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MULTI-CRITERIA DE NO VO PROGRAMMING WITH 
FUZZY PARAMETERS 

R. J. LI and E. S. LEE~" 
Department of Industrial Engineering, Kansas State University, Manhattan, KS 66506, U.S.A. 

Abstract--A multiple criteria de Novo program with fuzzy parameters is developed based on the possibility 
concept of fuzzy set. This approach is much more flexible than the standard de Novo programming and 
allows the decision maker to choose his appropriate membership grades based on the risk factor he is 
willing to take. A numerical example is given to illustrate the approach. 

I N T R O D U C T I O N  

de Novo programming,  as was formulated by Zeleny in Ref. [1], emphasizes optimal design of  the 
original problem instead of  just optimizing a subproblem where the constraints are fixed and given. 
This approach is much more flexible than the usual multi-objective linear programming (MOLP).  
However,  in real world problems, the technological coefficients and parameters are not precisely 
known. Due to this uncertainty nature, fuzzy set theory can ideally be used to extend the de Novo 
programming.  

In order to introduce our nomenclature, consider the standard MOLP: 

max Zk = ~ C,jXj, k = 1 . . . . .  l, 
j=l 

s.t. • aijXj~bi,  i=  l . . . . .  m ,  
j=l 

Xj>~O, j = l  . . . . .  n, 

where the values of  the parameters  bi represent the given, fixed levels of  available resources. The 
conventional solution concept for a M O L P  model is the set of  non-dominated solutions [2]. I f  we 
change b~ from constants to resource variables with their values to be determined, we obtain the 
de Novo programming formulation [2]: 

2. 
maxzk=~CkjXj, k=l , . . . , l ,  

j=l 

s . t .  ~aoX j~<b~, i = l  . . . . .  m ,  
j=l 

• pib~ <~ B. 
i=l 

Xj~>0, j = l  . . . . .  n, 
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where ~ .  b; are decision variables for products and resources respectively, p~ are the unit price of 
resource i, and B is the total available budget. Let Vj = XT'-, P~au denote the unit cost of producing 
product j. We can rewrite the de Novo programming as follows: 

max zk = ~ CkjXj, k = 1 . . . . .  1, 
j = l  

s.t. ~ VjXh <~ b,, (P1) 
j = l  

Xy>~O, j---1 . . . . .  n. 

In this paper, we are concerned with fuzziness in the above system design problems in which 
all parameters, c, p, a and B are expressed by fuzzy subsets. 

FUZZY DE NOVO PROGRAMMING 

Consider the following fuzzy program: 

max ~k = ~ t~kiXj, 
j = l  

s t  
j = |  

i=1 

Xj~>0, 

k = l  . . . . .  l, 

j=  l , . . . ,n ,  

i = 1 . . . . .  m, (P2) 

and 

poss(~ ~Xj ~< ~ ) - - s u p  min{/z~,j (Vj), ~ u , ( b ) ¥ j = l  . . . . .  n,~VjXj<~b}.j. 

where parameters ~kj,/~i, ~U,/~ are fuzzy variables on R characterized by the membership functions 
/~ckj, Pp,, #a~,/~, respectively, and ~ are fuzzy functions on R ~' defined by 

/zpj(Vj)=supmin{#,,(pi),/z~u(aij).¥i=l . . . . .  m,~piaij=Vj}., 

Note that the solution to be obtained for problem (P2) should not be a crisp one, but a fuzzy one 
in nature, with respect to the fuzzy parameters. 

Let (X)~ be a solution of problem (P2) where ~ ~ [0, 1] represents the degree of possibility to 
which the solution satisfies the problem. In other words, we define 0~ ¢ [0, 1] to be safety grade or 
efficiency level, and 1-~ the risk factor. That is 

~t = min{poss( ~ (~kjXj), poss( ~ ~Xj ~</~) V k = l  . . . . .  l , j= l  . . . . .  n}, 

where poss denotes possibility. By means of extension principle we have 

poss(~kjXj)=supmin{iz¢~j(C~j) V k = I  . . . . .  l , j= l  . . . . .  n} 
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Therefore, 
transformed to 

and further to 

the original formulation of problem (P2) can be, referring to the definition of at, 

max :~k = ~ (TkjXj, k = l  . . . . .  I, 
j= l  

s.t. poss (~  (~kjXj) >~ ct, j = l  . . . . .  n, 

poss (~  ~Xj ~< B)  >~ ~t, 

max 3k = ~ t~kj~, k = 1 . . . . .  I, 
j= l  

s.t. ltCkj (Ckj)  >~ Or, j = 1 . . . . .  n 

/~p, (p/) ~> or, i = l  . . . . .  m, 

(P3) 

~piao=~, 
i 

#~(b) >/~, 

vjxj b, 
Y 

ct ~[0, 11, Xj >~ O. 

THE MEMBERSHIP FUNCTION 

There are many ways to construct a membership function [3-6]. The most practical form is a 
linear form proposed by Zimmerman [6]. Suppose that a decision maker can specify an interval 
[p0, pi)  or (pi, p0] for the possible values of parameter p (of. Carlsson and Korhonen [3]), where 
superscript 0 corresponds to "risk-free" values, i.e. 1 -~t = 0, and superscript 1 to "impossible" 
values, i.e. 1 - ~t = 1. It should be noticed that the type of interval [pt, p0) must be for parameters 
(~kj and B, and the type of interval (P~, p0] for parameters a~j and/~; in order to guarantee the 
solutions of problem (P3) to be optimal. This means that a system designed on the basis of the 
possible smallest profit units, the smallest invest budget, the biggest resource prices and the biggest 
operation costs appear to be "risk-free" design, conversely, a system designed with the possible 
biggest profits units, the biggest invest budget, the smallest resource prices and the smallest 
operation costs is most dangerous. In practical solutions, the safety factor should be chosen by 
considering the tolerance factor of the decision maker, thus fuzzy de N o v o  programming provides 
the decision maker a chance of comparing different system designs. This comparison would reveal 
how the system is influenced by the different safety factors. 

Let if" be a fuzzy parameter with interval [ W °, W ~) and ~ another fuzzy parameter with interval 
(Q~, Q0]. We now define two kinds of membership functions corresponding to the two types of 
intervals. For (~kj and/i~, we have 

t 
l, w ~< w ° 

t~,}(w) = ( w  - w l ) / ( w  ° -  w l ) ,  w <~ w~ <~ w l, 

O, w >~w I. 
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For  ao a n d / ~ ,  we have {o, 
. ~ ( q )  = (Q _ Qq / (QO _ Q , ) ,  

1, 

Q<~Q',  
Q~<~Q<~QO, 
Q >~QO. 

The membership functions are monotonical ly  decreasing for the parameters dkj and fi~, and 
monotonical ly  increasing for the parameters au and Pt. Obviously, for any membership function 
/z~ its inverse function/~71 exists for both cases, and furthermore 

for ~kj and /~: 

Izc,j (Ckj) >~ ~ =~ Ckj <~ #~,~j (oO, k = l  . . . . .  l , j  = l . . . . .  n, 

/~B'(b) >i a =~ b ~< #~ '  (a); 

for au and /~ :  

Izag(ao)>~a =*.aij>~l~(a); i =  1 . . . . .  re, j =  1 . . . . .  n, 

#~,(p,) >~ a = ~ p ~ > / ~  (0t), i =  1 . . . . .  m. 

Therefore, we can rewrite problem (P3) in parametric form (of. Verdegay [7]): 

which is equivalent to 

and further leads to 

max 

max~k = ~ ~kj" ~ ,  
j = l  

s.t. C,j ~< ~,~ (a), 

p~ = #~, (~), 

a o >1 t~a~ ~ (~),  

b <~l~il(a), 

E EpiaijX/ <~ b, 
j i 

~[o, l], xj~> o, 

s.t. 

k = l  . . . . .  1, 

k = 1 . . . . .  l , j  = 1 . . . . .  n, 

i =  1 , . . . , m ,  

max ;~, = ~ (Tj,jXj, 
j = l  

s.t. % =  ~,~(~), 
p; = g~l (or), 

a o = g;,j '  ( ~ ) ,  

b = # i l ( a ) ,  

E EP,  auXj, Xj <~ b, 
j i 

e [ -O,  1 ] , ~ >  O, 

k = l  . . . . .  /, 

j =  1 . . . . .  n, 

i =  1 , . . .  ,m,  

j = l  

j i 

~[o, 1], xj>~ o, 

k = l  . . . .  ,1, 

i = 1 . . . . .  m, j  = 1 . . . . .  n, 

(P4) 
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where 

~; ,  (~) =p~ + ~(po_p~),  

#~] (~) = a~+ ~(a ° -  a~), 

# ~  (a) = b 0 + ~ ( b  I - -  b°). 

For a given ~ e [0, 1] we can now design the optimal system with respect to each objective 
separately. Since only one budgetary constraint is involved, the optimal solution for each objective 
can be easily obtained for any number of  variables and any number of  resources by finding 

K max f .  -I QX',A" r..-I (Ot)g~! (Ot)]~, 

say 

then 

i 

X~ = I/~ i°' (°t)/~ [/J~S ~ (~) ge~* (a)], 
[o, 

k =  1 . . . . .  l , j =  1 . . . . .  n, 

i = l , . . . , m ,  

i =  1 . . . .  , m , j  = 1 . . . . .  n, 

Let us use the foursome (z*, X*, b*, B*)~ to denote the "ideal system design" for a given safety 
factor a, where z*, X*, b* and B* are/-vector ,  n-vector, m-vector and unit-vector, respectively. 
The "ideal system design" is not a solution for the given budget, but it can serve as a reference 
point for judging the multi-criteria desirability of  alternative system designs. If  the number of  
decision variables is equal to the number of decision criteria, the ideal (z*, X*, b*, B*)~ can be 
obtained by solving the following systems of linear algebraic equations: 

and 

~,~' (~).x~ = u~,'~(~)x, + ~,~,',(~)x~ + • • • + ~,~. ~ (~), 

"~ i  (~)" x ~  = u~,',(a)x, + ~ ~,'~(~)x= + . . .  + ue-~ (~), 

~ (~). x *  = ~ ~', (~)x, + ~ ~'~(~)x~ + . . .  + ~ ~-' (~), 

jffil  
k = 1 , . . . , l , j  = 1 . . . . .  n, 

(b*)~ = ~, ~%' (~). X 7 ,  
J=l 

i = 1 . . . . .  m , j  = 1 . . . . .  n, 

(B*)~ = ~ ~ I~ps I (~)#~-o' (oOX~, i =  1 . . . . .  m , j  = 1 . . . . .  n. 
j - I  i - I  

Furthermore, based on the ideal ( z* ,  X * ,  b * ,  B*)~ we can obtain the optimal solution 
(z', x ' ,  b',  B')~ for any other budget level, such that V a e[0, 1], X "  = X * .  B ' / B * ,  z '  ffi # E ~ ( a )  • X '  

and b '  ffi/~-i(~). X'. 

for j =  T, 

otherwise. 
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A N U M E R I C A L  E X A M P L E  

Consider the following multi-criteria design problem: 

max zl = [ 2°, 51)X] + 12,t"2, 

22 = 4x] + [1 °, 31)X2, 

s.t. X, +(l',4°)X2 <~b], 

2XI + (2 l, 30]X2 <~ b~, 

((0.5], 2 °] + 2)X, + ((0.5 I, 2°] • (11, 4 °] + (21, 3°]),I"2 ~< [200 °, 2501), 

XI , X2, X3 >~ O, 

where the membership functions are defined by 

t 
l, 

#p(p) = (p_pO)/(p,_pO), 

0, 

p ~<pO, 
pO <~ p <~ pl, 
p ~>pt, 

for the fuzzy parameters with the type of interval [pO, pl), and 

0, 
#;(p)= (p_pl)/(pO__pl), 

1, 

p <~p], 
p~ <~ p <~ pO, 
p >~pO, 

for the fuzzy parameters with the type of interval (p ~, pO]. These parameter values are pictured in 
Fig. 1. 
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Fig. 1. The membership functions of the parameters. 
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For a given safety factor ~ the fuzzy parameters can be expressed by means of their membership 
functions as: 

( ~ , , ) ~ ,  = #~,~ (oc) = 5 - 3oc, ( ~ r , ) ~  - -  # ~ ( o c )  = 3 - 2~, 

( ~ , , ) ,  = # ; , ~ ( ~ )  = 1 + 3~,(,~22)~ = # ; "  ( ~ )  = 2 + ~, 

(ff,)~ = # ~  (0c) = 0.5 + 1.5~, (~)~ = # i 1 ( ~ )  = 250 - 50~, 

(I?,), = # ~ 1 ( ~ )  = 2.5 + 1.5~, (lY2) . = # ~2~ (~)  = 2.5 + 4a + 4.5a 2. 

Thus  the original  formulat ion  can be rewritten as: 

m a x  (zl)~ = (5 - 3~)Xl + 12X2, 

m a x  (~2)~ = 4X, + (3 - 2~)Xz,  

s.t. ( 2 . 5 +  1 . 5 ~ ) X ~ , + ( 2 . 5 + 4 ~  + 4 . 5 ~ 2 ) X z ~ < 2 5 0 - 5 0 ~ ,  

~ e [0, 1], X,,  X~ ~> O. 

0 I l 
100 4 0 0  800  
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0 I 
30 4O 
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60 70  BO 
b,  

1 - 

I - 

100 190 2 8 0  

Z2 

10 30 50 

90 13o 17o 

bz 

210 
B 

F ig .  2. System designs for different values of a. 
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By choosing different values of  u one can get a set of different solutions which show the relationship 
of  the ideal system design with the required successful possibility. For instance if we let u = 0.8, 
then we obtain the optimal solutions with respect to each objective separately as follows: 

(z ~')0.8 = 293.7063, 

(z~')o.8 = 227.0270, 

The other components of  the solution can be 
equations: 

293.7063 = 

227.0270 = 

b * =  

b * =  

b * =  

for Xt = 0, ?(2 = 24.4755, 

for X~ = 56.7568, ?(2 = 0. 

obtained by solving the following system of linear 

2.6X* + 12X*, 

4X* + 1.4X*, 

3.7X* + 8.58X~', 

X* + 3.4X~', 

2x* + 2.8X*, 

which yields X* = 52.1447, X* = 13.17775, b* = 305.9785, b* = 96.9482, b* = 141.1964. Therefore 
the system ideal for the safety factor ~ =0.8 is (~*),=0.8=(z~*=293.7063, z*=227.0270, 
X* = 52.1447, X~' = 13.1775, b* =96.9482, b* = 141.1864, B* = 305.9985),.0.8. On the other 
hand, the optional design for the original budget (B)~=0.s =210 will be proportionally as: 
(z')~-0.s = (z; = 201.5641, z~ = 155.8036, X~ = 35.7858, x~ = 9.0434, b'~ = 66.5334, b~ = 96.8934, 
B '  = 210),.0.8. Furthermore, the optional system designs for ~ = 0, 0.1, 0.2, 0.3, 0.4, 0.5, 0.6, 0.7, 
0.9, 1.0 are also obtained and the solutions are pictured in Fig. 2. 

CONCLUSION 

Fuzzy de Novo programming with multi-criteria extends the flexibility of the standard de Novo 
programming. The most promising advantage is that fuzzy de Novo programming allows the 
decision maker to deal with an uncertainty situation realistically. Furthermore, fuzzy de Novo 
programming can be solved easily based on fuzzy set and possibility theory. The final optimal 
solutions presents a set of  solutions based on different safety factors chosen by the decision maker. 
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