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Zeevi et al. report that extensive monitoring of a human cohort for variations in dietary intake, life-
style, host phenotype, and the gut microbiome has enabled the development of amachine-learning
algorithm that accurately predicts the individual glycemic response to meals, providing an impor-
tant first step toward personalized nutrition.
Nearly 1 in 10 adult Americans now

suffers from type 2 diabetes (T2D),

placing it among the top ten leading

causes of death (National Diabetes Statis-

tics Report, 2014). Insulin resistance and

impaired insulin secretion characterize

T2D, ultimately leading to persistent dys-

regulation of plasma glucose. Besides

fasting glucose levels, post-meal glucose

levels are increasingly recognized as

important risk factors for the develop-

ment of cardiovascular disease and

mortality (Cavalot et al., 2011), and the

introduction of continuous glucose moni-

toring has improved glycemic control; for

example in type 1 diabetics (Juvenile Dia-

betes Research Foundation Continuous

Glucose Monitoring Study Group et al.,

2008).

The post-meal rise in plasma glucose

levels after ingestion of carbohydrates

is reflected by a food’s glycemic index

(incremental area under the curve of

plasma glucose levels relative to a pure

glucose load); however, the combination

with other macronutrients in a meal

adds substantial variation. For example,

meals with high fat content may impair

glycemic response by delayed gastric

emptying. Numerous additional factors,

such as anthropometrics, meal times,

sleep-wake cycle, physical activity, in-

testinal disorders, insulin sensitivity/

resistance, lifestyle, and the trillions of

microbes residing in the gastrointestinal

tract (the gut microbiome), among other

variables, may all contribute to the

high degree of inter-individual variation

of glycemic response to a given food

(Dodd et al., 2011). In fact, one person

may exhibit an exaggerated glucose

response to a meal that results in a flat
or even negative glucose curve in others.

Thus, prediction of individual glucose

responses is fraught with issues, and

given the substantial health burden of

glycemic disorders and associated sec-

ondary diseases, improved predictions

represent a grand challenge for modern

medicine.

In this issue of Cell, Zeevi et al. (2015)

provide a framework to systematically

address this challenge. The authors

collected extensive phenotypic data

from 800 individuals, which were then

used to train a machine-learning algo-

rithm that could accurately predict

glycemic response to various meals.

Their remote data collection is enabled

by a smartphone ‘‘app,’’ providing a

glimpse into a brave new world wherein

our mobile devices, trained with exten-

sive host and microbiome data, pro-

vide real-time advice on our dietary

consumption and other lifestyle choices

(Figure 1).

The resulting algorithm integrates

many variables, including well-estab-

lished contributors to glycemic response,

such as carbohydrate intake or anthro-

pometrics, but also various other traits

like sleep-wake cycle, physical activity,

age, HbA1c, calories, time of meal

ingestion, and preceding measurements

of glycemic response via continuous

glucose monitors. The authors also

include data on the gut microbiome,

based on prior human studies showing

that caloric intake and macro-nutrient

composition can rapidly alter gut micro-

bial community structure (e.g., David

et al., 2014; Jumpertz et al., 2011)

and that the gut microbiome is corre-

lated with glucose regulation (Qin et al.,
Cell 163, No
2012). The algorithm accurately pre-

dicts glycemic response in a separate

validation cohort and in a follow-

up dietary intervention study. Notably, it

also yields similar, if not markedly more

accurate, predictions of glycemic res-

ponse compared with an expert

nutritionist.

This study provides a generalizable

framework for the unbiased develop-

ment of algorithms that predict other

clinically relevant phenotypes. However,

in part due to the complexity of the

model, many critical questions remain

to be addressed. What are the major

data-points responsible for the accurate

prediction of glycemic response? Could

similarly accurate predictions be accom-

plished by a more limited set of already

established determinants of glucose

response, such as body composition,

caloric and macronutrient content of

meals, and age? The authors show

that their model out-performs carbohy-

drate and caloric intake, but how

does a model based on a more

comprehensive analysis of dietary intake

(e.g., including micronutrients) perform?

Could this be improved by including

information on each carbohydrate’s gly-

cemic index and/or susceptibility to

host versus microbial digestion? Finally,

what contribution did the gut micro-

biome make to these predictions and

to what degree does this represent a

causal versus casual link to glucose

regulation? The answers to these

questions are not just scientifically

intriguing but will also be critical to trans-

late these findings into a cost effective

strategy for predicting glucose levels in

patients.
vember 19, 2015 ª2015 Elsevier Inc. 1051

https://core.ac.uk/display/82160656?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1
mailto:peter.turnbaugh@ucsf.edu
http://dx.doi.org/10.1016/j.cell.2015.11.012
http://crossmark.crossref.org/dialog/?doi=10.1016/j.cell.2015.11.012&domain=pdf


Figure 1. Computational Models Are Open-

ing the Way toward a More Quantitative and

Personalized Approach to Nutrition
Vast datasets on diet, lifestyle, host, and the mi-
crobiome can be used to predict the glycemic
response to a given food.
Nonetheless, the current study is an

important proof-of-principle for the uti-

lity of tailoring nutritional and/or pharma-

ceutical interventions to each individual.

Precise predictions of glycemic response

could represent a powerful tool to opti-

mize dosing of insulin (or dietary interven-

tions) in type 1 or even type 2 diabetics to

avoid hypoglycemic episodes and more
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efficiently control HbA1c levels. Follow-

up studies will be essential to determine

whether or not such personalized ap-

proaches reduce the risk of secondary

disease and death. It will also be impor-

tant to refine and validate app-based

methods to monitor dietary intake and

other relevant lifestyle traits in large co-

horts. Machine-learning algorithms could

be more broadly applicable to pharma-

cology and toxicology, especially for

drugs with a narrow therapeutic window,

such as those used for heart failure (Hai-

ser et al., 2013) or cancer (Wallace et al.,

2010). Currently, drug dosage can be

adjusted based on body surface area

and kidney/liver function; however, the

more comprehensive approach intro-

duced here could lead to more accurate

strategies to improve response rates and

reduce the side effects of such therapeu-

tics. Interpreting these models will require

inter-disciplinary efforts to establish

causal relationships and identify the host

and microbial genetic variants that are

most relevant and those that can

be safely ignored. Finally, it is important

to remember that even with a perfect

diagnostic tool we would still all be sub-

ject to the age-old struggle to maintain

this now more personalized ‘‘healthy’’

diet, necessitating a concerted revolution

in agriculture, food distribution, and food

preparation.
evier Inc.
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