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In this Letter, based on the Sturm–Liouville eigenvalue approach, we analytically investigate the
properties of holographic superconductors in the background of pure Einstein and Gauss–Bonnet gravity
taking into account the backreaction of the spacetime. Higher value of the backreaction parameter results
in a harder condensation to form in both cases. The analytical results obtained are found to be in good
agreement with the existing numerical results.
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1. Introduction

The correspondence between anti-de Sitter and conformal field theories (AdS/CFT) has been a powerful tool to analyze strongly coupled
quantum field theories. It provides a correspondence between a gravity theory in a (d + 1)-dimensional AdS spacetime and a conformal
field theory (CFT) living on its d-dimensional boundary [1–4]. Recently, the correspondence has been used to provide some meaningful
theoretical insights to understand the physics of high Tc superconductors from the gravitational dual.

The central idea behind holographic superconductors comes from the observation that below a critical temperature, electrically charged
black holes become unstable to the formation of scalar hair. The mechanism behind this condensation is the breaking of a local U (1)

symmetry near the event horizon of the black hole [5–10]. However, the investigations in most cases have been carried out in the “probe
limit” which essentially means that the backreaction of the spacetime has been neglected. Backreaction of the spacetime was considered in
[10–12] for a 2+1-dimensional holographic superconductor where it was found that even an uncharged scalar field can form a condensate.
In [13], 3 + 1-dimensional holographic superconductors in pure Einstein and Gauss–Bonnet gravity have been studied taking backreaction
into account numerically. This study was motivated by the fact that earlier such studies have been made on black holes in Gauss–Bonnet
gravity in the probe limit [14]. A lot of work has been done thereafter to study the properties of holographic superconductors away from
the probe limit [15–21].

In this Letter, we try to substantiate the numerical results of [13] analytically. We apply the Sturm–Liouville (SL) method devel-
oped in [22] along with the perturbative technique first employed in [26] (to take into account the effect of the Born–Infeld coupling
parameter) to analytically find the relation between the critical temperature and the charge density both in Einstein gravity and
Gauss–Bonnet gravity taking backreaction of the spacetime into account. This method has been used earlier in the probe limit with
considerable success [23–28]. Our analysis would also help in examining the applicability of the method in the presence of the backreac-
tion.

This Letter is organized as follows. In Section 2, we provide the basic holographic set up for the holographic superconductors,
considering the background of a 4 + 1-dimensional electrically charged black hole in anti-de Sitter spacetime. In Section 2.1, tak-
ing into account the backreaction of the spacetime in Einstein gravity, we compute the critical temperature in terms of a solution
to the SL eigenvalue problem. In Section 2.2, we carry out the same analysis in Gauss–Bonnet gravity. We conclude finally in Sec-
tion 3.
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2. Basic set up

To begin with, we first write down the action for the formation of scalar hair on an electrically charged black hole in 4+1-dimensional
anti-de Sitter spacetime. This reads

S = 1

16πG

∫
d5x

√−g

(
R − 2Λ + α

4

(
Rμνλρ Rμνλρ − 4Rμν Rμν + R2) + 16πGLmatter

)
(1)

where Λ = −6/L2 is the cosmological constant and α is the Gauss–Bonnet coupling parameter. Lmatter denotes the matter Lagrangian
density and takes the form

Lmatter = −1

4
F MN F MN − (D Mψ)∗D Mψ − m2ψ∗ψ; M, N = 0,1,2,3,4 (2)

where F MN = ∂M AN − ∂N AM is the field strength tensor and D Mψ = ∂Mψ − ie AMψ is the covariant derivative. The ansatz for the plane-
symmetric black hole metric reads

ds2 = − f (r)a2(r)dt2 + 1

f (r)
dr2 + r2

L2

(
dx2 + dy2 + dz2). (3)

We now choose the following ansatz for the gauge field and the scalar field [10]

AM dxM = φ(r)dt, ψ = ψ(r) (4)

so that the black hole possesses only electric charge.
The equations of motion for the metric and matter fields computed on this ansatz read

f ′(r) + 2r
f (r) − 2r2/L2

(r2 − 2α f (r))
+ γ

r3

2 f (r)a2(r)

×
(

2e2φ2(r)ψ2(r) + f (r)
(
2m2a2(r)ψ2(r) + φ′ 2(r)

) + 2 f 2(r)a2(r)ψ ′ 2(r)

r2 − 2α f (r)

)
= 0, (5)

a′(r) − γ
r3(e2φ2(r)ψ2(r) + a2(r) f 2(r)ψ ′ 2(r))

a(r) f 2(r)(r2 − 2α f (r))
= 0, (6)

φ′′(r) +
(

3

r
− a′(r)

a(r)

)
φ′(r) − 2

e2ψ2(r)

f (r)
φ(r) = 0, (7)

ψ ′′(r) +
(

3

r
+ f ′(r)

f (r)
+ a′(r)

a(r)

)
ψ ′(r) +

(
e2φ2(r)

f 2(r)a2(r)
− m2

f (r)

)
ψ(r) = 0 (8)

where γ = 16πG and prime denotes derivative with respect to r. The fact that γ �= 0 takes into account the backreaction of the spacetime.
This limit also allows one to set e = 1 without any loss of generality since the rescalings ψ → ψ/e, φ → φ/e and γ → e2γ can be
performed [13].

In order to solve the non-linear equations (5)–(8), we need to fix the boundary conditions for φ(r) and ψ(r) at the black hole horizon
r = r+ (where f (r = r+) = 0 with a(r = r+) finite) and at the spatial infinity (r → ∞). At the horizon, we require φ(r+) = 0 and ψ(r+) to
be finite for the matter fields to be regular.

Near the boundary of the bulk, we can set a(r → ∞) → 1, so that the spacetime becomes a Reissner–Nordström–anti-de Sitter black
hole. The matter fields there obey [14]

φ(r) = μ − ρ

r2
, (9)

ψ(r) = ψ−
rλ− + ψ+

rλ+ (10)

where

λ± = 2 ±
√

4 − 3(Leff /L)2, (11)

L2
eff = 2α

1 − √
1 − 4α/L2

≈ L2(1 − α/L2 +O
(
α2)). (12)

The parameters μ and ρ are dual to the chemical potential and charge density of the boundary CFT and choosing ψ− = 0, ψ+ is dual to
the expectation value of the condensation operator J at the boundary.

Under the change of coordinates z = r+
r , the field equations (5)–(8) become

f ′(z) + 2r2+
z3

(2r2+ − z2 f (z))

(r2+ − 2αz2 f (z))
− γ

r2+
2z3a2(z) f (z)

× {2r2+φ2(z)ψ2(z) + f (z)(z4φ′ 2(z) − 6r2+a2(z)ψ2(z)) + 2a2(z) f 2(z)z4ψ ′ 2(z)}
(r2 − 2αz2 f (z))

= 0, (13)

+
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a′(z) + γ
r2+

z3a(z) f 2(z)

(r2+φ2(z)ψ2(z) + a2(z) f 2(z)z4ψ ′ 2(z))

(r2+ − 2αz2 f (z))
= 0, (14)

φ′′(z) −
(

1

z
+ a′(z)

a(z)

)
φ′(z) − 2r2+ψ2(z)

z4 f (z)
φ(z) = 0, (15)

ψ ′′(z) −
(

1

z
− a′(z)

a(z)
− f ′(z)

f (z)

)
ψ ′(z) + r2+

z4

(
φ2(z)

f 2(z)a2(z)
+ 3

f (z)

)
ψ(z) = 0 (16)

where prime now denotes derivative with respect to z. These equations are to be solved in the interval (0,1), where z = 1 is the horizon
and z = 0 is the boundary. The boundary condition φ(r+) = 0 now becomes φ(z = 1) = 0.

2.1. Effect of backreaction in Einstein gravity

With the above set up in place, we now move on to investigate the relation between the critical temperature and the charge density.
At the critical temperature Tc , ψ = 0, so Eq. (14) reduces to

a′(z) = 0. (17)

Hence Eq. (13) (with α = 0) and the field equation (15) reduces to

f ′(z) + 2

z3

(
2r2

+(c) − z2 f (z)
) − γ

zφ′ 2(z)

2
= 0, (18)

φ′′(z) − 1

z
φ′(z) = 0. (19)

With the boundary condition (9), the solution of Eq. (19) reads

φ(z) = λr+(c)
(
1 − z2) (20)

where

λ = ρ

r3
+(c)

. (21)

This leads to the following solution for the metric from Eq. (18) consistent with the condition f (z = 1) = 0

f (z) = r2
+(c)

{
1

z2
− (

1 + γ λ2)z2 + γ λ2z4
}

= r2
+(c)

z2
g0(z) (22)

where

g0(z) = 1 − (
1 + γ λ2)z4 + γ λ2z6. (23)

Now using the solution (20), we find that as T → Tc , the equation for the field ψ approaches the limit

−ψ ′′(z) +
(

1

z
− f ′(z)

f (z)

)
ψ ′(z) − 3

z2 g0(z)
ψ(z) = λ2 (1 − z2)2

g2
0(z)

ψ(z). (24)

Near the boundary, we define [22]

ψ(z) ∼ z3 F (z) (25)

where F (0) = 1. Substituting this form of ψ(z) in Eq. (24), we obtain

−F ′′(z) +
(

1

z
− f ′(z)

f (z)
− 6

z

)
F ′(z) + 3

z

{(
1

z
− f ′(z)

f (z)

)
− 2

z
− 1

zg0(z)

}
F (z) = λ2 (1 − z2)2

g2
0(z)

F (z) (26)

to be solved subject to the boundary condition F ′(0) = 0.
The above equation can be put in the Sturm–Liouville form

d

dz

{
p(z)F ′(z)

} − q(z)F (z) + λr(z)F (z) = 0 (27)

with

p(z) = z3 g0(z),

q(z) = 3z5{3
(
1 + γ λ2) − 5γ λ2z2},

r(z) = z3(1 − z2)2

g0(z)
. (28)

With the above identification, we can once again write down the eigenvalue λ2 which minimizes the expression
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Table 1
A comparison of the analytical and numerical results for the critical temperature
and the charge density with backreaction in Einstein gravity.

γ λ2
SL (Tc/ρ

1/3)|S L (Tc/ρ
1/3)|numerical

0 18.23 0.196 0.197
0.025 16.3817 0.159 0.161
0.05 14.8114 0.128 0.128
0.075 13.4269 0.103 0.089
0.1 12.1816 0.082 0.079
0.125 11.0604 0.066 0.053
0.15 10.0647 0.053 0.045
0.175 9.1912 0.043 0.031
0.2 8.4294 0.035 0.026

λ2 =
∫ 1

0 dz {p(z)[F ′(z)]2 + q(z)[F (z)]2}∫ 1
0 dz r(z)[F (z)]2

=
∫ 1

0 dz z3[g0(z)[F ′(z)]2 + 3z2{3(1 + γ λ2) − 5γ λ2z2}[F (z)]2]∫ 1
0 dz z3(1−z2)2

g0(z) [F (z)]2
. (29)

To estimate it, we use the following trial function

F = F α̃(z) ≡ 1 − α̃z2 (30)

which satisfies the conditions F (0) = 1 and F ′(0) = 0.
Hence, we obtain (with the backreaction parameter γ = 0)

λ2
α̃ = 2(18 − 27α̃ + 14α̃2)

6(3 − 4 ln 2) + 16(2 − 3 ln 2)α̃ + (17 − 24 ln 2)α̃2
(31)

which attains its minimum at α̃ ≈ 0.7218. The critical temperature therefore reads

Tc = 1

4π
f ′(r+(c)) = 1

πλ
1/3
α̃=0.7218

ρ1/3 ≈ 0.196ρ1/3 (32)

which is in very good agreement with the exact Tc = 0.197ρ1/3 [12].
Now in order to include the effect of backreaction, we set γ = 0.025 and put the value of λ2 obtained for the corresponding value

of γ (which in this case is γ = 0) in the right hand side of Eq. (29) to get the value of λ2 for γ = 0.025

λ2
α̃ = 1.32909 − 1.90819α̃ + 0.97677α̃2

0.06168 − 0.05909α̃ + 0.017301α̃2
(33)

which attains its minimum at α̃ ≈ 0.6780. The critical temperature therefore reads

Tc = 1

4π
f ′(r+(c)) = 1

π

(
1 − 1

2
γ λ2

α̃=0.7218

)
r+(c)

= 1

π

(1 − 1
2γ λ2

α̃=0.7218)

λ
1/3
α̃=0.6780

ρ1/3 ≈ 0.1588ρ1/3 (34)

which is in very good agreement with the exact Tc = 0.161ρ1/3 [13]. Increasing the value of γ in steps of 0.025 and repeating the above
process, we can obtain the values of λ2 for various values of the backreaction parameter.

In Table 1, we compare our analytical values obtained by the SL approach with the existing numerical results in the literature [13].

2.2. Effect of backreaction in Gauss–Bonnet gravity

In this section, we study the relation between the critical temperature and the charge density taking into account the effect of the
Gauss–Bonnet coupling parameter α.

In this case, using Eq. (17), Eq. (13) (with α �= 0) reduces to

f ′(z) + 2r2
+(c)

z3

(2r2
+(c) − z2 f (z))

(r2
+(c) − 2αz2 f (z))

− γ
r2
+(c)

2

zφ′ 2(z)

(r2
+(c) − 2αz2 f (z))

= 0. (35)

The solution of the above equation upto first order in the Gauss–Bonnet coupling parameter α reads

f (z) = r2
+(c)

z2

{
g0(z) + αg1(z)

}
(36)

where

g1(z) = 1 − 2
(
1 + γ λ2)z4 + 2γ λ2z6 + (

1 + γ λ2)2
z8 − 2

(
1 + γ λ2)γ λ2z10 + γ 2λ4z12. (37)
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Table 2
A comparison of the analytical and numerical results for the critical
temperature and the charge density with backreaction in Gauss–Bonnet
gravity (α = 0.1).

γ (Tc/ρ
1/3)|S L (Tc/ρ

1/3)|numerical

0 0.1867 0.185
0.1 0.066 0.051
0.2 0.0114 0.008

For α �= 0, we define near the boundary

ψ(z) ∼ z�+ F (z). (38)

Substituting this form of ψ(z) in Eq. (24), we obtain

−F ′′(z) +
(

1

z
− f ′(z)

f (z)
− 2�+

z

)
F ′(z) + �+

z

{(
1

z
− f ′(z)

f (z)

)
− �+(�+ − 1)

z2
− 3

z2(g0 + αg1)

}
F (z) = λ2 (1 − z2)2

(g0 + αg1)2
F (z) (39)

to be solved subject to the boundary condition F ′(0) = 0.
The above equation can once again be put in the Sturm–Liouville form with

p(z) = z2�+−3(g0 + αg1),

q(z) = z2�+−5{�+
(
2(g0 + αg1) − z

(
g′

0 + αg′
1

)) − �+(�+ − 2)(g0 + αg1) − 3
}
,

r(z) = z3(1 − z2)2

g0(z)
. (40)

With the above identification, we can once again proceed to find the minimum value of the eigenvalue λ2 as in the earlier section.
To estimate it, we first set α = 0.1, γ = 0 and again use the trial function (30) to obtain

λ2
α̃ = 1.74 − 2.5α̃ + 1.26194α̃2

0.0527 − 0.0496α̃ + 0.0144α̃2
(41)

which attains its minimum at α̃ ≈ 0.7078. The critical temperature therefore reads

Tc = 1

4π
f ′(r+(c)) = 1

πλ
1/3
α̃=0.7078

ρ1/3 ≈ 0.1867ρ1/3 (42)

which is in very good agreement with the exact Tc = 0.185ρ1/3 [14].
For α = 0.1, γ = 0.1, we get

λ2
α = 1.1838 − 1.4036α̃ + 0.6594α̃2

0.0726 − 0.0763α̃ + 0.0239α̃2
(43)

which attains its minimum at α̃ ≈ 0.3495. In computing this result, we have used the value of λ2 corresponding to γ = 0.075 (with α = 0)
from Table 1 in Eq. (40) to calculate the expression which minimizes λ2 and obtained the value of λ2 corresponding to α = 0.1, γ = 0.1.
The critical temperature therefore reads

Tc = 1

4π
f ′(r+(c)) = 1

π

(
1 − 1

2
γ λ2

γ =0.075, α=0

)
r+(c)

= 1

π

(1 − 1
2γ λ2

γ =0.075, α=0)

λ
1/3
α̃=0.3495, α=0.1

ρ1/3 ≈ 0.066ρ1/3 (44)

which is in very good agreement with the exact Tc = 0.051ρ1/3 [13].
In Table 2, we compare our analytical values obtained by the SL approach with the existing numerical results in the literature [13].
We would like to mention that there is a slight discrepancy between the analytical values obtained by the SL method and the numerical

values for the Gauss–Bonnet case. This is because the analytical calculations have been carried out to first order in the Gauss–Bonnet
parameter α. In order to get analytical results closer to the numerical values, one must carry out higher order calculations involving the
Gauss–Bonnet parameter α.

3. Conclusions

In this Letter, we perform analytic computation of 3 + 1-dimensional holographic superconductors in the background of pure Einstein
and Gauss–Bonnet gravity taking into account the backreaction of the spacetime. We apply the Sturm–Liouville eigenvalue problem to
obtain the relation between the critical temperature and the charge density in both Einstein and Gauss–Bonnet gravity. It is observed that
higher value of the backreaction parameter results in a harder condensation to form in both cases. Further, the condensation is even harder
to form in the presence of the Gauss–Bonnet parameter. Our results are in very good agreement with the existing numerical results [13].
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As final remarks, we would like to mention the novelty of our analytic results. The consistency between the analytical and numerical
results indicates that the Sturm–Liouville method is a powerful analytic approach to investigate holographic superconductors even in the
presence of backreaction. Further, the analytical approach is always more desirable than the numerical approach since the numerical
results become less reliable when the temperature T approaches to zero [7,22]. In this temperature limit, the numerical solutions to
the non-linear field equations become extremely difficult and therefore the determination of the nature of the condensate becomes very
problematic unless analytic techniques are adopted. Hence, the analytic method is always more reliable while performing computations
as T → 0. It should be also noted that the validity of the analytical results obtained by the Sturm–Liouville method can be confirmed
(without referring to the numerical results) by comparing them with the results obtained from an alternative analytic technique known
as the matching method [14]. Our results would also serve as a first step to analyze holographic superconductors immersed in an external
magnetic field [29] taking into account the backreaction of the spacetime.
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