| � 2−h−1γ .

Lemma 4.6. Given a tree θ ∈ R(k)
R,h,n,j (a, b), for (ε,M) ∈ D̃(θ, γ )∩ S̃(θ, γ ) and σ > 0 one has

(i)
∣∣Val(θ)

∣∣� (Dq2)k2−h

(
h∏

h′=−1

2h′Nh′ (θ)

)
e−σ |ma−mb|ρ ∏

�∈L(θ)

p
−3s/4
j�

,

(ii)
∣∣∂ε Val(θ)

∣∣� (Dq2)k2−h|n|
(

h∏
h′=−1

22h′Nh′ (θ)

)
e−σ |ma−mb|ρ ∏

�∈L(θ)

p
−s2−α
j�

,

(iii)
∑

(n′,j ′)∈Ω

dj ′∑
a′,b′=1

∣∣∂Mn′,j ′ (a′,b′) Val(θ)
∣∣

�
(
Dq2)k2−h

(
h∏

h′=−1

22h′Nh′ (θ)

)
e−σ |ma−mb|ρ ∏

�∈L(θ)

p
−s2−α
j�

, (4.17)

for some constant D depending on σ and γ .

Proof. The proof follows the same lines as that of Lemma 4.2. We first extract the factor q2k by
noticing that a renormalised tree in R(k)

R has 2k end-points. To extract the factor 2−h we recall
that there is at least a line � �= �0 on scale h� = h: then Nh(θ) � 1 and by (4.14) we obtain
k > const.2hβ/τ , so that Ck2−h � 1 for a suitable constant C. To extract the factor e−σ |ma−mb|ρ

we use Lemma 4.3(ii) to deduce C̃ke−σ |ma−mb|ρ � 1. Hence the bound (i) in (4.17) follows.
When applying the derivative with respect to ε to Val(θ) we reason exactly as in Lemma 4.2;

the only difference is that we bound |n�| < |n|+Bk, which provides in the bound (4.17) an extra
factor |n| with respect to the bound (ii) in (4.9).

The derivative with respect to Mn′,j ′(a′, b′) gives a sum of trees with a distinguished line
� carrying the propagator ∂Mn′,j ′ (a′,b′)g� instead of g�. As in case (iii) of Lemma 4.2 we have
two contributions, one when the derivative acts on the matrix and the other (if i� = 1) when the
derivative acts on χh�

; by the same arguments as in Lemma 4.2(ii) we obtain a factor of order
22hp

−s2−α
j�

.
By Lemma 3.10 one has min{|n′ − n|, |n′ + n|} < Bk, so that the sum over n′ is finite and

proportional to k. The sum over j ′, a′, b′ produces a factor proportional to |n′|(D−1)+2α – reason
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as in the proof of (4.9)(iii) in Lemma 4.2. This provides an overall factor of order |n′|D . If k �
B2|n|β (with B2 defined in Lemma 4.3) this factor can be bounded by Ck for some constant C.
If k < B2|n|β then, by Lemma 4.3(i), one must have i� = −1, hence m� = m′

�, for all lines � on
the path P (�e, �0): then if a′ �= b′ necessarily the line �, which the derivative is applied to, is not
on such a path, and the possible values of j ′, a′, b′ are bounded proportionally to kD . If a′ = b′
either � /∈ P (�e, �0) – and we can reason as before – or � ∈ P (�e, �0): in the last case we use the
conservation law (3.17) of the momenta (m�,m

′
�), and we obtain again at most kD terms. �

Remark. For any fixed σ > 0 the constant D in (4.17) is proportional to C̃, hence grows ex-
ponentially in σ . As we shall need for C̃ to be at worst proportional to 1/ε0 (in order to have
convergence of the series (3.27)), this means that σ can be taken as large as O(|log ε0|).

We are now ready to prove the first part of Proposition 1.

Proposition 1(i)–(ii). There exist constants c0, K0, Q0 and σ such that the following bounds
hold for all (ε,M) ∈ D(γ ), q < Q0 and η � η1 = c0Q

−2
0 :

|un,m| < K0|η|q3e−σ(|n|+|m|), |Ln,j |σ < K0|η|q2,

|∂εLn,j |σ < K0|n|1+s2 |η|q2, |∂ηLn,j |σ < K0q
2, (4.18)

for all (n, j) �= (1,1). Moreover the operator norm of the derivative with respect to Mn,j is
bounded as

‖∂ML‖σ := sup
A∈B

|∂ML[A]|σ
|A|σ

� sup
n,j∈Ω

sup
a,b=1,...,dj

∑
n′,j ′

dj ′∑
a′,b′=1

∣∣∂Mn′,j ′ (a′,b′)Ln,j (a, b)
∣∣eσ(|ma−mb|ρ−|ma′−mb′ |ρ)

< K0|η|q2, (4.19)

where the space B is defined in the Remark after the proof of Lemma 2.6.

Proof. By definition D(γ ) is contained in all D(θ, γ ) and in all D̃(θ, γ ), so that we can use
Lemmas 4.2 and 4.6 to bound the values of trees. First we fix an unlabelled tree θ and sum over
the values of the labels: we can modify independently all the end-point labels, the scales, the
type labels and the momenta m� if i� �= −1 (one has m� = m′

� for i� = −1). Fixed (ε,M) and
(n�, j�) there are only dj�

= O(pα
j�

) possible values for m�. This reduces the factors p
−s2−α
j�

to

p
−s2
j�

in the bounds (4.9) and (4.17). By summing over the type and scale labels {i�, h�}�∈L(θ)

(recall that after fixing the mode labels and ε there are only two possible values for each h� such
that Val(θ) �= 0), we obtain a factor 4k , and summing over the possible end-point labels provides
another factor 2(D+1)(2k+1). Finally we bound the number of unlabelled trees of order k by C̄k

for a suitable constant C̄ [23]. In (4.9) we can bound

∞∏
h=−1

2hNh(θ) = exp

(
log 2

∞∑
h=−1

hNh(θ)

)
� exp

(
const. k

∞∑
h=−∞

h2−hβ/2τ

)
� Ck, (4.20)

for a suitable constant C, and an analogous bound holds for the products over the scales in (4.17).
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Since (see (3.1) and (3.20))

un,m =
∞∑

k=1

ηk
∑

θ∈Θ
(k)
R,n,m

Val(θ), (4.21)

and, by Lemma 3.5, Θ
(k)
R,n,m is empty if k < B−1|n| or k < B−1|m|, we obtain the first bound in

(4.18).
Using (4.17)(i), we bound the sum on θ ∈ R(k)

R,h,n,j exactly in the same way. The main dif-

ference is that R(k)
R,h,n,j (a, b) is empty if |ma − mb| > B−1

3 k1/ρ , by Lemma 4.3(ii). Then by
Lemma 4.5, we obtain the second bound in (4.18).

As for the third bound in (4.18), we have

∂εLn,j = −χ̄1(yn,j )

∞∑
h=−1

Ch(xn,j )
∑

θ∈R(k)
R,n,j,h

∂ε Val(θ)

− χ̄1(yn,j )

∞∑
h=−1

(
∂εCh(xn,j )

) ∑
θ∈R(k)

R,n,j,h

Val(θ)

− (∂εχ̄1(yn,j )
) ∞∑

h=−1

Ch(xn,j )
∑

θ∈R(k)
R,n,j,h

Val(θ), (4.22)

where the first summand is treated, just like in the previous cases, by using (4.17)(ii) instead
of (4.17)(i). In the other summands Val(θ) is bounded exactly as in the previous cases, but the
derivative with respect to ε gives in the second summand an extra factor proportional to |n|2hp3α

j

– appearing only for those values of h such that χh(xn,j ) is nonzero (and for each value of ε there
are only two such values so that the sum over h is finite) – and in the third summand a factor
proportional to |n|ps2

j . We omit the details, which can be easily worked out by reasoning as

for (4.10) and (4.12) in the proof of Lemma 4.2. Finally we bound 2h by Ck as in the proof of
Lemma 4.6.

The fourth bound in (4.18) follows trivially by noting that to any order k the derivative with
respect to η of ηk produces kηk−1.

Finally, one can reason in the same way about the derivative with respect to Mn,j , by using
(4.17)(iii), so that (4.19) follows. �
5. Whitney extension and implicit function theorems

5.1. Extension of U and L

In this section we extend the function Ln,j , defined in D(γ ), to the larger set D0. The extended
function LE

n,j is a Whitney extension of Ln,j , see [33].

Lemma 5.1. The following statements hold true.
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(i) Given θ ∈ R(k)
R,h,n,j , we can extend Val(θ) to a function, called ValE(θ), defined and C1

in D0, and Ln,j (η, ε,M;q) to a function LE
n,j ≡ LE

n,j (η, ε,M;q) such that

LE
n,j = −χ̄1(yn,j )

∞∑
h=−1

Ch(xn,j )

∞∑
k=1

ηk
∑

θ∈R(k)
R,n,j,h

ValE(θ) (5.1)

satisfies for any (ε,M) ∈ D0 the same bounds in (4.18) and (4.19) as LE
n,j (η, ε,M;q)

in D(γ ). Furthermore Val(θ) = ValE(θ) for any (ε,M) ∈ D̃(θ,2γ ) ⊂ D̃(θ, γ ) and
ValE(θ) = 0 for (ε,M) ∈ D0 \ D̃(θ, γ ).

(ii) In the same way, given θ ∈ Θ
(k)
R,n,m, we can extend Val(θ) to a function ValE(θ) de-

fined and C1 in D0, and Un,j (η, ε,M;q) to a function UE
n,j (η, ε,M;q) such that uE

n,m ≡
uE

n,m(η, ε,M;q), given by

uE
n,m =

∞∑
k=1

ηk
∑

θ∈Θ
(k)
R,n,m

ValE(θ), (5.2)

satisfies for any (ε,M) ∈ D0 the same bounds in (4.18) as un,m in D(γ ).

Furthermore Val(θ) = ValE(θ) for any (ε,M) ∈ D(θ,2γ ) ⊂ D(θ, γ ) and ValE(θ) = 0 for
(ε,M) ∈ D0 \ D(θ, γ ).

Proof. We prove first the statement for the case θ ∈ R(k)
R,h,n,j . We use the C∞ compact support

function χ−1(t) : R → R
+, introduced in Definition 3.1. Recall that χ−1(t) equals 0 if |t | < γ

and 1 if |t | � 2γ , and |∂tχ−1(t)| � Cγ −1, for some constant C.
Given a tree θ ∈ R(k)

R,h,n,j , we define

ValE(θ) =
∏

�∈L(θ)\{�e,�0}
i�=1

χ−1
(|xn�,j�

||n�|τ
)

×
∏∗∗

�1,�2∈L(θ)

χ−1
(|δn�1 ,j�1

− δn�2,j�2
||n�1 − n�2 |τ1

)
Val(θ), (5.3)

where
∏∗∗

�1,�2∈L(θ) is the product on the pairs �1 ≺ �2 ∈ L(θ) such that
∏

�∈P (�1,�2)
σ (�)σ (�1) = 1,

i�j
= 1,0, n�1 �= n�2 , and either both �1, �2 are on the path connecting e to v0 or both of them are

not on such a path. The sign
∏

�∈P (�1,�2)
σ (�)σ (�1) is such that |n�1 − n�2 | � n.

By definition ValE(θ) = Val(θ) for (ε,M) ∈ D̃(θ,2γ ) as in this set the scale functions χ−1
in the above formula are identically equal to 1.

By definition supp(ValE(θ)) ⊂ D̃(θ, γ ), as the scale functions χ−1 in the above formula are
identically equal to 0 in the complement of D̃(θ, γ ) with respect to D0.

To bound the derivatives the only fact that prevents us from simply applying (4.17)(ii)–(iii) is
the presence of the extra terms due to the derivatives of the χ−1 functions. Each factor of the first
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,

product in (5.3), when derived, produces an extra factor proportional to 2h�p3α
j�

|n�|τ+1. Note that
a summand of this kind appears only if i� = 1 and (ε,M) is such that

2−h�−1γ � xn�,j�
� 2γ

|n�|τ . (5.4)

This implies |n�| < 2(h�+1)/τ , so that the presence of the extra factor simply produces, in
(4.17)(ii), a larger constant D and a larger exponent – say 4 – instead of 2 in the factor 22h′Nh′ (θ).
Each factor of the second product produces an extra factor |n�1 −n�2 |τ1+1, which can be bounded
by Ck .

Therefore the derivatives of LE
n,j respect the same bounds (4.18) as Ln,j modulo a redefinition

of the constants c0, K0. These bounds are uniform (independent of (n, j)) and can be performed
also for higher order derivatives, hence LE

n,j is a C1 function of (ε,M).
We proceed in the same way for θ ∈ ΘR,n,m:

ValE(θ) =
∏

�∈L(θ): i�=1

χ−1
(|xn�,m�

||n�|τ
) ∏∗∗∗

�1,�2∈L(θ)

χ−1
(|δn�1 ,j�1

δn�2,j�2
||n�1 − n�2 |τ1

)
Val(θ),

(5.5)

where now the product
∏∗∗∗ runs on the pairs of lines �1 ≺ �2 such that

∏
�∈P (�1,�2)

σ (�)σ (�1) = 1
i�j

= 1,0, and n�1 �= n�2 . �
Proposition 1(iii). LE is differentiable in (ε,M) ∈ D0 and satisfies the bounds∣∣∂εL

E
n,j (a, b)

∣∣< C1|n|1+s2 e−σ |ma−mb|ρ |η|q2,

∑
(n′,j ′)∈Ω

dj ′∑
a′,b′=1

∣∣∂Mn′,j ′ (a′,b′)L
E
n,j (a, b)

∣∣e|ma−mb|ρ < C1|η|, (5.6)

where C1 is a suitable constant.

Proof. Simply combine the proof of Lemma 5.1 with that of Proposition 1(ii). �
5.2. The extended Q equation

Going back to (2.12), we can extend it to all D0 by using UE
n,j instead of Un,j for all (n, j) �=

(1,1); we obtain the equation

Dsq = f1,V

(
uE
)= ∑

n1+n2−n3=1
m1+m2−m3=V

uE
n1,m1

uE
n2,m2

uE
n3,m3

. (5.7)

The leading order is obtained for ni = 1 and mi ∈ Λ1 for all i = 1,2,3, namely at η = 0 we have
a nonlinear algebraic equation for q ,

Dsq = 3Dq3, (5.8)

with solution q0 = √
Ds3−D . We can now prove the following result.
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Proposition 1(iv). There exists η0 such that for all |η| � η0 and (ε,M) ∈ D0, Eq. (5.7) has a
solution qE(ε,M;η), which is analytic in η and C1 in (ε,M); moreover

∣∣∂εq
E(ε,M;η)

∣∣� K|η|,
∑

(n,j)∈Ω

dj∑
a,b=1

∣∣∂Mn,j (a,b)q
E(ε,M;η)

∣∣
σ

� K|η|, (5.9)

for a suitable constant K , and qE = q for (ε,M) ∈ D(2γ ).

Proof. Set Q0 := 2q0. Then there exists η1 such that uE is analytic in η,q for |η| � η1 and
|q| � Q0 and C1 in (ε,M). By the implicit function theorem, there exists η0 � η1 such that for
all |η| � η0 there is a solution qE ≡ qE(η, ε,M) of the Q equations (5.7) such that |qE | < 3q0/2.
By definition of the extension uE , Eq. (5.7) coincides (2.12) on D(2γ ). The bounds on the
derivatives follow from Lemmas 4.2 and 5.1. �

We now define

UE
n,j (η, ε,M) = UE

n,j

(
η, ε,M;qE(η, ε,M)

)
,

LE
n,j (η, ε,M) = LE

n,j

(
η, ε,M;qE(η, ε,M)

)
. (5.10)

Proposition 1(v). There exists a positive constant K1 such that the matrices LE
n,j (η, ε,M) satisfy

the bounds

∣∣LE(η, ε,M)
∣∣
σ

� |η|K1,
∣∣∂εL

E
n,j (η, ε,M)

∣∣
σ

� |η|K1|n|1+s2,

∑
(n,j)∈Ω

dj∑
a,b=1

∣∣∂Mn,j (a,b)L
E(η, ε,M)

∣∣
σ

e−σ |ma−mb|ρ � |η|K1, (5.11)

and the coefficients UE
n,j (η, ε,M) satisfy the bounds

∣∣UE
n,j (η, ε,M)

∣∣� |η|K1e−σ(|n|+|pj |1/2), (5.12)

uniformly for (ε,M) ∈ D0.

Proof. It follows trivially from the bounds (5.9) and from the bounds of Lemma 5.1. �
6. Proof of Proposition 2

6.1. Proof of Proposition 2(i)

Let us consider the compatibility equation (2.11) where Ln,j = LE
n,j (η, ε,M). One can rewrite

(2.11) as

χ̄1(yn,j )Mn,j = LE
n,j (η, ε,M) ≡ ηχ̄1(yn,j )L̃

E(η, ε,M), (6.1)

with L̃E(η, ε,M) = O(1), so that (6.1) has for η = 0 the trivial solution Mn,j = 0.
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The bounds of Proposition 1(v) imply that the Jacobian of the application L̃E(η, ε,M) : B →
B is bounded in the operator norm (B is defined in the Remark before Definition 2.7). Thus
there exists η0,K2 such that, for |η| � η0 and for all (ε,M) ∈ D(2γ ), we can apply the implicit
function theorem to (6.1) and obtain a solution Mn,j (η, ε), which satisfies the bounds

|Mn,j |σ � K2|η|, ∣∣∂εMn,j (η, ε)
∣∣
σ

� K2|n|1+s2 |η|, ∣∣∂ηMn,j (η, ε)
∣∣
σ

� K2, (6.2)

for a suitable constant K2.
Finally we fix ε0 � η0, η = ε and set (with an abuse of notation) Mn,j (ε) = Mn,j (η = ε, ε),

so that, by noting that

d

dε
Mn,j (ε) = ∂ηMn,j (η, ε) + ∂εMn,j (η, ε), (6.3)

we deduce from (6.2) the bound (2.26).

6.2. Proof of Proposition 2(ii) – measure estimates

We now study the measure of the set (2.27). By definition this is given by the set of ε ∈ E0(γ )

such that the further Diophantine conditions

xn,j (ε) := ∥∥(δn,j I + p−s
j χ̄1(yn,j )Mn,j (ε)

)−1∥∥−1 � 2γ

|n|τ (6.4)

are satisfied for all (n, j) ∈ Ω such that (n, j) �= (1,1). Recall that (n, j) ∈ Ω implies n > 0. By
Lemma 2.4(iii) one has

xn,j (ε) � min
i

∣∣λ(i)
(
δn,j I + p−s

j χ̄1(yn,j )Mn,j

)∣∣= min
i

∣∣δn,j + p−s+α
j ν

(i)
n,j (ε)

∣∣, (6.5)

since the matrices are symmetric. Recall that pα
j ν

(i)
n,j (ε) are the eigenvalues of χ̄1(yn,j )M

(i)
n,j (ε)

and that dj � C1p
α
j (cf. Definition 2.5).

Then we impose the conditions

∣∣δn,j + p−s+α
j ν

(i)
n,j (ε)

∣∣� 2γ

nτ
∀(n, j) ∈ Ω \ {(1,1)

}
, i = 1, . . . , dj , (6.6)

and recall that Mn,j = 0 (i.e. ν
(i)
n,j = 0) if (n, j) /∈ Ω , so that for (n, j) /∈ Ω the Diophantine

conditions (6.6) are surely verified, by (2.1).
Call A the set of values of ε ∈ E0(γ ) which verify (6.6). We estimate the measure of the subset

of E0(γ ) complementary to A, i.e. the set defined as union of the sets

In,j,i :=
{
ε ∈ E0(γ ):

∣∣δn,j + p−s+α
j ν

(i)
n,j (ε)

∣∣� 2γ

nτ

}
, (6.7)

for (n, j) ∈ Ω and i = 1, . . . , dj .
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Given n, the condition (n, j) ∈ Ω implies that pj can assume at most ε0n + 1 different val-
ues – cf. (2.16). On a (D − 1)-dimensional sphere of radius R there are at most O(RD−1)

integer points, hence the number of values which j can assume is bounded proportionally to
nD−1(1 + ε0n). Finally i assumes dj � C1p

α
j values.

Since μ ∈ M we have, for n � (γ0/4ε0)
1/(τ0+1),

∣∣δn,j + p−s+α
j ν

(i)
n,j (ε)

∣∣� ∣∣(D + μ)n − pj − μ
∣∣− 2ε0n � γ0

2nτ0
, (6.8)

so that we have to discard the sets In,j,i only for n � (γ0/4ε0)
1/(τ0+1).

Let us now recall that for a symmetric matrix M(ε) depending smoothly on a parameter ε, the
eigenvalues are C1 in ε [24]. Then the measure of each In,j,i can be bounded from above by

4γ

nτ
sup

ε∈E0(γ )

∣∣∣∣
(

d

dε

(
δn,j + p−s+α

j ν
(i)
n,j (ε)

))−1∣∣∣∣, (6.9)

where one has ∣∣∣∣ d

dε

(
δn,j + p−s+α

j ν
(i)
n,j (ε)

)∣∣∣∣� n

2
. (6.10)

This can be obtained as follows. Proving (6.10) requires to find lower bounds for

∣∣∣∣ d

dε

(−ωn + pj + μ + p−s
j χ̄(yn,j )λ

(i)
n,j (ε)

)∣∣∣∣,
where λ

(i)
n,j (ε) are the eigenvalues of Mn,j (ε) (i.e. χ̄1(yn,j )λ

(i)
n,j (ε) = pα

j ν
(i)
n,j (ε)). The eigenvalues

λn,j (ε)
(i) are C1 in ε, so that, by Lidskii’s lemma [24], one has

∣∣∣∣ d

dε
λ

(i)
n,j (ε)

∣∣∣∣� dj

∣∣∣∣ d

dε
Mn,j

∣∣∣∣∞ � C1K2
(
1 + ε0n

1+s2
)
nα, (6.11)

where we have used (6.3) and (6.2). Since s2 + α � s − α, we obtain

∣∣∣∣ d

dε

(−ωn + pj + μ + p−s
j χ̄(yn,j )λ

(i)
n,j (ε)

)∣∣∣∣� n

2
,

which implies (6.10).
Recall that pj is bounded proportionally to n. Then for fixed n we have to sum over const.(1+

ε0n)nD−1 values of j and over dj � C1p
α
j � const. nα � const. n.

Therefore we have

∑
(n,j)∈Ω

dj∑
i=1

meas(In,j,i ) � const.
∑

n�(γ /4ε0)
−1/(τ0+1)

γ |n|D
(

1

|n|τ+1
+ ε0

|n|τ
)

� const.
(
ε
(τ−D)/(τ0+1) + ε

1+(τ−D−1)/(τ0+1))
, (6.12)
0 0
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provided τ > D + 1. Therefore the measure is small compared to that of E0(γ ) – which is of
order ε0– if τ > max{τ0 + D + 1,D + 1} = τ0 + D + 1.

7. Generalisations and proof of Theorem 1

7.1. Eq. (1.4): Proof of Theorem 1 in D > 2

In order to consider Eq. (1.4) we only need to make few generalisations. By our assumptions

f (x,u, ū) = g(x, ū) + ∂ūH(x,u, ū),

with H real-valued. For simplicity we discuss explicitly only the case with odd p in (1.3)—hence
the functions ap1,p2(x) are even and real. Considering also even p should require considering an
expansion in

√
ε: this would not introduce any technical difficulties, but on the other hand would

require a deeper change in notations.
We modify the tree expansion, analogously to what done in [21]. The change of variables

(1.8) transforms each monomial in (1.3) into a monomial ε(p1+p2−1)/2ap1,p2(x)up1 ūp2 ; we can
take into account the contributions arising from g(x, ū), by considering the corresponding Taylor
expansion and putting p1 = 0 and p2 � 3. All the other contributions are such p1ap1,p2 = (p2 +
1)ap2+1,p1−1 (by the reality of H and of the functions ap1,p2 ).

Each new monomial produces internal nodes of order kv = (pv,1 +pv,2 − 1)/2 ∈ N, such that
kv � 2, with pv,1 + pv,2 entering lines among which pv,1 have sign σ = 1 and pv,2 have sign
σ = −1; note that the case previously discussed corresponds to (pv,1,pv,2) = (2,1). Hence, with
the notations of Section 3.3, we can write sv = pv,1 + pv,2, with sv odd.

Each internal node v has labels kv,pv,1,pv,2,mv , with the mode label mv ∈ Z
D . The node

factor associated with v is apv,1,pv,2,mv , namely the Fourier coefficient with index mv in the
Fourier expansion of the function apv,1,pv,2 ; by the analyticity assumption on the nonlinearity the
Fourier coefficients decay exponentially in m, that is

|apv,1,pv,2,mv | � A1e−A2|m|, (7.1)

for suitable constants A1 and A2.
The conservation laws (3.16) and (3.17) have to be suitably changed. We can still write that

n� is given by the right-hand side, the only difference being that L(v) contain sv lines (and each
line � ∈ L(v) has its own sign σ(�)). On the contrary (3.17) for m′

� has to be changed in a more
relevant way: indeed one has

m′
� = mv +

∑
�′∈L(v)

σ (�′)m�′ , (7.2)

with L(v) defined as before.
The order of any tree θ is still defined as in (3.19), and, more generally, all the other labels are

defined exactly as in Section 3.3.
The first differences appear when one tries to bound the momenta of the lines in terms of the

order of the tree. In fact one has



3294 G. Gentile, M. Procesi / J. Differential Equations 245 (2008) 3253–3326
∣∣E(θ)
∣∣� 1 +

∑
v∈V0(θ)

(sv − 1), (7.3)

which reduces to the formula given in the proof of Lemma 3.5 only for sv � 3. One has sv =
2kv + 1, so that

∑
v∈V0(θ)

(sv − 1) = 2
∑

v∈V0(θ)

kv = 2k, (7.4)

and one can still bound |n�| � Bk for any tree θ ∈ Θ(k) and any line � ∈ L(θ).
The conservation law (7.1) gives, for any line � ∈ L(θ),

max
{|m�|,

∣∣m′
�

∣∣}� Bk +
∑

v∈V0(θ)

|mv|, (7.5)

for some constant B . The bound in (7.5) is obtained by reasoning as in the proof of Lemma 3.5;
the last sum is due to the mode labels of the internal nodes. Thus the bound on n� in Lemma 3.5
still holds, while the bounds on m�,m

′
� have to be replaced with (7.5). The same observation

applies to Lemma 3.10.
Also Lemma 3.14 still holds. The proof proceeds as follows. The tree θ1 which one associates

with each θ ∈ RR,n,j,h(a, b) is the tree in RR,n,j,h(b, a) defined as follows.

1. As in the proof of Lemma 3.14.
2. As in the proof of Lemma 3.14.
3. Let v̄ be a node along the path P = P (�e, �0) and let �1, . . . , �s , with s = sv̄ be the lines

entering v̄; suppose that �1 is the line belonging to the path P ∪ {�e}. If σ(�1) = 1 we
change mv̄ → −mv̄ and we change all the signs of the other lines, i.e. σ(�i) → −σ(�i) for
i = 2, . . . , s, whereas if σ(�) = −1 we do not change anything.

4. As in the proof of Lemma 3.14.

Then one can easily check that the form (1.4) of the nonlinearity implies that the tree θ1 is
well defined (as an element of RR,n,j,h(b, a)) and has the same value as θ .

Remarks. (1) Note that item 3 above reduces to item 3 of Lemma 3.14 if sv = 3 for each internal
node v.

(2) If the node v̄ has pv̄,1 = 0 (i.e. the monomial associated to it arises from the function
g(x, ū)) then the operation in item 3 is empty.

Therefore we can conclude that the counterterms are still symmetric.
The analysis of Section 4 can be performed almost unchanged. Here we confine ourselves to

show the few changes that one has to take into account.
The first relevant difference appears in Lemma 4.1. Because of the presence of the mode labels

of the internal nodes the bound (4.5) on Nh(θ) does not hold anymore, and it has to be replaced
with

Nh(θ) � max

{
0, c

(
k(θ) +

∑
|mv|

)
2(2−h)β/τ − 1

}
, (7.6)
v∈V0(θ)
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for a suitable constant c. The proof of (7.6) proceeds as the proof of Lemma 4.1 in Section 4. We
use that in (4.7) for m = 1 one has

k(θ) − k(θ1) +
∑

v∈V0(θ)

|mv| −
∑

v∈V0(θ1)

|mv| = kT +
∑

v∈V0(T )

|mv|, (7.7)

and, except for item 2.2.2.1, we simply bound the right-hand side of (7.7) with kT . The only item
which requires a different argument is item 2.2.2.1, where instead of the bound |m�̄ − m�0 | �∑

i |mi | we have, by (7.5),

|m�̄ − m�0 | �
∑

v∈P (�̄,�0)

|mv| +
∑

i

|mi | � BkT +
∑

v∈V0(T )

|mv| � max{B,1}
(

kT +
∑

v∈V0(T )

|mv|
)

,

where v ∈ P (�̄, �0) means that the node v is along the path P (�̄, �0) (i.e. �v ∈ P (�̄, �0) ∪ �0) and
the sum over i is over all sub-trees which have the root lines entering one of such nodes.

Remark. Note that if the coefficients ap1,p2(x) in (1.3) are just constants (i.e. do not depend
on x), then mv ≡ 0 and (7.6) reduces to (4.5).

Moreover in (4.9) we have a further product

∏
v∈V0(θ)

A1e−A2|mv |, (7.8)

while the product of the factors 2hNh(θ) can be written as

(
h0∏

h=−1

2hNh(θ)

)( ∞∏
h=h0+1

2hNh(θ)

)
� 2h0k

∞∏
h=h0+1

2hNh(θ), (7.9)

with h0 to be fixed, where the last product, besides a contribution which can be bounded as in
(4.20), gives a further contribution

∞∏
h=h0

∏
v∈V0(θ)

2ch|mv |2(2−h)β/τ �
∏

v∈V0(θ)

exp

(
const.|mv|

∞∑
h=h0

h2−hβ/τ

)
, (7.10)

so that we can use part of the exponential factors in (7.8) to compensate the exponential factors
in (7.10), provided h0 is large enough (depending on τ ).

Another consequence of (7.2) is in Lemma 4.3: item (ii) has to be replaced with

|ma − mb| � const. k1/ρ +
∑

v∈V0(θ)

|mv|, (7.11)

because each internal node v contributes a momentum mv to the momenta of the lines follow-
ing v. Up to this observation, the proof of (7.11) proceeds as in the proof of Lemma 4.3.
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Therefore also the bound (4.14) of Lemma 4.4 has to changed into (7.6), for all h � h̄. The
proof proceeds as that of Lemma 4.4 in Section 4, with the changes outlined above when dealing
with case 2.2.2.1.

The property (7.11) reveals itself also in the proof of Lemma 4.6. More precisely, in order to
extract a factor e−σ |ma−mb|ρ , we use that (7.11) implies (recall that ρ < 1)

|ma − mb|ρ � C

(
k +

∑
v∈V0(θ)

|mv|
)

, (7.12)

for a suitable ρ-dependent constant C, so that we can write, for some other constant C̃,

eσ |ma−mb|ρ � C̃k
∏

v∈V0(θ)

eσ |mv |, (7.13)

where σ has to be chosen so small (e.g. |σ | < A2/4, with A2 given in (7.1)) that the last product
in (7.13) can be controlled by part of the exponentially decaying factors e−A2|mv | associated with
the internal nodes. This means, in particular, that σ cannot be arbitrarily large when ε0 becomes
small (cf. the Remark after the proof of Lemma 4.6).

As in (4.9) also in (4.17) there are the further factors (7.8), which can be dealt with exactly as
in the previous case.

Besides the issues discussed above, there is no other substantial change with respect to the
analysis of Sections 4 to 6.

7.2. Eq. (1.1) in dimension 2: Proof of Theorem 1 in D = 2

We can consider more general nonlinearities in the case D = 2, that is of the form (1.3)
without the simplifying assumption (1.4). Indeed in such a case the counterterms are 2 × 2 ma-
trices (cf. Lemma 2.2), so that we can bound xn,j by the absolute value of the determinant of
δn,j I + χ̄1(yn,j )Mn,jp

−s
j , which is a C2 function of ε (we have proved only C1 but it should be

obvious that we can bound as many derivatives of LE
n,j as we need to, possibly by decreasing the

domain of convergence of the functions involved).
Set for notational simplicity M̄n,j = χ̄1(yn,j )Mn,j . Let us evaluate the measure of the Cantor

set

E1 = {ε ∈ E0(γ ):
∣∣δ2

n,j + p−s
j tr M̄n,j δn,j + p−2s

j det M̄n,j

∣∣� 2γ |n|−τ
}
, (7.14)

following the scheme of Section 6. Here we are using explicitly that for D = 2 one has

det
(
δn,j I + p−s

j M̄n,j

)= δ2
n,j + p−s

j tr M̄n,j δn,j + p−2s
j det M̄n,j , (7.15)

because Mn,j is a 2 × 2 matrix.
We estimate the measure of the complement of E1 with respect to E0(γ ), which is the union

of the sets

In,j :=
{
ε ∈ E0(γ ):

∣∣δ2
n,j + p−s

j an,j δ + p−2s
j bn,j

∣∣� 2γ

|n|τ
}
, (7.16)

where an,j = tr M̄n,j and bn,j = det M̄n,j .
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Given n the condition (n, j) ∈ Ω implies that pj can assume at most ε0n+ 1 different values.
On a one-dimensional sphere of radius R there are less than R integer points, so the number of
values j can assume is bounded proportionally to n(ε0n + 1).

Since μ ∈ M we have for |n| � n0(γ
2
0 /ε0)

1/2τ0 , with some constant n0,

∣∣δn,j

(
δn,j + p−s

j an,j

)+ p−2s
j bn,j

∣∣� (∣∣(D + μ)n − pj − μ
∣∣− 2ε0|n|)2 − const. ε0 �

γ 2
0

2|n|2τ0
,

(7.17)

so that

∣∣δn,j

(
δn,j + p−s

j an,j

)+ p−2s
j bn,j

∣∣� γ

|n|τ , (7.18)

provided γ < γ 2
0 /2 and τ > 2τ0.

The measure of each In,j can be bounded from above by

2γ

|n|τ sup
ε∈E0(γ )

∣∣∣∣
(

d

dε

(
δ2
n,j + p−s

j an,j δn,j + p−2s
j bn,j

))−1∣∣∣∣. (7.19)

In order to control the derivative we restrict ε to the Cantor set

E2 =
{
ε ∈ E0(γ ):

∣∣δn,j

(
2n + p−s

j a′
n,j (ε)

)+ np−s
j an,j + p−2s

j b′
n,j (ε)

∣∣� γ

|n|τ2

for all (n, j) ∈ Ω

}
, (7.20)

with a′
n,j (ε) = dan,j (ε)/dε and b′

n,j (ε) = dbn,j (ε)/dε. On this set we have (recall that pj is
bounded proportionally to |n|)

∑
(n,j)∈Ω

meas(In,j ) � const.
∑

n�n0(γ /ε0)
1/2τ0

n + ε0n
2

|n|τ−τ2
� const. ε(τ−τ2−2)/2τ0

0 , (7.21)

provided τ > τ2 + 3. Hence meas(In,j ) is small with respect to ε0 provided τ > 2τ0 + τ2 + 2.
Finally let us study the measure of E2. The bounds (6.2) – and their proofs to deal with the

second derivatives – imply

|an,j |, |bn,j | � Cε0, |a′
n,j |, |b′

n,j | � C
(
1 + ε0|n|1+s2

)
,∣∣a′′

n,j

∣∣, ∣∣b′′
n,j

∣∣� C
(
1 + ε0|n|2+2s2

)
, (7.22)

for some constant C.
Let us call I1

n,j the complement of E2 with respect to E0(γ ) at fixed (n, j) ∈ Ω . As in
estimating the set In,j in (7.16) we can restrict the analysis to the values of n such that
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n > n1(γ0/ε0)
1/2τ0 , possibly with a constant n1 different from n0. Then we need a lower bound

on the derivative, which gives

∣∣|n|(2n + a′
n,jp

−s
j

)+ δn,j a
′′
n,jp

−s
j + b′′

n,jp
−2s
j

∣∣� n2

2
(7.23)

(recall that δn,j < 1/2). Hence we get

∑
(n,j)∈Ω

meas
(
I1

n,j

)
� const.

∑
n�n1(γ /ε0)

1/2τ0

(n + ε0n
2)

|n|τ2−2
� const. ε(τ2−4)/2τ0

0 , (7.24)

provided τ2 > 5. Again the measure is small with respect to ε0 provided τ2 > 2τ0 + 4. For τ0 > 1
this gives τ2 > 6 and therefore τ > 2τ0 + τ2 + 2 > 10.

Remark. The argument given above applies only when D = 2, because only in such a case the
matrices Mn,j are of finite n-independent size (cf. Lemma 2.2). A generalisation to the case
D > 2 should require some further work.

8. Proofs of Theorems 2–4

Let us now consider (1.9) with μ = 0, under the conditions (1.3) if D = 2 and both (1.3) and
(1.4) if D � 3. Note that for μ = 0 one has ω = D − ε.

The Q subspace is infinite-dimensional, namely (1.13) is replaced by

Q := {(n,m) ∈ N × Z
D: Dn = |m|2}, (8.1)

so that Q contains as many elements as the set of m ∈ ZD such that |m|2/D ∈ N.
As in [21] our strategy will be as follows: first, we shall find a finite-dimensional solution of

the bifurcation equation, hence we shall prove that it is nondegenerate in Q and eventually we
shall solve both the P and Q equations iteratively.

A further difficulty comes from the separation of the resonant sites. Indeed conditions (2.1)
and (2.2) are fulfilled now only for those (n,p) such that Dn �= p. This implies that Lemma 2.1
does not hold: given p

s0
i |ωni − pi | � γ /2 for i = 1,2 it is possible that D(n1 − n2) = p1 − p2

and in such a case we have at most |p1 − p2| � γ /εp
s0
2 , which in general provides no separation

at all. Hence we cannot use anymore the second Melnikov conditions.
We then replace Lemma 2.2 a by more general result (cf. Lemma 8.4 below), due to Bourgain;

consequently we deal with a more complicated renormalised P equations.

8.1. The Q equations

In [21] we considered the one-dimensional case and used the integrable cubic term in order
to prove the existence of finite-dimensional subsets of Q such that there exists a solution of the
bifurcation equation with support on those sets.
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In order to extend this result to D � 2 we start by considering (1.9) projected on the Q

subspace. We set un,m = qm if (n,m) ∈ Q, so that the Q equations become

|m|2(1+s)D−1qm =
∑

m1+m2−m3=m

n1+n2−n3=|m|2/D

un1,m1un2,m2un3,m3 .

Setting qm = am +Qm, with Qm = O(η), the leading order provides a relatively simple equation,
as shown by Bourgain in [9]:

|m|2(1+s)D−1am =
∑

m1,m2,m3
m1+m2−m3=m

〈m1−m3,m2−m3〉=0

am1am2am3, (8.2)

which will be called the bifurcation equation. One can easily find finite-dimensional sets M such
that

(i) if m ∈ M then Si(m) ∈ M ∀i = 1, . . . ,D (Si is defined in (1.12)),
(ii) if m1,m2,m3 ∈ M and 〈m1 − m3,m2 − m3〉 = 0, then m1 + m2 − m3 ∈ M.

Remarks. (1) Condition (i) implies that M is completed described by its intersection M+
with Z

D+ .
(2) Clearly (8.2) admits a solution with support on sets respecting (i) and (ii) above. An ex-

ample is as follows. For all r the set M+(r) := {m ∈ Z
D+ : |m| = r} is a finite-dimensional set on

which (8.2) is closed.
(3) We look for a solution of (8.2) which satisfies the Dirichlet boundary conditions. Hence

we study (8.2) as an equation for am with m ∈ M+.
(4) Note that the bifurcation equation (8.2) is only apparently equal to that considered by

Bourgain, because of the Dirichlet boundary conditions. The latter introduce a lot of symmetries
– and hence of degeneracies – which make the analysis much more complicated: in particular
checking the invertibility of the forthcoming matrix J requires a lot of work.

Finding nontrivial solutions of (1.9) by starting from solutions of the bifurcation equation like
those of the example may however be complicated, so we shall prove the existence of solutions
under the following, more restrictive, conditions.

Lemma 8.1. There exist finite sets M+ ⊂ Z
D+ such that |m|2 is divided by D for all m ∈ M+

and (8.2) is equivalent to

{ |m|2(1+s)D−1 − 2D+1A2 − (3D − 2D+1
)
a2
m = 0, am ∈ M+,

am = 0, am ∈ Z
D+ \ M+,

(8.3)

with A2 :=∑m∈M+ a2
m.

Proof. The idea is to choose the m ∈ M+ so that |m|2 ∈ DN, (8.3) is equivalent to (8.2) and has
a nontrivial solution. We choose M+ so that the following conditions are fulfilled:
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(a) setting N := |M+| and minm∈M+ |m| = |m1| (this only implies a reordering of the elements
of M+), we impose

2D+1
∑

m∈M+\{m1}
|m|2+2s �

(
3D + 2D+1(N − 2)

)|m1|2+2s; (8.4)

(b) the identity 〈m1 − m3,m2 − m3〉 = 0 can be verified only if either m1 − m3 = 0 or
m2 −m3 = 0 or |(m1)i | = |(m2)i | = |(m3)i | for all i = 1, . . . ,D ((mj )i is the ith component
of the vector mj ).

An easy calculation shows that under conditions (b) Eq. (8.2) assumes the form

am

(|m|2(1+s)D−1 − 2D+1A2 − (3D − 2D+1)a2
m

)= 0, (8.5)

and hence is equivalent to (8.3). Now, in order to find a nontrivial solution to (8.5) we must
impose

|m1|2+2s = min
m∈M+

|m|2+2s � 2D+1A2D, (8.6)

with A determined by

D
(
2D+1(N − 1) + 3D

)
A2 = M, N = |M+|, M :=

∑
m∈M+

|m|2+2s . (8.7)

As in the one-dimensional case [21], if we fix N then (8.6) is equivalent to condition (a), i.e.
(8.4), which is an upper bound on the moduli of the remaining mi ∈ M+ \ {m1}. Then there exist
sets of the type described above at least for N = 1.

To complete the proof (for all N ∈ N) we have still to show that sets M+ verifying the
conditions (a) and (b) exist. The existence of sets with N = 1 is trivial, an iterative method of
construction for any N is then provided in Appendix A.3. �
Remark. The compatibility condition (8.4) requires for the harmonics of the periodic solution to
be large enough, and not too spaced from each other. Therefore, once we have proved that the so-
lutions of the bifurcation equation can be continued for ε �= 0, we can interpret the corresponding
periodic solutions as perturbed wave packets. The same result was found in D = 1 in [21].

We have proved that the bifurcation equation admits a nontrivial solution

q(0)(x, t) =
∑

m∈M+
q(0)
m ei

|m|2
D

t (2i)D
D∏

i=1

sin(mixi), (8.8)

with q
(0)
m = am for m ∈ Z

D+ and extended to all Z
D by imposing the Dirichlet boundary condi-

tions.
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We can set qm = q
(0)
m +Qm for all m ∈ Z

D and split the Q equations in a bifurcation equation
(8.3) and a recursive linear equation for Qm:

|m|2+2sD−1Qm − 2
∑

m1,m2,m3
m1+m2−m3=m

〈m1−m3,m2−m3〉=0

Qm1q
(0)
m2

q(0)
m3

−
∑

m1,m2,m3
m1+m2−m3=m

〈m1−m3,m2−m3〉=0

q(0)
m1

q(0)
m2

Qm3

=
∑∗

m1+m2−m3=m

n1+n2−n3=|m|2/D

un1,m1un2,m2un3,m3, (8.9)

where for all (n,m) ∈ Q one has un,m ≡ qm and ∗ in the last sum means that the sum is restricted
to the triples (ni,mi) such that if at least two of uni ,mi

are q
(0)
mi

then the label (n,m) of the third
one must not belong to Q.

By using once more the Dirichlet boundary conditions, we can see (8.9) as an equation for
the coefficients Qm with m ∈ ZD+ . In particular the left-hand side yields an infinite-dimensional
matrix J acting on Z

D+ . We need to invert this matrix.

Lemma 8.2. For all D and for all choices of M+ as in Lemma 8.1, one has that J is a block-
diagonal matrix, with finite-dimensional blocks, whose sizes are bounded from above by some
constant M1 depending only on D and M+.

The result above is trivial for D = 2 and requires some work for D > 2, see Appendix A.4. In
any case it is not enough to ensure that the matrix J is invertible.

Lemma 8.3. For N = 1 and any D � 2 and for N > 4 and D = 2 there exist sets M+ such that
the matrix J is invertible outside a discrete set of values of s.

Proof. We can write J = diag{|m|2+2s/D − 2D+1A2} + Y , where A is defined in (8.7) and with
|Y |∞ bounded by a constant depending only on D and M+. Therefore for M0 large enough we
can write J as

J =
(

J1,1 0
0 J2,2

)
,

where J1,1 is an M0 × M0 matrix, and J2,2 is – by the definition of M0 – invertible.
To ensure the invertibility of J1,1 we notice that detJ1,1 = 0 is an analytic equation for the

parameter s, and therefore is either identically satisfied or has only a denumerable set of solutions
with no accumulation points. For all s outside such denumerable set J is invertible.

For N = 1 and M+ = {V ≡ (1, . . . ,1)} the Dirichlet boundary conditions imply that we only
need to consider those m ∈ Z

D+ with strictly positive components. For all such m either m = V

or |m|2 > D. This implies that J1,1 has two diagonal blocks: a 1 × 1 block involving M+ and
a block involving m such that |m|2 > D. The first block is trivially found to be nonzero. In the
second block the off-diagonal entries all depend linearly on D2s , and for all m the diagonal entry
with index m is |m|2(1+s)/D plus a term depending linearly on D2s : therefore in the limit s → ∞
this block is invertible. Hence detJ1,1 = 0 is not an identity in s.

If N > 1 we restrict our attention to the case D = 2, where we can describe the matrix J1,1
with sufficient precision. We have the following sub-lemma.
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Sub-lemma. For D = 2 and N > 4 consider M+ as a point in C
2N .

(i) The set of points M+ which either do not respect Lemma 8.1 or are such that detJ1,1 = 0
identically in s is contained in a proper algebraic variety W .

(ii) Provided that |m1| is large enough one can always find integer points which do not belong
to W and respect (8.4) for all s in some open interval.

The proof is in Appendix A.5. Then the assertion for D = 2 and N > 4 follows immedi-
ately. �
Remark. On the basis of Lemma 8.2 one expects that invertibility of J holds in more general
cases. However, proving that for a given M+ the function detJ1,1 is not identically zero can
quite lengthly.

The two cases envisaged in Lemma 8.3, where invertibility of J can be explicitly proved, lead
to Theorems 2 and 3.

Theorem 4 covers applies to the general case in which J1,1 is known a priori to be invertible.
Of course, given a set M+ verifying the conditions of Lemma 8.1 one can check, through a finite
number of operations, whether J1,1 is invertible, and, if it is, then the analysis below ensures
the existence of periodic solutions. Indeed, the forthcoming analysis of the P equations applies
without any further assumption in all cases in which J1,1 is invertible because of Lemma 8.2.

8.2. Renormalised P equations

The following lemma (Bourgain lemma) will play a fundamental role in the forthcoming
discussion. A proof is provided in Appendix A.6.

Lemma 8.4. For all sufficiently small α we can partition Z
D =⋃j∈N

�j so that, setting

pj = min
m∈�j

|m|2, Φ(m) = (m, |m|2), (8.10)

there exist j -independent constants C1 and C2 such that

|�j | � C1p
α
j , dist

(
Φ(�i),Φ(�j )

)
� C2 min

{
p

β
i ,p

β
j

}
, diam(�j ) < C1C2p

α+β
j ,

(8.11)

with β = α/(1 + 2D−1D!(D + 1)!)D.

Remarks. (1) For fixed ε, ωn − |m|2 can be small only if n is the integer nearest to |m|2/ω.
(2) For any (m1, n1) and (n2,m2) such that m1 ∈ �j , m2 ∈ �j ′ for j ′ �= j , and ni is the

integer nearest to |mi |2/ω, i = 1,2, one has

|m1 − m2| + |n1 − n2| � C3 min
{
p

β
j ,p

β

j ′
}
, (8.12)

for some constant C3 independent of ω.
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(3) As in Lemma 2.2 also here one could prove that in fact diam(�j ) < const. pα/D
j ; see

Appendix A.6 for details.

Definition 8.5. We call Cj the sets of (n,m) ∈ Z×Z
D such that m ∈ �j , Dn �= |m|2 and −1/2+

(D − ε0)n � |m|2 � Dn + 1/2. We set δn,m = −ωn + |m|2 and dj = |Cj |, and define the dj -
dimensional vectors and the dj × dj matrices

Uj = {un,m}(n,m)∈Cj
, Dj = diag

{( |m|2
pj

)s

δn,m

}
(n,m)∈Cj

,

χ̂1,j = diag
{√

χ̄1(δn,m)
}
(n,m)∈Cj

(8.13)

parameterised by j ∈ N.

Remark. Notice that for each pair (n,m), (n′,m′) ∈ Cj we have |(n,m) − (n′,m′)| �
C(ε0pj/D + p2α

j ) for a suitable constant C.

We define the renormalised P equations

⎧⎪⎨
⎪⎩

un,m = η
fn,m

|m|2sδn,m

, (n,m) /∈ C :=
⋃
j∈N

Cj , Dn �= |m|2,

ps
j

(
Dj + p−s

j M̂j

)
Uj = ηFj + LjUj , j ∈ N,

(8.14)

where M̂j = χ̂1,jMj χ̂1,j , and the parameter η and the counterterms Lj will have to satisfy
eventually the identities

η = ε, M̂j = Lj , (8.15)

for all j ∈ N.

Remark. We note that dj can be as large as O(ε0p
1+α
j ), hence can be large with respect to pj .

However for given ε the matrix Aj = Dj + p−s
j M̂j is diagonal apart from a C1p

α
j × C1p

α
j

(ε-depending) block. This implies that the matrix Aj has at most pα
j eigenvalues which are

different from |m|2sδn,m. This can be proved as follows. Consider the entry Aj(a, b), with
a, b ∈ Cj , with a = (n1,m1) and b = (n2,m2). The nondiagonal part can be nonzero only if√

χ̄1(δn1,m1)χ̄1(δn2,m2)M(a, b) �= 0, which requires |δni ,mi
| � γ /4 for i = 1,2. Therefore for

fixed ε, m1 and m2 one has only one possible value for each ni , i.e. the integer closest to
ω−1|mi |2. This proves the assertion because |�j | � C1p

α
j and for all (n,m) ∈ Cj one has

m ∈ �j .

Definition 2.3 and Lemma 2.4 still hold, with Z
dD replaced with Z

d(D+1) in the definitions of
A(m). Definitions 2.5(i)–(ii) can be maintained with (n, j) replaced by j , while (iii) becomes

xj = ∥∥χ̂1,j

(
Dj + p−sM̂j

)−1
χ̂1,j

∥∥−1
, (8.16)
j
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where the norm ‖ · ‖ is defined according to Definition 2.3, with d replaced with C1p
α
j , which is

a bound on the size of the nonsingular block of the matrix χ̂1,j (Dj + p−s
j M̂j )

−1χ̂1,j .
Finally there is no parameter s2. Equivalently we can set s2 = 0, which leads to identify yn,m

with δn,m (cf. (2.8)): this explains why there is no need to introduce the further parameters yn,m.
The main Propositions 1 and 2 in Section 2.4 still hold with the following changes.

1. (n, j) ∈ Z × N (or Ω) has to be always replaced either with j ∈ N or with (n,m) /∈ C , for
Dn �= |m|2 – the set C is defined in (8.14).

2. In Proposition 1, q (i.e. the solution of the Q equations) is not a parameter any more: it
is substituted with the solution, say q(0), of the bifurcation equation (8.2), whose Fourier
coefficients can be incorporated in the list of positive constants given at the beginning of the
statement.

3. In Proposition 1(i) the bound (2.20) becomes

∣∣un,m(η,M,ε)
∣∣� K0|η|e−σ(|n|1/4+|m|1/4), (8.17)

for some constant K0, namely we have only sub-analyticity in space and time.
4. In Proposition 1(v) one must replace s2 with s in the first line of (2.23) and in (2.26), and

e−σ |ma−mb|ρ with e−σ |(na,ma)−(nb,mb)|ρ in the second line of (2.23), for a suitable constant ρ.

8.3. Multiscale analysis

The multiscale analysis follows in essence the same ideas as in the previous sections, but there
are a few changes, that we discuss here. It turns out to be more convenient to replace the functions
χh(x) with new functions χ̃h(x) = χh(32x), in order to have χ̃−1(xj ) = 1 when χ̄1(δn,m) �= 1 for
all (n,m) ∈ Cj . This only provides an extra factor 32 in the estimates. For notational simplicity
in the following we shall drop the tilde.

Let us call Aj = Dj + p−s
j M̂j . Note that

1 = χ̄1(δn,m) + χ̄0(δn,m) + χ̄−1(δn,m) ∀(n,m) ∈ Cj . (8.18)

Introduce a block multi-index �b, defined as a dj -dimensional vector with components b(a) ∈
{1,0,−1}, and set

χ̄
j,�b =

dj∏
a=1

χ̄b(a)(δn(a),m(a)). (8.19)

For any �b we can consider the permutation π�b which reorders (b(1), . . . ,b(dj )) into (bπ�b(1), . . . ,

bπ�b(dj )) in such a way that the first N1 elements are 1, the following N2 elements are 0, and
the last N3 = dj − N , with N = N1 + N2, elements are −1. The permutation π�b induces a

permutation matrix P�b such that P�bAjP
−1
�b can be written in the block form

P�bAjP
−1
�b =

⎛
⎝A1,1 A1,2 A1,3

AT
1,2 A2,2 A2,3

T T

⎞
⎠ , (8.20)
A1,3 A2,3 A3,3
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where the block A1,1, A2,2 and A3,3 contain all the entries Aj(a, b) with b(a) = b(b) = 1, with
b(a) = b(b) = 0 and b(a) = b(b) = −1, respectively, while the nondiagonal blocks are defined
consequently.

Then for all �b such that χ̄
j,�b �= 0 we can write

Aj = P�b

⎛
⎝A1,1 A1,2 0

AT
1,2 A2,2 0

0 0 A3,3

⎞
⎠P −1

�b , (8.21)

where we have used that if χ̄
j,�b �= 0 then the blocks A1,3 and A2,3 are zero. Furthermore, for

the same reason, the block A3,3 is a diagonal matrix. Note that N � C1p
α
j by the Remark after

(8.15).
The first N × N block of Aj in general is not block-diagonal, but it can be transformed into a

block-diagonal matrix. Indeed, we have

Aj = S
j,�bÃ

j,�bST

j,�b, Ã
j,�b =

(
Ã1,1 0 0

0 A2,2 0
0 0 A3,3

)
, S

j,�b = P�b

(
I B 0
0 I 0
0 0 I

)
, (8.22)

where

Ã1,1 = A1,1 − A1,2A
−1
2,2A

T
1,2, B = A1,2A

−1
2,2, (8.23)

while I and 0 are the identity and the null matrix (in the correct spaces). Of course also the
matrices Ai,j depend on �b even if we are not making explicit such a dependence.

The invertibility of A2,2 is ensured by the condition b(a) = 0 for the indices a = N1 +
1, . . . ,N . The inverse A−1

2,2 can by bounded proportionally to 1/γ in the operator norm. Then

also Aj can be inverted provided Ã1,1 is invertible, i.e. provided det Ã1,1 �= 0. Hence in the fol-
lowing we shall assume that this is the case (and we shall check that this holds true whenever it
appears; see in particular (8.29) below).

Hence for all �b such that χ̄
j,�b �= 0 we can write

A−1
j = S−T

j,�b Ã−1
j,�bS−1

j,�b, (8.24)

and set

G
j,�b,1 = p−s

j S−T

j,�b

(
Ã−1

1,1 0 0
0 0 0
0 0 0

)
S−1

j,�b,

G
j,�b,0 = p−s

j S−T

j,�b

(0 0 0
0 A−1

2,2 0
0 0 0

)
S−1

j,�b, G
j,�b,−1 = p−s

j S−T

j,�b

(0 0 0
0 0 0
0 0 A−1

3,3

)
S−1

j,�b, (8.25)

so that (8.24) gives

p−sA−1 = G � + G � + G � , (8.26)
j j j,b,−1 j,b,0 j,b,1
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for all �b such that χ̄
j,�b �= 0. We can define G

j,�b,i
also for �b such that χ̄

j,�b = 0, simply by setting

G
j,�b,i

= 0 for such �b. Then we define the propagators

G
j,�b,i,h

=
⎧⎨
⎩

χ̄
j,�bχh(xj )Gj,�b,1, if i = 1 and χh(xj ) �= 0,

χ̄
j,�bG

j,�b,i
, if i = 0,−1 and h = −1,

0, otherwise,

(8.27)

so that we obtain

p−s
j A−1

j = p−s
j

∑
�b

χ̄
j,�bA−1

j =
∑

�b
χ̄

j,�b

[
(G

j,�b,−1 + G
j,�b,0) +

∞∑
h=−1

χh(xj )Gj,�b,1

]

=
∑

�b

∑
i=−1,0,1

∞∑
h=−1

G
j,�b,i,h

, (8.28)

which provides the multiscale decomposition.

Remark. Only the propagator G
j,�b,1,h

can produce small divisors, because the diagonal prop-
agator G

j,�b,−1,−1 and the nondiagonal propagator G
j,�b,0,−1 have denominators which are not

really small. We can bound |G
j,�b,i,−1|σ for i = −1,0 by using a Neumann expansion, since by

definition in the corresponding blocks one has |δn,m| � γ /8 and |Mj |σ � Cε0.

Hence we can bound the propagators as

|G
j,�b,i,−1|σ � Cγ −1p−s

j , i = 0,−1, |G
j,�b,1,h

|∞ � 2hCγ −1p−s+α
j , (8.29)

for all j ∈ N.
Recall that we are assuming |J−1|σ � C for some s-dependent constant C.
We write the counterterms as

Lj =
∞∑

h=−1

χh(xj )
∑

�b
χ̄

j,�bL
j,�b,h

, (8.30)

where by definition L
j,�b,h

(a, b) = 0 if either b(a) = −1 or b(b) = −1.
With this modifications to (3.9) the multiscale expansion follows as in Section 3.1, with j =

(n,m):

U
(k)
j =

∑
i=−1,0,1

∑
�

∞∑
h=−1

U
(k)

j,�b,i,h
, (8.31)
b
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with

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

u(k)
n,m = f

(k)
n,m

|m|2sδn,m

, (n,m) /∈
⋃
j∈N

Cj , Dn �= |m|2,

U
(k)

j,�b,i,h
= G

j,�b,i,h
F

(k)
j + δ(i,1)G

j,�b,1,h

( ∞∑
h1=−1

∑
�b1 �=�0

∑
i1=0,1,−1

k−1∑
r=1

L
(r)

j,�b,h
U

(k−r)

j,�b1,i1,h1

)
, j ∈ N,

u(k)
n,m = q(k)

m = J−1
∑

k1+k2+k3=k

∑∗

m1+m2−m3=m

n1+n2−n3=|m|2/D

u(k1)
n1,m1

u(k2)
n2,m2

u(k3)
n3,m3

, Dn = |m|2,

(8.32)

where ∗ has the same meaning as in (8.9) and δ(i, j) as usual is Kronecker’s delta.

8.4. Tree expansion

We only give the differences with respect to Section 3.2.

(1) As in Section 3.2.
(2) One has (nv,mv) ∈ Q and the node factor is ηv = q

(0)
mv

.
(3) We add a further label r,p, q to the lines to evidence which term of (8.32) we are consider-

ing. We also associate with each line � a label j� ∈ Z+, with the constraints j� ∈ N if � is a
p-line and j� = 0 otherwise.

(4) The momenta are: (n�,m�), (n
′
�,m

′
�) ∈ Cj�

for a p-line, (n�,m�), (n
′
�,m

′
�) ∈ Q, with

|m� − m′
�| � M1, for a q-line, and finally (n�,m�) = (n′

�,m
′
�) /∈⋃j∈N

Cj ∪ Q for an r-
line. For a p-line the momenta define the labels a�, b� ∈ {1, . . . , dj }, with dj�

= |Cj�
|, such

that (n�,m�) = Cj�
(a�) and (n′

�,m
′
�) = Cj�

(b�). For a q-line the momenta define a�, b� such
that (n�,m�) = Q(a�) and (n′

�,m
′
�) = Q(b�).

(5) Each p-line carries also a block label �b� with components b�(a) = −1,0,1, where
a = 1, . . . , dj�

.
(6) Both r-lines and q-lines � have i� = −1 and h� = −1.
(7) One must replace (n�, j�) with j�. Moreover if two lines � and �′ have j� = j�′ then |b�(a)−

b�′(a)| � 1 and if h� �= −1 then �b� �= �0 (by the definition of functions χh).
(8) One has n� = nv instead of n� = 1 for lines � coming out from end-points.
(9) One must replace (n�, j�) with j�.

(10) Eq. (3.16) becomes

n′
� = σ(�1)n�1 + σ(�2)n�2 + σ(�3)n�3 =

∑
�′∈L(v)

σ (�′)n�′ (8.33)

(that is n� is replaced with n′
�), while (3.17) does not change.

(11) The propagator G� of any line � is given by g� = G
j�,�b�,i�,h�

(a�, b�), as defined in (8.27), if

� is a p-line, while it is given by g� = J−1(a�, b�) if � is a q-line and by g� = 1/δn�,m�
|m�|2s

if � is an r-line.
(12) The node factor for sv = 1 is ηv = L

(kv)
(av, bv), where � is the line exiting v.
j�,�b�,h�
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The set Θ
(k)
j is defined as in Definition 3.4, with j instead of n,m, by taking into account also

the new rules listed above. This will lead to a tree representation (3.20) for (8.32), which can be
proved as for Lemma 3.6.

In Lemma 3.5 the estimate |n�| � Bk does not hold any more because there is no longer
conservation of the momenta n� (i.e. (3.18) has been replaced with (8.33)), and all the bounds on
the momenta should be modified into |n�|, |n′

�|, |m�|, |m′
�| � Bk1+4α for some constant B . This

can be proved by induction on the order of the tree. The bound is trivially true to first order. It
is also trivially true if either the root line has i = −1 or it is q-line or an r-line (one just needs
to choose B appropriately). Suppose now that the root line is a p-line with i �= −1: call v0 the
node which the root line exits. If sv0 = 3, call θ1, θ2, θ3 the sub-trees with root lines �1, �2, �3,
respectively, entering the node v0. We have |(n�i

,m�i
)| � k1+4α

i by the inductive hypothesis, and

by definition |(n′
�,m

′
�)| �

∑3
i=1 Bk1+4α

i � B(k − 1)1+4α . Then |(n�,m�)| � B(k − 1)1+4α +
C2(k − 1)2α(1+4α) � Bk1+4α . If sv = 1 the proof is easier.

8.5. Clusters and resonances

Definition 3.7 of cluster is unchanged, while Definition 3.8 of resonance becomes as follows.

Definition 8.6. We call 1-resonance on scale h � 0 a cluster T of scale h(T ) = h with only one
entering line �T and one exiting line �1

T of scale h
(e)
T > h + 1 with |V (T )| > 1 and such that

(i) one has

(a) j�1
T

= j�T
, (b) pj�T

� 2(h−2)/τ , (8.34)

(ii) for all � ∈ L(T ) not on the path P (�T , �1
T ) one has j� �= j�T

.

We call 2-resonance a set of lines and nodes which can be obtained from a 1-resonance by setting
i�T

= 0,−1. Resonances are defined as the sets which are either 1-resonances or 2-resonances.
Differently from 3.8 we do not include among the resonant lines the lines exiting a 2-resonance.

Definition 3.9 is unchanged provided that we replace (n, j) with j , we require pj � 2(h−2)/τ ,
we associate with the node e the labels (ne,me) ∈ Cj and with �0 the labels (n�0,m�0) ∈ Cj .

Since we do not have the conservation of the momentum n, Lemma 3.10 does not hold in the
same form: the bounds have to be weakened into |n�|, |m�|, |n′

�|, |m′
�| � Bk1+4α for the lines �

not along the P (�e, �0), and |n�|, |m�|, |n′
�|, |m′

�| � B(|n| + k)1+4α for the lines along the path.

8.6. Choice of the counterterms

The choice of the counterterm (8.30) is not unique and therefore is rather delicate.
Resonances produce contributions that make the power series to diverge. We want to eliminate

such divergences with a careful choice of the counterterms.
The sets Θ

(k)
R,j and R(k)

R,h,j are defined slightly differently with respect to Definition 3.11.

Definition 8.7. We denote by Θ
(k)
R,j the set of renormalised trees defined as the trees in Θ

(k)
j with

the following differences:
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(i) The trees do not contain any 1-resonance T with �b�1
T

= �b�T
.

(ii) If a node v has sv = 1 then �b� �= �b�′ , where � and �′ are the lines exiting and entering,
respectively, the node v. The factor ηv = L

(kv)

j�,�b�,h�
associated with v will be defined in

(8.39).
(iii) The propagators of any line � entering any 1-resonance T (recall that by (i) one has �b�1

T
�=

�b�T
, where �T = �), is

g� = χh�
(xj�

)χ̄
j�,�b�

(
G

j�,�b�1
T

,0(a�, b�) + G
j�,�b�1

T
,−1(a�, b�)

− G
j�,�b�,0

(a�, b�) − G
j�,�b�,−1(a�, b�)

)
, (8.35)

and the same holds for the propagator of any line � with i� = 1 entering a node v with
sv = 1.

In the same way we define R(k)
R,h,j . We call R(k)

R,h,j (a, b) the set of trees θ ∈ R(k)
R,h,j such that

the entering line has me = Cj (a) while the root line has m′
�0

= Cj (b). Finally we define the sets

Θ
(k)
R and R(k)

R as the sets of trees belonging to Θ
(k)
R,j for some j and, respectively, to R(k)

R,h,j for
some h, j .

By proceeding as in Section 3.5 we introduce the following matrices:

T (k)
j,h (a, b) =

∑
h1<h−1

∑
θ∈R(k)

R,j,h1
(a,b)

Val(θ). (8.36)

We use a different symbol for such matrices, as we shall see that the counterterms will not be
identified with the matrices in (8.35), even if they will be related to them. We shall see that, by
the analog of Lemma 3.14, the matrices T (k)

j,h are symmetric.
To define the counterterms Lj we note that, in order to cancel at least the 1-resonances, we

need the following condition:

G
j,�b,1,h

(
L

(k)

j,�b,h
+ T (k)

j,h

)
G

j,�b,1 = 0. (8.37)

Moreover in order to solve the compatibility condition we need a solution L
j,�b,h

(a, b) which is

proportional to χ̄1(δn(a),m(a))χ̄1(δn(b),m(b)), and clearly the solution L
(k)

j,�b,h
+ T (k)

j,h = 0 does not

comply with this requirement. However, since G
j,�b,1,h

is not invertible, (8.37) does not imply

L
(k)

j,�b,h
= −T (k)

j,h ; indeed there exists a solution such that L
j,�b,h

(a, b) �= 0 only if b(a) = b(b) = 1.

This solution does not cancel the resonances T with �b�1
T

�= �b�T
, and does not even touch the 2-

resonances. Nevertheless, if (8.37) holds, we shall see that we are left only with 2-resonances
and partially cancelled 1-resonances, which admit better bounds (see (8.17)).

By definition L
(k)

j,�b,h
(a, b) = 0 if either b(a) or b(b) is equal to −1. Then (8.37) reduces to the

following equation for the matrix X = L
(k) + T (k)

j,h :

j,�b,h
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(
I

0
0

)T

S−1
j,�bXS−T

j,�b

(
I

0
0

)
= 0 �⇒ X1,1 − (BXT

1,2 + X1,2B
T
)+ BX2,2B

T = 0, (8.38)

where we define

P −1
�b XP�b =

⎛
⎝X1,1 X1,2 X1,3

XT
1,2 X2,2 X2,3

XT
1,3 XT

2,3 X3,3

⎞
⎠ .

In (8.38) there are two matrices which act as free parameters. A (nonunique) solution is

P −1
�b L

(k)

j,�b,h
P�b =

⎛
⎝L

(k)
1,1 0 0
0 0 0
0 0 0

⎞
⎠=

(
I −B 0
0 0 0
0 0 0

)
P −1 Tj,hP

(
I 0 0

−B 0 0
0 0 0

)
. (8.39)

In this definition, L
(k)

j,�b,h
(a, b) �= 0 only if b(a) = b(b) = 1, so that L

(k)

j,�b,h
has the correct fac-

tors χ̄1, that is L
(k)

j,�b,h
= χ̂1,j L̂

(k)

j,�b,h
χ̂1,j for a suitable L̂

(k)

j,�b,h
(a, b). Moreover the 1-resonances

with �b�1
T

= �b�T
are cancelled, while the 2-resonances with �b�1

T
= �b�T

are untouched since

L
j,�b,h

(G
j,�b,0,−1 + G

j,�b,−1,−1) = 0.

Let us now consider a 1-resonance T with �b�1
T

�= �b�T
. We can write (by setting �b = �b�1

T
)

G
j,�b,1,h

(
L

(k)

j,�b,h
+ T (k)

j,h

)
G

j,�b1,1,h1

= G
j,�b,1,h

(
L

(k)

j,�b,h
+ T (k)

j,h

)
χh1(xj )χ̄j,�b1

(
p−s

j A−1
j − G

j,�b1,0
− G

j,�b1,−1

)
= G

j,�b,1,h

(
L

(k)

j,�b,h
+ T (k)

j,h

)
χh1(xj )χ̄j,�b1

(G
j,�b,0 + G

j,�b,−1 − G
j,�b1,0

− G
j,�b1,−1), (8.40)

which does not vanish since �b�1
T

�= �b�T
. In that case we say that the 1-resonance is regularised.

Then Lemma 3.13 holds true, with L
(k)
n,j,h substituted with T

(k)
j,h , provided that in the definition

of renormalised trees (cf. Definition 3.11) we add the condition that all 1-resonances T with
�b�1

T
�= �b�T

and all the nodes with sv = 1 and iv = 1 are regularised.
Also Lemma 3.14 is still true, as the property for the matrix to be symmetric depends only the

nonlinearity.

8.7. Bryuno lemma in Θ
(k)
R

The set S(θ, γ ) is defined by (4.1), provided we substitute (n, j) with j and γ with γ /32.
(4.2) is replaced by

⎧⎨
⎩

|δn(a),m(a)| � 2−2γ, b�(a) = 1,

2−3γ � |δn(a),m(a)| � 2−1γ, b�(a) = 0,

2−2γ � |δn(a),m(a)|, b�(a) = −1,

(8.41)

for all j� � 1 and a = 1, . . . , dj .

�
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For the definition of the set D(θ, γ ) we require only the condition (4.3), which becomes

|xj�
| � γ

pτ
j�

. (8.42)

We define Nh(θ) as the set of lines � with i� = 1 and scale h� � h, which do not enter any res-
onance. Then, with this new definition of Nh(θ), one has Nh(θ) � max{0, ck(θ)2(2−h)β/2τ − 1}
(note in the exponent the extra factor 1/2 with respect to the bound (4.5)). The proof fol-
lows the same lines as the proof of Lemma 4.1 in Section 4.1, with the following minor
changes.

In order to have a line on scale h we need that Bk1+4α � Cpj�
� C2(h−1)/τ for some con-

stant C. We proceed as in the proof of Lemma 4.1, up to (4.8), where again n�i
should be

substituted with pj�i
with i = 0,1. Define Eh = c−12(−2+h)β/2τ .

1. If j�1 = j�0 then, since �1 by hypothesis does not enter a (regularised) resonance, there
exists a line �′ with i�′ ∈ {0,−1}, not along the path P (�̄, �0), such that j�′ = j�0 . By the
Remark after Definition 8.5, we know that |n�′ | � |n�0/2| > 2(h−2)/τ . In this case one has
(k(θ) − k(θ1))

1+4α > B−1|n�′ | � Eh.
2. If j�1 �= j�0 then we call �̄ ∈ P (�0, �1) the line with i �= −1 which is the closest to �0.

2.1. If pj�̄
� pj�0

/2 then (k(θ) − k(θ1))
1+4α � Cpj�0

.
2.2. If pj�̄

> pj�0
/2 then one reasons as in case 2.2 of Lemma 4.1, with the following differences.

2.2.1. If j�0 �= j�̄, then |(n�̄,m�̄) − (n�0,m�0)| � const. pβ
j�0

. For all the lines � along the path

P (�̄, �0) one has i� = −1, hence either n� = n′
� and m� = m′

� (if � is a p-line) or |m� −
m′

�| � M1 (if � is a q-line), so that |(n�̄,m�̄) − (n�0 ,m�0)| � 2B(k(θ) − k(θ1))
1+4α , with

the same meaning for the symbols as in Section 4.1, and the assertion follows once more
by using (4.8).

2.2.2. If j�0 = j�̄ then there are two further sub-cases.

2.2.2.1. If �̄ does not enter any resonance, we proceed as in item 1.
2.2.2.2. If �̄ enters a resonance, then we continue up to the next line �̃ on the same path with

i �= −1. If j
�̃

�= j�0 the proof is concluded as in 2.2.1 since 2Bk1+4α � |(n�̄,m�̄) −
(n

�̃
,m

�̃
)| � C1p

β
j . Likewise – using item 2.2.2.1 – the proof is concluded if the line �̃

does not enter a resonance. If �̃ enters a resonance with j
�̃
= j�0 , we proceed until we

reach a line with i �= −1 which either has j �= j�0 or does not enter a resonance: this is
surely possible, because by definition �1 does not enter a resonance and j�1 �= j�0 . This
completes the proof of the lemma.

Lemma 4.2 holds with |n|, |m| � Bk1+4α and q = 1, and with p
−3s/4
j in all the lines of (4.9).

The proof is the same (recall that we can set s2 = 0); we only need to substitute pα
j (which

bounded the dimension of the nondiagonal block) with dj . In (iii) the labels (n′, j ′) should be
substituted by j ′.
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8.8. Bryuno lemma in R(k)
R

The definitions of S̃(θ, γ ) and D̃(θ, γ ) are changed exactly as S(θ, γ ) and D(θ, γ ), respec-
tively, in the previous Section 8.7.

Definition 8.8. We divide RR,h,j into two sets R1
R,h,j and R2

R,h,j : R1
R,h,j contains all the

trees such that either P (�0, �e) = ∅ or at least one line � ∈ P (�0, �e) has j� �= j , and R2
R,h,j =

RR,h,j \ R1
R,h,j . This naturally yields a decomposition R(k)

R,h,j = R(k,1)
R,h,j ∪ R(k,2)

R,h,j for all k ∈ N.

The two properties (i) and (ii) of Lemma 4.3 should be restated as follows.

(i) There exists a positive constant B2 such that if k � B2p
β/(1+4α)
j then R(k,1)

R,j,h contains only
trees with P (�0, �e) = ∅;

(ii) for all θ ∈ R(k,1)
R,h,j (a, b) we have B3|(n(a),m(a)) − (n(b),m(b))|ρ � k, with ρ a constant

depending on D, for a suitable positive constant B3.

The proof of (i) can be obtained by reasoning as in the cases 2.1 and 2.2.1 of Section 8.7,
while that of (ii) proceeds as in the proof of Lemma 4.3(ii).

For the trees in R(k,2)
R,h,j all the lines � along the path P (�0, �e) have j� = j , and we can bound

the product of the corresponding propagators as

( ∏
�∈P (�0,�e)

4Cγ −1p−s
j�

)
exp

(
−σ

∑
�∈P (�0,�e)

∣∣(n�,m�) − (n′
�,m

′
�

)∣∣ρ)

� Cke−σ |(n�0 ,m�0 )−(n�e ,m�e )|ρ , (8.43)

where the factor 4 is due to regularisation of the propagators with i� = 1 (see (8.35)), and we
have used (8.29) to bound |G

j,�b,i,−1|σ for i = 0,−1. Hence also |Val(θ)|σ is bounded by Ck .
Lemma 4.4 and properties (i) and (ii) of Lemma 4.6 are modified exactly as the correspond-

ing 4.1 and 4.2. In (4.17)(ii) |n| should be substituted by |pj |. Finally (4.17)(iii) should be
replaced with

∑
j ′∈N

dj ′∑
a′,b′=1

∣∣∂Mj ′ (a′,b′) Val(θ)
∣∣� Dk2−h

(
h∏

h′=−1

22h′Nh′ (θ)

)∏
�

p
3s/4
j�

, (8.44)

which can be proved as follows.

1. Let us first consider R1
R,j,h. We have no difficulty in bounding the sums and deriva-

tives applied on lines � /∈ P (�0, �e). By the analog of Lemma 4.3 discussed above, if
B2k � p

β/(1+4α)
j then P (�0, �e) = ∅ and we have no problem. Otherwise we have at most

(2pj + k)1+4α possible values of (n,m) and (n′,m′) which can be associated with a line
� along the path P (�0, �e) and by our assumption one has (2pj + k)1+4α � Ck for some
constant C.
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2. If all the lines � ∈ P (�0, �e) have j� = j then the sums with a′ �= b′ contain at most C2
1p2α

j

terms, whereas the sums with a′ = b′ contain at most k terms, since there are at most k lines
on P (�0, �e).

The rest of Section 4 is unchanged. In Section 5.1 we remove the second Melnikov condition
(the ∗∗ and ∗∗∗ products) in (5.3) and (5.5).

8.9. Measure estimates

By definition we have to evaluate the measure of the set

{
ε:
∥∥χ̂1,j

(
Dj + p−s

j M̂j

)−1
χ̂1,j

∥∥−1 � 2γ

pτ
j

∀j ∈ N

}
. (8.45)

By Lemma 2.4(iii) one has

xj � min
i=1,...,dj

∣∣λ(i)
(
Dj + p−s

j M̂j

)∣∣, (8.46)

since the matrices are symmetric and the minimum is attained for some i such that
χ̄1(δn(i),m(i)) �= 0.

The set (8.45) contains the set

E =
{
ε ∈ (0, ε0):

∣∣λ(i)
(
Dj + p−s

j M̂j

)∣∣� 2γ

pτ
j

∀i = 1, . . . , dj , ∀j ∈ N

}
. (8.47)

We estimate the measure of the subset of (0, ε0) complementary to E, i.e. the set defined as union
of the sets

Ij,i :=
{
ε ∈ (0, ε0):

∣∣λ(i)
(
Dj + p−s

j M̂j

)∣∣� 2γ

pτ
j

}
, (8.48)

for j ∈ N and i = 1, . . . , dj .

First we notice that if |pj | � C/ε
ξ
0 , for appropriate constants ξ and C, then, by Lidskii’s

Lemma [24],

∣∣λ(i)
(
Dj + p−s

j M̂j

)∣∣� ( |m(i)|2
pj

)s(−Dn(i) + ∣∣m(i)
∣∣2)− C

(
ε0pj + pα

j

)
p2α(ε0 + ε0pj ),

(8.49)

which implies that

λ(i)
(
Dj + p−s

j M̂j

)
� 1

2
,

as soon as ξ = 1/2 and C is suitably small. Therefore we have to discard the sets Ij,i only for

pj � C/ε
ξ .
0
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Let us now recall that for a symmetric matrix M(x) depending analytically on a parameter x,
the derivatives of the eigenvalues are: ∂xλ

(i)(x) = 〈vi, ∂xM(x)vi〉, where vi are the correspond-
ing eigenvectors [24].

Since Dj depends linearly – and therefore analytically – on ε we consider λi(x, ε) :=
λ(i)(Dj (x) + p−s

j M̂j ) with x, ε independent parameters.
Clearly |∂xλi(x, ε)| � pj , and, by Lidskii’s Lemma again,

∣∣∂ελi(x, ε)
∣∣� p−s

j

dj∑
i=1

∣∣λ(i)(∂εM̂j )
∣∣.

Now M̂j is a dj × dj matrix which for each fixed ε̄ has only a nonzero block of size pα
j ; the

properties of the functions χ̄j,1 imply that also ∂εM̂j has only a nonzero block of size pα
j . So

one has

∣∣∂ελi(x, ε)
∣∣� C

(
1 + ε0p

1−s+5α
j

)
,

for some constant C.
Then the measure of each Ij,i can be bounded from above by

4γ

pτ
j

sup
ε∈(0,ε0)

∣∣∣∣
(

d

dε
λ(i)
(

Dj (ε) + p−s
j M̂j (ε)

))−1∣∣∣∣� 8γ

pτ+1
j

. (8.50)

Therefore we have

∑
j∈N

dj∑
i=1

meas(Ij,i ) � const.
∑

p�C/ε
ξ
0

γpD+α

(
1

pτ+1

)
� const.

(
ε
ξ(τ−D−α)
0

)
, (8.51)

provided τ > D + α + 1/ξ , so that the measure of the complementary of E is small in (0, ε0) if
τ > D + α + 1/ξ .
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Appendix A

A.1. Preliminary measure estimate

We estimate the measure of the complement of E0(γ ), defined in (2.2), with respect to the set
(0, ε0), under the condition μ ∈ M. For all n,p ∈ N we consider the set

In,p =
{
ε ∈ (0, ε0): |ωn − p| � γ

τ1

}
. (A.1.1)
n
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The measure of such a set is bounded proportionally to |n|−(τ1+1). Moreover one has

∞∑
n,p=1

meas(In,p) � const.
∞∑

n=1

|n|−(τ1+1) + const. ε0

∞∑
n=1

|n|−τ1, (A.1.2)

because the number of values that p can assume is at most 1 + ε0n (simply note that |ωn − p| �
1/2 if p is not the integer closest to ωn and |ω − D − μ| � ε0).

Finally we note that, by (2.1), for n < (γ0/2ε0)
1/(τ0+1) one has

|ωn − p| � ∣∣(D + μ)n − p
∣∣− ε0|n| � γ |n|−τ0, (A.1.3)

provided γ � γ0/2. Hence the sum in (A.1.2) can be restricted to n � (γ0/2ε0)
1/(τ0+1), so that

∑
n,p

meas(In,p) � const. ετ1/(τ0+1)

0 + const. ε1+(τ1−1)/(τ0+1)

0 , (A.1.4)

which is infinitesimal in ε0 provided τ1 > τ0 + 1.

A.2. Proof of the separation Lemma 2.2

Let D ∈ N be fixed, D � 2. For all D > d � 1 and for all r > 1 let Sd(r) denote a d-sphere of
radius r , Sd

0 (r) a sphere Sd(r) centred at the origin and B(Sd(r)) the ball with boundary Sd(r).
A ball B(Sd(r)) determines uniquely a (d + 1)-dimensional subspace P d+1 in which it lies.
Consider now a sphere Sd−1(Γ ) contained in Sd(r): this determines a d-dimensional subspace
– say H – of P d+1. H divides P d+1 in two parts, and hence divides B(Sd(r)) in two as well.
We call these two parts spherical caps, we call B(Sd−1(Γ )) the base of the cap and Γ the radius
of the cap. Finally the maximum of the distance between a point in the cap and the base will be
called the height of the cap – and will be denoted by h.

Lemma A.2.1. Given any D > d � 1 there exist two constants C(D,d),C′(D,d) such that the
following holds. For all 0 < ε � 1 and for all d-spheres Sd

0 (r) there exist N = N(ε, r,D,d) sets
of integer points Λα (depending on the sphere and on ε, d and D), such that

Sd
0 (r) ∩ Z

D =
N⋃

α=1

Λα, |Λα| � C(D,d)max
{
rε, d + 2

}
,

dist(Λα,Λβ) � C′(D,d) rδ(ε,d), (A.2.1)

with δ(ε, d) := 2ε/d(d + 2)!.

The proof of this lemma follows easily from the following result.

Lemma A.2.2. There exist constants C and C′ such that the following holds. Let n1, . . . , nk ∈
Sd(r)∩Z

D . If for all i = 1, . . . , k −1 one has |ni −ni+1| < Crδ(ε,d) then k < C′ max{rε, d +2}.

Facts. We group here some simple facts on points on a sphere; see Fig. 8.
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Fig. 8. Simplex generated by three points n1, n2, n3 on the sphere S1(r). Γ is the base of the spherical cap in which
the three points are contained and h the height. If h is small then the volume (= area) of the cap is of order Γ 3/r , with
Γ = O(|n1 − n2| + |n1 − n3|).

A. For any sphere Sd(r) one has |Sd(r) ∩ Z
D| � C̄(D,d) rd , for some constant C̄(D,d).

B. j + 1 affinely independent points n1, . . . , nj+1 in Z
D generate a j -dimensional simplex,

which is their convex envelope, and determine uniquely a (j − 1)-dimensional sphere on
which the points lie. Setting vi = n1 − ni+1 for i = 1, . . . , j , the volume of the simplex
generated by n1, . . . , nj+1 is

1

j !
∣∣detNNT

∣∣ 1
2 , N =

(
v11 . . . v1D

. . . . . . . . .

vj1 . . . vjD

)
, (A.2.2)

and, since N has integer coefficients, the volume of the simplex is bounded from below by
1/j !.

C. The volume of a spherical cap of height h and radius Γ is O(Γ dh); some trivial trigonometry
tells us that if h is o(r) then Γ 2/h = O(r) and hence we can write Γ dh = O(Γ d+2/r).

D. Given two balls Sd(R) and Sd(r), Sd(R) determines two spherical caps on B(Sd(r)) with
basis B(Sd(r) ∩ Sd(R)): clearly the radius of the caps is smaller than R and r .

E. Consider j + 2 affinely independent points n1, . . . , nj+2 in Z
D which determine the sphere

Sj (rj ) for some rj . If for all i = 1, . . . , j + 1 one has |n1 − ni+1| � K = o(rj ) then all the
points n1, . . . , nj+2 are contained in a spherical cap which does not contain the center of
Sj (rj ) and of radius Γ � K . This implies that also h = o(rj ) and the volume of the cap
is bounded by c(j)Γ j+2/rj � 1/j ! for some constant c(j). Therefore one has the bound
rj � C(j)Kj+2 with C(j) = j !/c(j).

Proof of Lemma A.2.1. For k � d + 1 the assertion is trivially satisfied, hence we can assume
from now on k � d + 2. For i = 1, . . . , d , let ki be the largest index such that n1, . . . , nki

are
contained in an (i + 1)-dimensional affine subspace and therefore define an i-sphere – say Si(ri)

in Sd(r) for some ri � r . The proof is performed by induction.

Step 1. Call S1(r1) – with r1 � r – the 1-sphere determined by n1, n2 and n3 (which are
surely affinely independent); by hypothesis |n1 − ni | � 2Crδ(ε,d) for i = 2,3. Provided r1 �
r2δ(ε,d) then n1, n2, n3 respect the assumptions of Fact E with K = 2Crδ(ε,d), and we have
r1 < A(D,1)rα1δ , with δ = δ(ε, d), α1 = 3 and a suitably large constant A(D,1). If r1 � r2δ(ε,d)

then surely r1 � A(D,1)rα1δ . By Fact A we have at most C̄(D,1) r1 � C̄(D,1)A(D,1)r3δ inte-
ger vectors on S1(r1) ∩ Sd(r) and therefore k1 � C(D,1)r3δ .
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Inductive hypothesis. For i = 1, . . . , j let A(D, i) be suitably large constants and set αi = (i +
2)!/2. Assume that for all i � j − 1, we have proven that n1, . . . , nki

lie on an i-sphere of radius
ri � A(D, i)rαiδ – so that ki � C(D, i)riαiδ .

Step j > 1. By definition if kj−1 < k the point nkj−1+1 is such that n1, n2, n3, nk1+1, . . . , nkj−1+1

are j + 2 affinely independent points which determine a j -sphere Sj (rj ), for some rj � r . By
definition of rj−1 one has |ni − n1| � 2rj−1 � 2A(D,j − 1)rαj−1δ for all i = 2, . . . , kj−1 and
clearly |nkj−1+1 − n1| � Crδ + 2rj � Bj r

αj−1δ , for a suitable constant Bj . If rj � r2aj−1δ the
inductive hypothesis is proven, otherwise if rj > r2αj−1δ then we can apply Fact E with K =
Bj r

αj−1δ . We have rj � A(D,j)r(j+2)αj−1δ ≡ A(D,j)rαj δ by setting α(j) = (j + 2)αj−1 =
(j + 2)!/2. �
Remarks. (1) A careful look at the proof of Lemma A.2.2 shows that in Lemma A.2.1 one can
choose C(D,d) and C′(D,d) as functions of the only D.

(2) In the proof of Lemma A.2.2 the construction in step 1 shows that if one takes three vectors
n1, n2 and n3 on a 1-sphere S1(r1) then (with the notations used in the proof of the lemma) one
has max{n1 − n2, n1 − n3} > C1r

1/3
1 . Therefore for d = 1 these sets Λj can be chosen in such

a way that each set contains at most two elements, and the distance between two distinct sets on
the same sphere S1(r) is larger than a universal constant times r1/3.

Lemma A.2.1 implies that it is possible to decompose the set ZD ∪ SD
0 (r) as the union of sets

� such that diam(�) < const. rδ+ε (cf. [6, p. 399]), and |�| < const. rD(δ+ε). Hence, if we take
α small enough and we set β = δ and α = D(δ +ε), by using that ε/δ = (d +2)!d/2, Lemma 2.1
follows.

A.3. Constructive scheme for Lemma 8.1

Here we prove that the sets M+ verifying the conditions (a) and (b) in the proof of Lemma 8.1
are nonempty. The proof consists in providing explicitly a construction.

1. Fix a list of parameters α2, . . . , αN ∈ R such that αi < αi−1 for i = 2, . . . ,N , with α1 = 1,
and

2D

N∑
i=2

α2+2s
i � 3D + 2D(N − 2). (A.3.1)

2. Given r ∈ R
+ and for i = 2, . . . ,N consider the regions Ri (r) := {x ∈ Z

D+ : αi−1r � |x| �
αir} with r so big that it is not possible to cover any of the Ri (r) with 3N222D planes and
spheres.

3. Choose an integer vector m1 ∈ Z
D+ such that |m1|2 = r2 is divided by D, and construct the

“orbit” O(m1) := {m ∈ Z
D: |mi | = |(m1)i |}.

4. For each pair m,m′ ∈ O(m1) consider the two planes orthogonal to m − m′ and passing
respectively through m and m′, and the sphere which has m − m′ as diameter (there are at
most 3 · 2D−1(2D − 1) planes and spheres).

5. Choose the second integer vector m2 ∈ R2(r) such that |m2|2 divides D and the orbit O(m2)

does not lie on any of the planes and spheres defined at step 4.
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6. For each pair m,m′ ∈ O(m1) ∪ O(m2) proceed as in step 4. We have at most further
3 · 2D(2D+1 − 1) planes and spheres.

7. Then we proceed iteratively. When we arrive to mN we have to remove at most
3N2D−1(N2D − 1) planes and spheres.

A.4. Blocks of the matrix J

Write M = {m1, . . . ,mM }, with M = 2DN , and set V = {v = (m,m′): m,m′ ∈ M, m �= m′}:
clearly L := |V | = M(M − 1). We call alphabet the set V and letters the elements (vectors) of V .
We call word of length � � 1 any string v1v2 . . . v�, with vk ∈ V for k = 1, . . . , �. Let us denote
with A the set of all words with letters in the alphabet V plus the empty set (which can be seen
as a word of length 0).

For v ∈ V with v = (mi,mj ) we write v(1) = mi and v(2) = mj . Given two words a =
v1 . . . vn and b = v′

1 . . . v′
n′ we can construct a new word ab = v1 . . . vnv

′
1 . . . v′

n′ of length n + n′.
Finally we can introduce a map a → w(a), which associates with any letter v ∈ V the vec-
tor v(1) − v(2), to any word a = v1 . . . vn the vector w(a) = w(v1) + · · · + w(vn) and finally
w(∅) = 0. We say that a is a loop if w(a) = 0.

Remarks. (1) Given a set M let V be the corresponding alphabet. If |M| = M then |V | =
L(M) = M(M −1). If we add an element mN+1 to M so to obtain a new set M′ = M ∪{mN+1},
then the corresponding alphabet V ′ contains all the letters of V plus other 2M letters. We can
imagine that this alphabet is obtained through 2M steps, by adding one by one the 2M new
letters. In this way, we can imagine that the length L of the alphabet can be increased just by 1.

(2) By construction w(v1v2) = w(v2v1). In particular w(a) depends only on the letters of a

(each with its own multiplicity), but not on the order they appear within a.

Define a matrix J , such that

(i) Jjk = J (qj , qk), with qj , qk ∈ Z
D ,

(ii) J (q, q ′) �= 0 if there exist m1,m2 ∈ M such that q − m1 = q ′ − m2 and 〈m′ − m2,m1 −
m2〉 = 0, and J (q, q ′) = 0 otherwise.

A sequence C = {q0, q1, . . . , qn} will be called a chain if J (qk−1, qk) �= 0 for k = 1, . . . , n.
We call n = |C| the length of the chain C. A chain can be seen as a pair of a vector and a word,
that is C = (q0;a), where q0 ∈ Z

D and a = v1 . . . vn, with w(vk) = qk − qk−1. Note that, by
definition of the matrix J , given a chain C as above, one has

qk = qk−1 + w(vk),
〈
qk − vk(2),w(vk)

〉= 0, (A.4.1)

for all k = 1, . . . , n.

Lemma A.4.1. Given a chain C = (q0;a), if the word a contains a string v0a0v0, with v0 ∈ V
and a0 ∈ A, then 〈w(v0a0),w(v0)〉 = 0.

Proof. As the word a of C contains the string v0a0v0, by (A.4.1) there exists j � 1 such that〈
qj − v0(2),w(v0)

〉= 0,
〈
qj + v0 + w(a0) − v0(2),w(v0)

〉= 0,

so that 〈w(v0) + w(a0),w(v0)〉 = 0. �
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Lemma A.4.2. Given a chain C = (q0;a), if the word a contains a string a0b0a0, with a0, b0 ∈ A
and a0 containing all the letters of the alphabet V , then a0b0 is a loop.

Proof. For any v ∈ V we can write a0 = a1va2, with a1, a2 ∈ A depending on v. Then a0b0a0 =
a1va2b0a1va2. Consider the string va2b0a1v: by Lemma A.4.1 one has 〈w(va2b0a1),w(v)〉 = 0.
On the other hand (cf. Remark (2) after the definition of loop) one has w(va2b0a1) =
w(a1va2b0) = w(a0b0), so that 〈w(a0b0),w(v)〉 = 0. As v is arbitrary we conclude that

〈
w(a0b0),w(v)

〉= 0 ∀v ∈ V �⇒ w(a0b0) = 0,

i.e. a0b0 is a loop. �
Lemma A.4.3. There exists K such that if a word has length k � K then the word contains a
loop. The value of K depends only on the number of letters of the alphabet.

Proof. The proof is by induction on the length L of the alphabet V (cf. Remark (1) after the
definition of loop).

For L = 1 the assertion is trivially satisfied. Assume that for given L there exists an integer
K(L) such that any word of length K(L) containing at most L distinct letters has a loop: we
want to show that then if the alphabet has L + 1 letters there exists K(L + 1) such that any word
of the alphabet with length K(L + 1) has also a loop.

Let N(L) be the number of words of length K(L) written with the letters of an alphabet V
with |V | = L+ 1. Consider a word a = a1 . . . aN(L)+1, where each ak has length K(L). We want
to show by contradiction that a contains a loop. If this is not the case, by the inductive assumption
for each k either ak contains a loop or it must contain all the L + 1 letters. As all words ak have
length K(L) and there are N(L) + 1 of them, at least two words, say ai and aj with i < j ,
must be equal to each other. Therefore we can write a = a1 . . . ai−1aibaiaj+1 . . . aN(L)+1, where
b = ai+1 . . . aj−1 if j > i + 1 and b = ∅ if j = i + 1. Hence a contains the string aibai , with ai

containing all the letters. Hence by Lemma A.4.2 one has w(aib) = 0, i.e. aib is a loop. �
Remark. Note that the proof of Lemma A.4.3 implies

K(L + 1) � K(L)
(
N(L) + 1

)
�

L∏
�=1

(
N(�) + 1

)
, (A.4.2)

which provides a bound on the maximal length of the chains in terms of the length of the alpha-
bet V .

Lemma 8.2 follows immediately from the results above, by noting that all the spheres with
diameter a vector v(1) − v(2) with v ∈ V are inside a compact ball of Z

D .

A.5. Invertibility of J for D = 2

In the following we assume D = 2 and N > 4. We prove the Sub-lemma of Lemma 8.3.
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We first prove that (i) implies (ii). As seen in Appendix A.3 condition (8.4) is implied by

αi �
( |mi |

|m1|
)2+2s

� αi+1 ∀i = 2, . . . ,N − 1, (A.5.1)

where the αi > 1 are fixed in Appendix A.3.
For |m1| large enough, (A.5.1) contains a 2N -dimensional ball of arbitrarily large radius. By

definition an algebraic variety is the set of solutions of some polynomial equations and there-
fore cannot contain all the positive integer points of a ball provided the radius is large enough
(depending on the degree of the polynomial).

To prove (i) let us start with some notations. We consider Z
2N as a lattice in C

2N , we denote
x = {x1, . . . , xN } ≡ M+ ∈ C

2N , where each xi is a point in C
2; we denote the points in M still

as mi ∈ C
2, and for each point xi ∈ M+ we have the orbit O(xi) ∈ M i.e. the four points in M

obtained by changing the signs of the components of xi .

Definition A.5.1.

(i) Given two points mi,mj in M we consider: the circle with diameter mi − mj (curve of
type 1) and the two lines orthogonal to mi −mj and passing respectively through mi (curve
of type 2) and through mj (curve of type 3). Note that the curve is identified by the couple
(mi,mj ) and by the type label. We call C the finite set of distinct curves obtained in this
way for all couples mi �= mj in M.

(ii) Let C be a curve in C identified by the couple (mi,mj ). We say that a point m′ is g-linked
by (mi,mj ) to m ∈ C if one has either (1) m′ = −m + mi + mj , if C is a curve of type 1,
or (2) m′ = m + (mj − mi), if C is a curve of type 2, or (3) m′ = m − (mj − mi), if C is a
curve of type 3. Notice that in case (1) also m′ is on the circle, while in cases (2) and (3) m′
is on a curve of type 3 and 2, respectively. We say that two points m,m′ ∈ Z

2+ are linked by
(mi,mj ) if there are two points m̄ ∈ O(m) and m̄′ ∈ O(m′) such that m̄, m̄′ are g-linked by
(mi,mj ).

(iii) Given M+ we consider the set H of points yj /∈ M which lie on the intersection of two
curves in C, counted with their multiplicity. Set r := |H |: we denote the list of intersection
points as y = {y1, . . . , yr(N)}. Note that r depend only on N .

We first prove that the points x ∈ C
2N which do not satisfy Lemma 8.1 lie on an algebraic

variety. As seen in Appendix A.3, Lemma 8.1 is verified by requiring that if either a curve of
type 1 contains three points in M or a curve of type 2 or 3 contains two points in M, then such
points are on the same orbit. It is clear (see Appendix A.3) that this condition can be achieved by
requiring that x does not belong to some proper algebraic variety, say Wa , in C

2N .
Let us now consider the set of points x ∈ Z

2N+ where detJ1,1 is identically equal to zero (as a
function of s); since J1,1 is a block diagonal matrix we factorise the single blocks and treat them
separately. The matrix J1,1 has some simple blocks which we can describe explicitly. Recall that

16A2 = c1

N∑
i=1

|xi |2, 2a2
xi

= (1 − c1)|xi |2 − c1

∑
j=1,...,N

j �=i

|xj |2, (A.5.2)

where c1 = 8/(8N + 1).
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1. For all m ∈ Z
2+ such that m does not belong to any curve C ∈ C one has Ym,m′ = 0 for all

m′; by considering the limit s → ∞ one can easily check that Jm,m = |m|2+2s/2 − 8A2 = 0
is never an identity in s (independently of the choice of M+).

2. For all linked couples m,m′ ∈ Z
2+ such that each point belongs to one and only one curve

one has either a diagonal block |m|2+2s/2 − 8A2 − 4a2
xi

for some xi ∈ M+ if m = m′, or a
2 × 2 matrix ( |m|2+2s/2 − 8A2 −2ami

amj

−2ami
amj

|m′|2+2s/2 − 8A2

)

if m �= m′ and (mi,mj ) is the couple linking m′ to m. In both cases a trivial check of the
limit s → ±∞ will ensure that the determinant is not identically null.

3. There is a block matrix containing all and only the elements of M+. Such a matrix is easily
obtained by differentiating the left-hand side of (8.5):

−2

⎛
⎜⎜⎜⎝

am1 0 . . . 0

0
. . .

. . .
...

...
. . .

. . . 0
0 . . . 0 amN

⎞
⎟⎟⎟⎠
⎛
⎜⎜⎝

9 8 . . . 8

8
. . .

. . .
...

...
. . .

. . . 8
8 . . . 8 9

⎞
⎟⎟⎠
⎛
⎜⎜⎜⎝

am1 0 . . . 0

0
. . .

. . .
...

...
. . .

. . . 0
0 . . . 0 amN

⎞
⎟⎟⎟⎠ .

Since all the ami
are nonzero we only need to prove that the matrix in the middle is invertible,

which is trivially true since the determinant is an odd integer.

We now have considered all those blocks in J1,1 whose invertibility can be easily checked
directly. We are left with the intersection points in H ′ := H ∩ Z

2+ \ M+ and all those points m′
which are linked to some yj ∈ H ′. We call J̃ the restriction of J1,1 to such points; the crucial
property of J̃ is that it is a K ×K matrix with K bounded by above by some constant depending
only on N .

We will impose that J̃ is invertible at s = 0 by requiring that M+ does not lie on an appro-
priate algebraic variety in C2N .

By definition the points in H (and the points linked to them) are algebraic functions of
x ∈ C

2N . By construction J̃m,m − Ym,m = |m|2+2s/2 − 8A2 and moreover Ym,m′ contains a con-
tribution −2ami

amj
for each couple (mi,mj ) linking m′ to m. We want to prove that for s = 0

the equation det J̃ = 0 (which is an equation for x ∈ C
2N ) defines a proper algebraic variety, say

Wf , in C
2N .

We consider the space C
T := C

2N × C
N × C

2r and, with an abuse of notation, we denote the
generic point in C

T by (x, a, y) = (x1, . . . , xN , ax1 , . . . , axN
, y1, . . . , yr ) (therefore we consider

(x, a, y) as independent variables). Note that det J̃ = 0 is a polynomial equation in C
T . We call

Wb the algebraic variety defined by requiring both that the axi
satisfy (A.5.2) and that each yj

lies on at least two curves of C (Wb is equivalent to a finite number of copies of C
2N ).

We now recall a standard theorem in algebraic geometry which states: Let W be an algebraic
variety in C

n+m and let Π be the projection C
n+m → C

n then Π(W) is an algebraic variety
(clearly it may be the whole Cn!) We set n = 2N (the first 2N variables), m = 2r + N and apply
the stated theorem to Π(Wb ∩ Wf ); we now only need to prove that the algebraic variety we
have obtained is proper; to do so it is convenient to treat separately the invertibility conditions of
each single block of J̃ .
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The first step is to simplify as far as possible the structure of the intersections and therefore of
the matrix J̃ . The simplest possible block involving an intersection point yj is such that

(i) only two curves in C pass through yj ;
(ii) the two points linked to yj (by the couples of points in M identifying the curves) are not

intersection points.

Such a configuration gives either a 3 × 3 matrix or a 2 × 2 matrix – if one of the curves is
either an horizontal or vertical line or a circle centred at the origin.

Definition A.5.2. We say that a curve C ∈ C depends on the two – possibly equal – variables
xi, xj ∈ C

2 if C is identified by the couple (mi,mj ), such that mi ∈ O(xi) and mj ∈ O(xj ).

The negation of (i) is that yj is on (at least) three curves of C : such a condition defines a
proper algebraic variety in C

T , say Wj . We now consider the projection of Wb ∩ Wj on C
2N :

its closure is an algebraic variety and either it is proper or the triple intersection occurs for any
choice of x (which unfortunately can indeed happen due to the symmetries introduced by the
Dirichlet boundary conditions).

Three curves in C depend on at most six variables in C
2. If four or more of such variables are

different then at least one variable, say xk , appears only once. By moving xk in C
2 we can move

arbitrarily one of the curves, while the other two (which do not depend on xk) remain fixed. This
implies that the triple intersection cannot hold true for all values of xk and thus Π(Wb ∩ Wj ) is
a proper variety in C

2N .
In the same way the negation of (ii) is that one point linked to yj lies on (at least) two curves

of C (one curve is fixed by the fact that the point is linked to yj ); again the intersection is
determined by six points in M and the same reasoning holds.

We call Wc the variety in CT defined by the union of all those Wj such that Π(Wb ∩ Wj ) is
proper.

In Wb \ Wc we can now classify the possible blocks appearing in J̃ (notice that only intersec-
tion points which are integer-valued have to be taken into account when constructing the blocks
in J̃ ).

1. We have a list of at most 3×3 blocks corresponding to the intersection points of type (i)–(ii).
Such intersection points are identified by two curves which can depend on at most four
different variables xik with k = 1, . . . ,4.

2. There are more complicated blocks corresponding to multiple intersections (or intersection
points linked to each other), which occur for all x ∈ C

2N due to symmetry. As we have
proved above the curves defining such intersections depend on at most three different vari-
ables xik .

In any given block, call it Bh, the contribution from Y involves only terms of the
form −2ami

amj
such that mi,mj ∈ ⋃4

k=1 O(xik ). Each amj
depends on all the components

of x; in particular, a2
mj

can be written as a term depending only on the xik plus the term

− 1
2c1
∑

j �=i1,...,i4
x2
j . Since by hypothesis N > 4 and k � 4 the second sum is surely nonempty.

Finally one has the diagonal contributions (from J −Y ): |yj |2 − 1
2c1
∑

j �=i1,...,i4
x2
j + z, where

z is a polynomial function in the xi ’s.

k
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In the limit
∑

j �=i1,...,i4
x2
j → ∞ the terms depending on the xik ’s become irrelevant and

we are left with a matrix (of unknown size) whose entries, apart from the common factor
− 1

2c1
∑

j �=i1,...,i4
x2
j , are integer numbers. It is easily seen that these numbers are odd on the

diagonal, while all the off-diagonal terms are even; indeed Y contributes only even entries while
J − Y is diagonal and odd due to the term 8A2. Thus the determinant (apart form the common
factors) is odd and hence the equation detBh = 0 is not an identity on Wb . If we call Wh the
variety in C

T defined by detBh = 0 then Π(Wb ∩ Wh) is surely proper. Finally we call Wd the
union of all the Wh and set Wf = Wd ∪ Wc ∪ Wc.

A.6. Proof of the separation Lemma 8.4

The following proof is adapted from [9]. Given ε > 0 define δ = δ(ε,D) = ε/2D−1 ·
D!(D + 1)!. Then Lemma 8.4 follows from the results below.

Lemma A.6.1. Let x ∈ R
d . Assume that there exist d vectors �1, . . . ,�d , which are linearly

independent in Z
d , and such that |�k| � A1 and |x · �k| � A2 for all k = 1, . . . , d . Then |x| �

C(d)Ad−1
1 A2 for some constant C(d) depending only on d .

Proof. Call βk ∈ [0,π/2] the angle between �k and the direction of the vector x. Without any
loss of generality we can assume βk � βd for all k = 1, . . . , d − 1. Set β ′

d = π/2 − βd . One has
β ′

d > 0 because �1, . . . ,�d are linearly independent.
Consider the simplex generated by the vectors �1, . . . ,�d . By the fact 2 in the proof of

Lemma 8.4 one has, for some d-dependent constant C(d),

1 � C(d)|�1||�2| · · · |�d ||sinα1,2||sinα12,3| · · · |sinα1...(d−1),d |, (A.6.1)

where α1...(j−1),j , j � 2, is the angle between the vector �j and the plane generated by the
vectors �1, . . . ,�j−1. Hence

1 � C(d)Ad−1
1 |�d ||sinα1...(d−1),d |. (A.6.2)

Moreover one has

|x · �d | = |x||�d ||cosβd | = |x||�d ||sinβ ′
d | � |x||�d ||sinα1...(d−1),d |, (A.6.3)

so that, from (A.6.2) and (A.6.3), we obtain |x|A−(d−1)
1 � C(d)A2, so that the assertion fol-

lows. �
Lemma A.6.2. There exist constants C and C′ such that the following holds. Let n1, . . . , nk ∈ Z

D

be a sequence of distinct elements such that |Φ(nj ) − Φ(nj+1)| � Crδ . Then k � C′ max{rε,

D + 2}.

Proof. Since the vectors nj are on the lattice Z
D there exist a constant C1(D) and j0 � k/2 such

that |nj0 | > C1(D)k1/D . Set �j = nj − nj0 . By assumption one has |Φ(nj ) − Φ(nj+1)| � Crδ ,
hence |Φ(nj ) − Φ(nj0)| � C(j − j0)r

δ for all j0 + 1 � j � k. Then |Φ(nj ) − Φ(nj0)| � A1 :=
CJ1r

δ for all j0 + 1 � j � j0 + J1. Fix J1 = k1/α(D), with α(n) = 2n(n + 1). By using that
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Φ(nj ) − Φ(nj0) = (�j,2�j · nj0 + |�j |2
)
, (A.6.4)

we find |�j | � A1 and |nj0 · �j | � A2 := A2
1 for all j0 + 1 � j � j0 + J1.

If Span{�j0+1, . . . ,�j0+J1} = D then by Lemma A.6.1 one has |nj0 | � C(D)AD+1
1 . Then,

for this relation to be not in contradiction with |nj0 | > C1(D)k1/D , we must have C1(D)k1/D <

C(D)AD+1
1 , hence k � C2(D)rα(D)δ for some constant C2(D).

If Span{�j0+1, . . . ,�j0+J1} � D − 1 then there exists a subspace H1 with dim(H1) = D − 1
such that nj ∈ nj0 + H1 for j0 + 1 � j � j0 + J1. Choose j1 � J1/2 such that PH1nj1 := nj1 −
nj0 ∈ H1 satisfies |PH1nj1 | > C(D − 1)J

1/(D−1)

1 , and fix J2 = J
1/α(D−1)

1 . Redefine �j = nj −
nj1 for j � j1 + 1, A1 = CJ2r

δ and A2 = A2
1: by reasoning as in the previous case we find again

|�j | � A1 and |nj1 · �j | � A2 for all j0 + 1 � j � j0 + J1.
If Span{�j1+1, . . . ,�j1+J2} = D − 1 then by Lemma A.6.1 one has |nj1 | � C(D − 1)AD

1 ,

which implies C1(D − 1)J
1/D−1
1 < C(D)AD

1 . By using the new definition of A1, we obtain
J1 � C2(D − 1)rα(D−1)δ , hence k � C3(D)rα(D−1)α(D)δ for some other constant C3(D).

If Span{�j1+1, . . . ,�j0+J2} � D − 2 then there exists a subspace H2 with dim(H1) = D − 1
such that nj ∈ nj1 + H2 for j1 + 1 � j � j1 + J2. Then we iterate the construction until either
we find k � Cn+2(D)rα(D−1)...α(D−n)δ for some n � D − 1 and some constant Cn+2(D) or we
arrive at a subspace HD−1 with dim(HD−1) = 1.

In the last case the vectors �jD−2+1, . . . ,�jD−2+JD−1 , with JD−1 = J
1/α(2)

D−2 , are linearly de-
pendent by construction, so that they lie all on the same line. Therefore, we can find at least
JD−1/2 of them, say the first JD−1/2, with decreasing distance from the origin. If we set
njD−2+1 = a, njD−2+JD−1/2 = b, and njD−2+1 − njD−2+JD−1/2 = c, and sum over jD−2 + 1 �
j � jD−2 + JD−1/2 the inequalities

|nj − nj−1| + |nj |2 − |nj−1|2 � const.
∣∣Φ(nj ) − Φ(nj−1)

∣∣� const.Crδ, (A.6.5)

we obtain

|c| + |c|2 � |c| + |a|2 − |b|2 � const.Crδ JD−1

2
, (A.6.6)

where |c| � JD−1/2. Hence JD−1 � (Crδ)2.
By collecting together all the bound above we find k � CD(D)r2α(D)...α(2)δ , so that, by

defining C′ = CD(D) and using that ε/δ = α(D) . . . α(2) = 2D−1D!(D + 1)!, the assertion fol-
lows. �
Lemma A.6.3. There exist constants ε′, δ′, C and C′ such that the following holds. Given n0 ∈
Z

D there exists a set � ⊂ Z
D , with n0 ∈ �, such that diam(�) < C′rε′

and |Φ(x) − Φ(y)| >

C′rδ′
for all x ∈ � and y /∈ �.

Proof. Cf. [9, p. 399], which proves the assertion with ε′ = δ + ε and δ′ = δ = δ(ε,D). �
Lemma A.6.4. Let � be as in Lemma A.6.3. There exists a constant C′′ such that one has
|�| � C′′rD(ε+δ).

Proof. The bound follows from Lemma A.6.3 and from the fact that diam(�) < C′rε , by using
that the points in � are distinct lattice points in R

D . �
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